JPH087836A - Discharge lamp for semiconductor exposure - Google Patents

Discharge lamp for semiconductor exposure

Info

Publication number
JPH087836A
JPH087836A JP16079294A JP16079294A JPH087836A JP H087836 A JPH087836 A JP H087836A JP 16079294 A JP16079294 A JP 16079294A JP 16079294 A JP16079294 A JP 16079294A JP H087836 A JPH087836 A JP H087836A
Authority
JP
Japan
Prior art keywords
quartz glass
discharge lamp
semiconductor exposure
ppm
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16079294A
Other languages
Japanese (ja)
Other versions
JP2991933B2 (en
Inventor
Yukio Yasuda
幸夫 安田
Kiyotada Nakamura
清忠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP6160792A priority Critical patent/JP2991933B2/en
Priority to KR1019950016285A priority patent/KR100349800B1/en
Priority to US08/492,948 priority patent/US5670844A/en
Publication of JPH087836A publication Critical patent/JPH087836A/en
Application granted granted Critical
Publication of JP2991933B2 publication Critical patent/JP2991933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To obtain a high quality of discharge lamp for semiconductor exposure by prescribing the content of the OH group in the quartz glass of a discharge lamp in a specified range in weight ppm, or prescribing the metallic impurity density in the quartz glass less than a specified value in weight ppm. CONSTITUTION:In a spherical luminous tube 1 made of a quartz glass, an anode 2, and a cathode 3 are provided placing a distance L. In the cathode 3, the tip of an inner lead 11 is made in a specific form, a tangsten wire 12 is wound at a little rear side from the tip, and a short arc type discharge lamp which is lighted by a DC power source is formed. And the outer surface of a chip 13 is covered by a heat insulating membrane 14, while the low temperature part of the luminus tube 1 at the rear side of an electrode is covered by a heat insulating membrane 15. In the luminous tube 1, specific Pa of Hg and Xe are sealed. In this case, the OH group including amount in the quartz glass is made 300 to 800 in weight ppm, or the metallic impurity density in the quartz glass is made less than 1 in weight ppm. As a result, a color center is hardly generated on the quartz glass, the absorption by a thermal oscillation is little, and a discharge lamp which can pick up the light with the wave length 240nm to 254nm efficiently for a long period can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、波長240〜254n
mの紫外線を利用して、回路パターンの焼き付けを行う
半導体露光装置のための光源ランプに関するものであ
る。
BACKGROUND OF THE INVENTION The present invention has a wavelength of 240 to 254n.
The present invention relates to a light source lamp for a semiconductor exposure apparatus that prints a circuit pattern by using ultraviolet rays of m.

【0002】[0002]

【従来の技術】最近の超LSIの開発の進歩は著しく、
高集積度化にともなって高解像度が要求され、露光に必
要な光の波長が短いランプが求められるようになって来
ている。従来の技術では、1Mbits以下の集積度を
もつ半導体装置を露光する場合は、水銀灯のg線(中心
波長436nm)を用い、それ以上の集積度を有する半
導体装置では、変形照明を用いる等して、i線(中心波
長365nm)を用いて、約64MDRAMの半導体装
置の製造を可能にして来た。256MDRAM以上の半
導体装置の露光に必要な光源として、高解像度、高NA
が可能なKrFレーザー(248nm)が提案され、実
用化に向けて種々実験が行われている。しかし、この光
源はコヒーレント光なので、ウエハー上のレジスト膜厚
間での干渉効果により、高解像度化を困難にして来てお
り、更にこの光源はパルス的に照射される為にレンズで
ある硝材や反射鏡へのパワーダメージが大きく、その寿
命が短い等まだまだ解決すべき問題は多く残っている。
2. Description of the Related Art Recent advances in VLSI development are remarkable,
As the degree of integration increases, high resolution is required, and a lamp having a short wavelength of light required for exposure is required. In the prior art, when exposing a semiconductor device having an integration degree of 1 Mbits or less, the g-line (center wavelength 436 nm) of a mercury lamp is used, and for a semiconductor device having an integration degree of more than that, modified illumination is used. , I-line (center wavelength 365 nm), it has been possible to manufacture a semiconductor device of about 64 MDRAM. High resolution and high NA as a light source necessary for exposing semiconductor devices of 256 MDRAM or more
A KrF laser (248 nm) capable of achieving the above has been proposed, and various experiments have been conducted for practical use. However, since this light source is coherent light, it is becoming difficult to achieve high resolution due to the interference effect between the resist film thicknesses on the wafer, and since this light source is irradiated in a pulsed manner, the glass material used as a lens and There are still many problems to be solved, such as large power damage to the reflector and short life.

【0003】他方、256MDRAMの高集積度の半導
体装置の製造の光源に、水銀ランプの波長250nm周
辺の発光を利用しようとする試みが続けられている。例
えば、J. Vac. Sei. Technol. B7(6) 1989, PP1607-161
2 に見られる様に、硝材の色収差を無くす為に反射光学
系が採用されており、露光波長帯域幅を広くとることが
でき、従って、レジスト膜厚による干渉効果を防ぐこと
ができる。更に、レーザーに比べ、光の尖頭強度は非常
に小さいので硝材に与える損傷が回避できることが知ら
れている。ところで、上記の様な半導体露光装置に使用
されている水銀ランプでは、特公昭62−2428によ
れば、水銀ランプからの放射波長域200〜250nm
が強くなるのは、発光管単位体積当たりの水銀封入量を
M(mg/cc)、希ガス封入圧力をPとする時1≦M
≦13,0.1×105 ≦P≦1×106 であると規定
している。しかしながら、上記の封入量に従うと、産業
上に利用できる十分強い放射強度を得ることができず、
半導体露光プロセスにおけるスループットの低下即ち、
生産性の低下を招いていた。又、産業上利用できる強度
を得ようとすれば、ランプ入力を大幅に増大するしか他
に方法がなく、この方法によれば、装置が大型化すると
共に、ランプからの熱放射も増大し、装置への熱的損傷
を与える等解決困難な問題が新たに出てくるのが現状で
あった。
On the other hand, attempts have been made to utilize the light emission around a wavelength of 250 nm of a mercury lamp as a light source for manufacturing a highly integrated semiconductor device of 256 MDRAM. For example, J. Vac. Sei. Technol. B7 (6) 1989, PP1607-161
As can be seen from Fig. 2, a reflection optical system is adopted to eliminate the chromatic aberration of the glass material, and the exposure wavelength band can be widened, so that the interference effect due to the resist film thickness can be prevented. Further, it is known that the damage to the glass material can be avoided because the peak intensity of light is much smaller than that of the laser. By the way, in the mercury lamp used in the semiconductor exposure apparatus as described above, according to Japanese Patent Publication No. 62-2428, the radiation wavelength range from the mercury lamp is 200 to 250 nm.
Becomes stronger when the amount of mercury filled per unit volume of the arc tube is M (mg / cc) and the rare gas filling pressure is P 1 ≦ M
It is specified that ≦ 13, 0.1 × 10 5 ≦ P ≦ 1 × 10 6 . However, according to the above enclosure amount, it is not possible to obtain a sufficiently strong radiant intensity that can be industrially used,
Throughput decrease in the semiconductor exposure process, that is,
This has led to a decrease in productivity. Further, in order to obtain the intensity that can be industrially used, there is no other way but to greatly increase the lamp input. According to this method, the device becomes large in size, and the heat radiation from the lamp also increases, The current situation is that new problems that are difficult to solve, such as thermal damage to the device, are emerging.

【0004】上記事情に鑑み、最近は、水銀分子発光の
波長240nmから254nmの紫外線を効率良く取り
出せるようにした半導体露光用放電ランプの研究が進
み、例えば、水銀封入量を14mg/cm3 から30m
g/cm3 、キセノンを0.1×105 Paから5×1
0Pa(25℃基準)に規定した放電ランプが提案され
た。しかしながら、このランプを長時間点灯使用する
と、発光管に歪みが発生したり、紫外線透過率の低下が
g線用ランプやi線用ランプより早いことが分かった。
また、利用する露光波長が短波長になると、ランプ設計
時の紫外線の放射強度とランプ点灯中の紫外線の放射強
度が異なることも分かった。
In view of the above circumstances, recently, research on a semiconductor exposure discharge lamp capable of efficiently extracting ultraviolet rays having a wavelength of 240 nm to 254 nm for emitting mercury molecules has progressed, and for example, the amount of mercury enclosed is 14 mg / cm 3 to 30 m.
g / cm 3 , xenon from 0.1 × 10 5 Pa to 5 × 1
A discharge lamp regulated to 0 Pa (25 ° C. standard) has been proposed. However, it has been found that when the lamp is used for a long period of time, the arc tube is distorted and the ultraviolet ray transmittance is lowered faster than the g-line lamp or the i-line lamp.
It was also found that when the exposure wavelength used was a short wavelength, the radiant intensity of ultraviolet rays when the lamp was designed was different from the radiant intensity of ultraviolet rays when the lamp was on.

【0005】[0005]

【課題が解決しようとする課題】本発明の課題は、波長
240nmから254nmの水銀分子発光を利用した半
導体露光用放電ランプにおいて、発光管の早期の歪み発
生や紫外線透過率の劣化を抑制すること、あるいは、ラ
ンプ点灯中でも設計時の紫外線放射強度が得られるよう
にすること、これらによって良好な半導体露光用放電ラ
ンプを提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to suppress early generation of distortion of a light emitting tube and deterioration of ultraviolet transmittance in a discharge lamp for semiconductor exposure using mercury molecule light emission having a wavelength of 240 nm to 254 nm. Alternatively, it is possible to obtain the ultraviolet radiation intensity at the time of design even when the lamp is on, and to provide a good discharge lamp for semiconductor exposure.

【0006】[0006]

【課題を解決するための手段】本発明の課題は、石英ガ
ラス製の発光管内に、近接して一対の電極を配置し、封
入物として、水銀と希ガスとを封入して波長240nm
から254nmの範囲の水銀分子の発光を効率良く取り
出せるようにした半導体露光用放電ランプにおいて、前
記石英ガラスのOH基含有量を、重量ppmで、300
から800に規定することによって達成できる。
SUMMARY OF THE INVENTION An object of the present invention is to dispose a pair of electrodes close to each other in an arc tube made of quartz glass, and to enclose mercury and a rare gas as an enclosure to obtain a wavelength of 240 nm.
In a discharge lamp for semiconductor exposure, which is capable of efficiently extracting the emission of mercury molecules in the range from 1 to 254 nm, the OH group content of the quartz glass is 300 ppm by weight.
To 800 can be achieved.

【0007】あるいは、石英ガラス製の発光管内に、近
接して一対の電極を配置し、封入物として、水銀と希ガ
スとを封入して波長240nmから254nmの範囲の
水銀分子の発光を効率良く取り出せるようにした半導体
露光用放電ランプにおいて、前記石英ガラスの金属不純
物量を、重量ppmで、1以下に規定することによって
達成できる。
Alternatively, a pair of electrodes are arranged close to each other in an arc tube made of quartz glass, and mercury and a rare gas are enclosed as an enclosure to efficiently emit light of mercury molecules in a wavelength range of 240 nm to 254 nm. In a discharge lamp for semiconductor exposure which can be taken out, it can be achieved by defining the amount of metal impurities in the quartz glass to be 1 or less in ppm by weight.

【0008】[0008]

【作用】従来より、g線用ランプやi線用ランプの発光
管は、OH基含有量の少ない石英、例えば重量ppm
で、数十ppm以下あるいは、数ppm以下の「無水石
英」を使用している。点灯使用中、発光管の温度が10
00℃程度になっても、発光管から酸素,水素,水等の
放出が少ない長所があるからである。しかしながら、こ
のような石英は、紫外線によってカラーセンターが生じ
易く、それによって歪みが発生し易かったり、紫外線透
過率の低下をまねく。そのためOH基の多い石英ガスを
用い、カラーセンターが発生しにくいようにした。重量
ppmで300以上であれば、カラーセンター発生抑制
効果がある。ただし、水等の放出問題が生ずるが、発光
管内にタンタルやジルコニウムのゲッターを取り付ける
ことによって、これがもたらす他の問題は解決できる
が、それでも800ppmは超えない方が良い。
In the prior art, arc tubes for g-line lamps and i-line lamps are made of quartz with a low OH group content, for example ppm
Therefore, "anhydrous quartz" of several tens ppm or less or several ppm or less is used. During use, the temperature of the arc tube is 10
This is because there is an advantage that the emission of oxygen, hydrogen, water, etc. from the arc tube is small even at about 00 ° C. However, such a quartz easily causes a color center due to ultraviolet rays, which easily causes distortion and lowers the ultraviolet transmittance. Therefore, quartz gas containing a large amount of OH groups was used to prevent color centers from occurring. If the weight ppm is 300 or more, there is an effect of suppressing the generation of color centers. However, although there is a problem of releasing water and the like, by installing a getter of tantalum or zirconium in the arc tube, other problems brought about by this can be solved, but it is still preferable that the content does not exceed 800 ppm.

【0009】他方、金属不純物については、通常、室温
で石英ガラスの透過率測定検査を行い、所定の透過率の
材料であれば、重量ppmで、数十ppm程度含有され
ていても使用していた。しかしながら、上記したよう
に、発光管は、ランプ点灯中1000℃程度になり、不
純物金属の原子や分子の振動エネルギーの増大が無視で
きなくなり、例えば、不純物金属を25ppm含む石英
ガラスについて、波長248nmの透過率を調べると、
室温時測定値を基準にして800〜1000℃では20
%程透過率が低下することが分かった。したがって、本
発明では、金属不純物を1重量%以下にすることによっ
て、この課題を解決した。
On the other hand, with respect to metallic impurities, the transmittance of quartz glass is usually inspected at room temperature, and if the material has a predetermined transmittance, it is used even if it is contained by several ppm by weight ppm. It was However, as described above, the arc tube is heated to about 1000 ° C. during lamp operation, and the increase in vibration energy of atoms and molecules of the impurity metal cannot be ignored. For example, for quartz glass containing 25 ppm of the impurity metal, the wavelength of 248 nm If you check the transmittance,
20 at 800 to 1000 ° C based on the measured value at room temperature
It was found that the transmittance decreased as much as%. Therefore, in the present invention, this problem has been solved by reducing the metal impurities to 1% by weight or less.

【0010】上記作用により、OH基が適度に多く、か
つ不純物金属が少ない石英ガラスを用いると更に良い結
果が得られることは明らかである。
From the above-mentioned action, it is apparent that even better results can be obtained by using quartz glass having an appropriately large number of OH groups and a small amount of impurity metals.

【0011】[0011]

【実施例】図1は、本発明の半導体露光用放電ランプの
実施例の説明図である。図において、1は石英ガラス製
の発光管であって、球形、紡錘形、ラグビーボール形等
をしていて、内部に陽極2、陰極3を近づけて配置して
いる。Lは両電極間の距離である。実験に供するランプ
においてはL=3mmとした。発光管1の両側には、気
密封止部4,5が連なり、モリブデン金属箔6,7が埋
設されている。8と9は、箔6,7に接続された外部リ
ード部材、10と11は、箔6,7に接続された内部リ
ード部材である。この実施例では、陰極3は、内部リー
ド部材11の先端を所定の形状に加工し、先端からやや
後方の位置にタングステンワイヤ12を巻き付けて構成
している。つまり、直流電源で点灯されるショートアー
ク型の放電ランプである。13は、ランプ製作時に使用
した排気管の残部、いわゆるチップであって、その外面
には保温膜14を有する。15は、電極の後方を囲う発
光管の低温部に設けた保温膜である。
1 is an explanatory view of an embodiment of a discharge lamp for semiconductor exposure of the present invention. In the figure, reference numeral 1 denotes a quartz glass arc tube having a spherical shape, a spindle shape, a rugby ball shape or the like, and an anode 2 and a cathode 3 are arranged close to each other. L is the distance between both electrodes. In the lamp used in the experiment, L = 3 mm. On both sides of the arc tube 1, hermetically sealed portions 4 and 5 are connected, and molybdenum metal foils 6 and 7 are embedded. Reference numerals 8 and 9 are external lead members connected to the foils 6 and 7, and reference numerals 10 and 11 are internal lead members connected to the foils 6 and 7. In this embodiment, the cathode 3 is formed by processing the tip of the inner lead member 11 into a predetermined shape and winding the tungsten wire 12 at a position slightly rearward from the tip. That is, it is a short arc type discharge lamp that is turned on by a DC power supply. Reference numeral 13 is the remaining portion of the exhaust pipe used when the lamp is manufactured, that is, a so-called chip, and has a heat insulating film 14 on the outer surface thereof. Reference numeral 15 is a heat insulating film provided in a low temperature portion of the arc tube surrounding the back of the electrode.

【0012】上記構造のランプにおいて、発光管内に水
銀20mg/cm3 、キセノン0.5×105 Pa封入
した。量は、いずれも25℃基準である。このランプを
直流の定電力電源で、約2000Wで点灯する。電圧は
約29V、電流は約70Aである。
In the lamp having the above structure, 20 mg / cm 3 of mercury and 0.5 × 10 5 Pa of xenon were enclosed in the arc tube. All amounts are based on 25 ° C. This lamp is lit with a DC constant power source at about 2000W. The voltage is about 29V and the current is about 70A.

【0013】図2は、上記構造および電気定格のランプ
であって、発光管の石英ガラスの材質のOH基の濃度の
異なるランプを製作し、波長248nmをピークとする
波長240nmか254nmの範囲の光の放射照度を比
較調査したデータの説明図である。データの値は、点灯
後100時間後の測定値である。図において、放射照度
は石英ガラスのOH基濃度が700重量ppmのランプ
の場合の値を1として他の値を表示した。判定欄で示す
ように、OH基が300重量ppm以上の石英ガラスが
良いが、多すぎると他の欠点が顕著になってくる。
FIG. 2 shows a lamp having the above-mentioned structure and electrical rating, in which lamps having different OH group concentrations of the quartz glass material of the arc tube are manufactured, and the peak wavelength of 248 nm is in the range of 240 nm or 254 nm. It is explanatory drawing of the data which carried out comparative investigation of the irradiance of light. The data value is a measured value 100 hours after the lighting. In the figure, the irradiance is displayed as other values with the value of 1 in the case of a lamp having an OH group concentration of quartz glass of 700 ppm by weight. As shown in the judgment column, silica glass having an OH group of 300 ppm by weight or more is good, but if it is too large, other defects become remarkable.

【0014】図3は、金属不純物の異なる量の石英ガラ
スを用いてランプを製作し、OH基に関する場合と同様
なテストをした結果のデータの説明図である。図におい
て、石英ガラス中のOH基濃度は300重量ppmのも
のを使用し、放射照度は、波長240nmから254n
mの範囲の光の点灯初期の値を、ランプ(リ)の値を1
として他を表示した。このランプは、前記したように点
灯すると、発光管の内面で最高温度が1000℃を超
え、金属不純物の濃度が高いとその影響が現れる。デー
タからも理解されるように、1重量ppm以下が良い。
FIG. 3 is an explanatory view of data obtained as a result of making a lamp using quartz glass with different amounts of metal impurities and performing the same test as in the case of OH group. In the figure, silica glass with an OH group concentration of 300 ppm by weight is used, and the irradiance is from 240 nm to 254 n.
The initial lighting value of the light in the range of m, the lamp (ri) value is 1
Displayed other as. When this lamp is lit as described above, the maximum temperature exceeds 1000 ° C. on the inner surface of the arc tube, and if the concentration of metal impurities is high, its effect appears. As can be understood from the data, 1 wt ppm or less is preferable.

【0015】[0015]

【発明の効果】上記の発明と実施例の説明からも理解さ
れるように、本発明によれば、高集積度の半導体装置の
生産プロセスにおいて、露光波長がg線やi線よりも短
い場合、放電ランプを構成する発光管の石英ガラスに、
カラーセンターの生じにくいもの、金属不純物が少ない
ために熱振動による吸収の少ないものを使用することに
よって、波長248nmにピークを有する波長240n
mから254nmの範囲の光を効率良く、長時間取り出
せる半導体露光用放電ランプを提供できる。
As can be understood from the above description of the invention and the embodiments, according to the present invention, when the exposure wavelength is shorter than that of the g-line or i-line in the production process of the highly integrated semiconductor device. , On the quartz glass of the arc tube that constitutes the discharge lamp,
By using a material that is less likely to generate a color center and one that is less absorbed by thermal vibration due to less metal impurities, a wavelength of 240n having a peak at a wavelength of 248nm.
It is possible to provide a semiconductor exposure discharge lamp that can efficiently extract light in the range of m to 254 nm for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体露光用放電ランプの実施例の説
明図である。
FIG. 1 is an explanatory view of an embodiment of a semiconductor exposure discharge lamp of the present invention.

【図2】OH基に関するデータの説明図である。FIG. 2 is an explanatory diagram of data on an OH group.

【図3】金属不純物に関するデータの説明図である。FIG. 3 is an explanatory diagram of data on metal impurities.

【符号の説明】[Explanation of symbols]

1 発光管 2 陽極 3 陰極 4,5 封止部 6,7 モリブデン金属箔 8,9 外部リード部材 10,11 内部リード部材 12 タングステンワイヤ 13 チップ 14,15 保温膜 1 Arc Tube 2 Anode 3 Cathode 4,5 Sealing Part 6,7 Molybdenum Metal Foil 8,9 External Lead Member 10,11 Internal Lead Member 12 Tungsten Wire 13 Chip 14,15 Heat Insulating Film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石英ガラス製の発光管内に、近接して一
対の電極を配置し、封入物として、水銀と希ガスとを封
入して波長240nmから254nmの範囲の水銀分子
の発光を効率良く取り出せるようにした半導体露光用放
電ランプにおいて、 前記石英ガラスのOH基含有量が、重量ppmで、30
0から800であることを特徴とする半導体露光用放電
ランプ。
1. A pair of electrodes are arranged in close proximity in an arc tube made of quartz glass, and mercury and a rare gas are enclosed as an enclosure to efficiently emit light of mercury molecules in a wavelength range of 240 nm to 254 nm. In a discharge lamp for semiconductor exposure, which can be taken out, the quartz glass has an OH group content of 30 ppm by weight.
Discharge lamp for semiconductor exposure, characterized in that it is 0 to 800.
【請求項2】 石英ガラス製の発光管内に、近接して一
対の電極を配置し、封入物として、水銀と希ガスとを封
入して波長240nmから254nmの範囲の水銀分子
の発光を効率良く取り出せるようにした半導体露光用放
電ランプにおいて、 前記石英ガラスの金属不純物量が、重量ppmで、1以
下であることを特徴とする半導体露光用放電ランプ。
2. A pair of electrodes are arranged close to each other in an arc tube made of quartz glass, and mercury and a rare gas are enclosed as an enclosure to efficiently emit light of mercury molecules in a wavelength range of 240 nm to 254 nm. A discharge lamp for semiconductor exposure, wherein the amount of metallic impurities in the quartz glass is 1 or less in ppm by weight.
【請求項3】 石英ガラス製の発光管内に、近接して一
対の電極を配置し、封入物として、水銀と希ガスとを封
入して波長240nmから254nmの範囲の水銀分子
の発光を効率良く取り出せるようにした半導体露光用放
電ランプにおいて、 前記石英ガラスは、OH基含有量が、重量ppmで、3
00から800であり、かつ金属不純物含有量が、重量
ppmで、1以下であることを特徴とする半導体露光用
放電ランプ。
3. A pair of electrodes are arranged close to each other in an arc tube made of quartz glass, and mercury and a rare gas are enclosed as an enclosure to efficiently emit light of mercury molecules in a wavelength range of 240 nm to 254 nm. In a discharge lamp for semiconductor exposure, which can be taken out, the quartz glass has an OH group content of 3 ppm by weight.
Discharge lamp for semiconductor exposure, characterized in that it is from 00 to 800 and the content of metal impurities is 1 or less in ppm by weight.
JP6160792A 1994-06-21 1994-06-21 Discharge lamp for semiconductor exposure Expired - Fee Related JP2991933B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6160792A JP2991933B2 (en) 1994-06-21 1994-06-21 Discharge lamp for semiconductor exposure
KR1019950016285A KR100349800B1 (en) 1994-06-21 1995-06-19 Discharge lamp
US08/492,948 US5670844A (en) 1994-06-21 1995-06-21 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160792A JP2991933B2 (en) 1994-06-21 1994-06-21 Discharge lamp for semiconductor exposure

Publications (2)

Publication Number Publication Date
JPH087836A true JPH087836A (en) 1996-01-12
JP2991933B2 JP2991933B2 (en) 1999-12-20

Family

ID=15722560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160792A Expired - Fee Related JP2991933B2 (en) 1994-06-21 1994-06-21 Discharge lamp for semiconductor exposure

Country Status (1)

Country Link
JP (1) JP2991933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279932A (en) * 2001-03-19 2002-09-27 Ushio Inc Discharge lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279932A (en) * 2001-03-19 2002-09-27 Ushio Inc Discharge lamp

Also Published As

Publication number Publication date
JP2991933B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JPH0317213B2 (en)
JP2000306546A (en) Short arc discharge lamp
EP1310984B1 (en) High pressure mercury lamp, illumination device using the high-pressure mercury lamp, and image display apparatus using the illumination device
JP4400136B2 (en) Short arc type mercury vapor discharge lamp
JP3346291B2 (en) Dielectric barrier discharge lamp and irradiation device
EP0599229B1 (en) Cadmium/rare gas discharge lamp of the short arc type, as well as projection exposure device using the same
TW444229B (en) Short arc type mercury lamp
KR100349800B1 (en) Discharge lamp
JPH087836A (en) Discharge lamp for semiconductor exposure
JPH087835A (en) Discharge lamp for semiconductor exposure
TW511115B (en) Mercury lamp of the short arc type and UV emission device
JP4134927B2 (en) Excimer lamp
JP2857137B1 (en) Short arc mercury lamp
JP2002251979A (en) Short arc type discharge lamp
JP2730001B2 (en) Semiconductor wafer exposure method and mercury lamp for exposure
JP2732457B2 (en) Short arc type mercury vapor discharge lamp
JP3591470B2 (en) Discharge lamp
EP0467612A2 (en) Protective coating for high-intensity metal halide discharge lamps
JP3324428B2 (en) Photoresist surface treatment equipment
JP3016061U (en) High pressure mercury lamp
JP2880582B2 (en) Short arc type high pressure mercury lamp
JP4294533B2 (en) Excimer lamp glass, excimer lamp discharge vessel and excimer lamp
JPH08195186A (en) Short-arc type cadmium rare gas discharge lamp
JP2004227820A (en) Discharge lamp
CN101436515A (en) Metal halide lamp and UV bubble structure thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091015

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091015

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20101015

LAPS Cancellation because of no payment of annual fees