JP2002279932A - Discharge lamp - Google Patents

Discharge lamp

Info

Publication number
JP2002279932A
JP2002279932A JP2001078224A JP2001078224A JP2002279932A JP 2002279932 A JP2002279932 A JP 2002279932A JP 2001078224 A JP2001078224 A JP 2001078224A JP 2001078224 A JP2001078224 A JP 2001078224A JP 2002279932 A JP2002279932 A JP 2002279932A
Authority
JP
Japan
Prior art keywords
arc tube
discharge lamp
ppm
region
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001078224A
Other languages
Japanese (ja)
Other versions
JP3591470B2 (en
Inventor
Yukio Yasuda
幸夫 安田
Yukihiro Morimoto
幸裕 森本
Yoshitoku Aiura
良徳 相浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2001078224A priority Critical patent/JP3591470B2/en
Publication of JP2002279932A publication Critical patent/JP2002279932A/en
Application granted granted Critical
Publication of JP3591470B2 publication Critical patent/JP3591470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a discharge lamp, having a high illuminance maintenance factor on an irradiation surface, when used being built in a converging mirror while suppressing the distortion of glass induced by the irradiation of ultraviolet rays, to prevent the destruction of an arc tube and efficiently emitting light in a wide region from a vacuum ultraviolet region to an infrared region with high radiation intensity by suppressing the cloudiness of the arc tube. SOLUTION: In this discharge lamp, a pair of electrodes are arranged mutually facing in the arc tube formed of silica glass, and rare gas is sealed in the arc tube. At the center part of the arc tube, where at least the emission degree of ultraviolet rays is a maximum, when setting the thickness of the arc tube as d (μm), and the distance from the inner surface of the arc tube as x (μm), the average OH base concentration n of a region 0<=x<=20 (μm) is 10 ppm<=n<=190 ppm, and the average OH base concentration n of a region 20 (μm)<=x<=200 (μm) is 200 ppm<=n.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、映写機等の投影分
野に使用される放電ランプや、光化学産業分野や半導体
製造分野等に使用される紫外線を良好に放出するための
放電ランプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge lamp for use in a projection field such as a projector and a discharge lamp for satisfactorily emitting ultraviolet rays used in a photochemical industry, a semiconductor manufacturing field and the like.

【0002】[0002]

【従来の技術】従来から放電ランプは、図1に示すよう
に、放電空間を形成する発光管1の内部に一対の電極2
が対向配置され、発光管1内に希ガスのみ、或いは希ガ
スと水銀が封入されたものである。希ガスとしては、具
体的には、キセノン、クリプトン、アルゴンが使用され
ている。特に、ショートアーク型の放電ランプにおいて
は、このようなキセノン、クリプトン、アルゴンの何れ
かの希ガスか、または数種類組み合わせた希ガスをバッ
ファガスとして発光管1内に封入することにより、ラン
プの発光効率、アーク安定性、アーク集中化を向上させ
るものである。
2. Description of the Related Art Conventionally, a discharge lamp has a pair of electrodes 2 inside an arc tube 1 forming a discharge space as shown in FIG.
Are arranged facing each other, and the rare gas alone or the rare gas and mercury are sealed in the arc tube 1. Specifically, xenon, krypton, and argon are used as the rare gas. In particular, in a short arc discharge lamp, a rare gas such as xenon, krypton, or argon, or a rare gas obtained by combining several kinds of these gases is sealed in the arc tube 1 as a buffer gas, so that the lamp emits light. It improves efficiency, arc stability, and arc concentration.

【0003】そして、一対の電極2に電圧をかけること
により、発光管1内に存在する希ガスや水銀が励起状態
から基底状態へ、或いは励起状態から準安定状態に戻る
ときに光を放出し、あるいは、自由電子とイオンとの再
結合によって光を放出し、あるいは、希ガスの原子が励
起されて瞬間的にエキシマ状態になり、このエキシマ状
態から基底状態に戻るときにエキシマ光を発生し、これ
ら全ての光が総和されて真空紫外域から赤外域まで幅広
い光が放射される。発光管1は、これら真空紫外域から
赤外域まで幅広い光を透過するためにシリカガラスより
成るものである。
When a voltage is applied to the pair of electrodes 2, light is emitted when the rare gas or mercury present in the arc tube 1 returns from the excited state to the ground state or returns from the excited state to the metastable state. Alternatively, light is emitted by the recombination of free electrons and ions, or the rare gas atoms are excited to instantaneously enter an excimer state and generate excimer light when returning from this excimer state to the ground state. All these lights are summed up to emit a wide range of light from the vacuum ultraviolet region to the infrared region. The arc tube 1 is made of silica glass to transmit a wide range of light from the vacuum ultraviolet region to the infrared region.

【0004】特に、紫外線を放射する放電ランプにおい
ては、水銀による紫外線の発光以外に、エネルギーの高
い真空紫外光をできるだけ強く放射することが望まれて
いる。
In particular, in a discharge lamp which emits ultraviolet rays, it is desired to emit high-energy vacuum ultraviolet rays as strongly as possible in addition to the emission of ultraviolet rays by mercury.

【0005】このような観点から上述した光の中で、希
ガスの原子によるエキシマ光は、200nm以下の真空
紫外光であり、具体的には、キセノンエキシマの発光波
長は代表例で172nm、クリプトンエキシマの発光波
長は代表例で146nm、アルゴンエキシマの発光波長
は大表例で126nmであり、このような真空紫外光を
も良好に放射することが望まれている。
[0005] Among the above-mentioned lights from this viewpoint, the excimer light due to the rare gas atoms is vacuum ultraviolet light having a wavelength of 200 nm or less. The emission wavelength of an excimer is 146 nm in a typical example, and the emission wavelength of an argon excimer is 126 nm in a typical example. It is desired that such vacuum ultraviolet light be radiated well.

【0006】しかし、発光管1であるシリカガラスは、
通常、180nm未満の光を吸収する性質を有している
結果、真空紫外光の一部が吸収されてしまうので、この
真空紫外光の吸収をできるだけ少なくし、効率良く真空
紫外光を透過させるために、発光管1を透過する真空紫
外光の光路を短くするために、発光管1を薄くしてい
る。
However, the silica glass as the arc tube 1 is
Usually, as a result of having a property of absorbing light of less than 180 nm, a part of the vacuum ultraviolet light is absorbed, so that the absorption of the vacuum ultraviolet light is minimized and the vacuum ultraviolet light is transmitted efficiently. In order to shorten the optical path of the vacuum ultraviolet light transmitted through the arc tube 1, the arc tube 1 is thinned.

【0007】しかしながら、発光管1を薄くすると、発
光管1の強度が弱まり、図1に示す排気管3が、ランプ
点灯中に根元から破壊されたり、あるいは、発光管1か
ら放出される光出力を高めるために、電気入力を高くす
ると短時間で排気管3が割れるという問題があった。
However, when the arc tube 1 is thinned, the intensity of the arc tube 1 is weakened, and the exhaust tube 3 shown in FIG. 1 is broken from the root while the lamp is lit, or the light output emitted from the arc tube 1 is reduced. When the electric input is increased in order to increase the power, there is a problem that the exhaust pipe 3 is cracked in a short time.

【0008】この排気管3の破壊や割れは、ランプ点灯
時の発光管1内のガス温度上昇による高ガス圧力負荷も
一因であるが、紫外線の照射により誘起されるガラスの
歪みも大きな一因である。この紫外線誘起歪みが、構造
的に異形である排気管3に応力集中を起し、さらに、長
時間の点灯時には、応力集中と高ガス圧力負荷の相乗作
用が重なり、排気管3の取り付け部周辺を起点として発
光管1が破壊するという問題があった。特に、紫外線を
放射する放電ランプにおいては、上述した水銀による紫
外線や希ガスのエキシマ光である真空紫外光によって、
大きな紫外線誘起歪が発生し、発光管1が破壊されやす
くなるという問題があった。
The destruction or cracking of the exhaust pipe 3 is partly due to a high gas pressure load caused by a rise in the gas temperature in the arc tube 1 when the lamp is turned on. However, the distortion of the glass induced by the irradiation of ultraviolet rays is large. It is a factor. This UV-induced strain causes stress concentration in the exhaust pipe 3 which is structurally deformed, and furthermore, when the lamp is lit for a long time, the synergistic action of the stress concentration and the high gas pressure load overlap, and the vicinity of the mounting portion of the exhaust pipe 3 There is a problem that the arc tube 1 is broken starting from the point. In particular, in a discharge lamp that emits ultraviolet light, the above-described ultraviolet light from mercury and vacuum ultraviolet light that is excimer light of a rare gas cause
There is a problem that a large ultraviolet light-induced strain occurs and the arc tube 1 is easily broken.

【0009】また、上述したようにバッファガスとして
希ガスを使用するとランプの発光効率、アーク安定性、
アーク集中化を向上させることができるが、一方で、発
光管1が白濁しやすく、放射強度が低下し、真空紫外域
から赤外域の光が効率良く放射されないという不具合が
起こる事がある。
As described above, when a rare gas is used as the buffer gas, the luminous efficiency of the lamp, arc stability,
The arc concentration can be improved, but on the other hand, the arc tube 1 is easily clouded, the radiation intensity is reduced, and a problem that light in the vacuum ultraviolet region to the infrared region is not efficiently emitted may occur.

【0010】この発光管1の白濁現象はシリカ粒の堆積
が原因である事が判った。特に、アルゴンエキシマ光、
クリプトンエキシマ光は、シリカガラスの吸収端よりも
高いエネルギーの光を放射する。この光の放射によっ
て、シリカガラスのSi−Oの結合が切れ、シリカガラ
スが昇華し発光管1の内表面にシリカ粒が沈着するもの
と推定されている。
It has been found that the clouding phenomenon of the arc tube 1 is caused by the deposition of silica particles. In particular, argon excimer light,
Krypton excimer light emits light of higher energy than the absorption edge of silica glass. It is presumed that this light emission breaks the bond of Si—O of the silica glass, sublimes the silica glass, and deposits silica particles on the inner surface of the arc tube 1.

【0011】このような発光管の紫外線誘起歪や白濁現
象を回避するために、特開平11−33716号公報で
は、発光管であるシリカガラスの厚み方向におけるOH
基濃度分布に着目し、発光管の内表面に極近い領域に高
濃度のOH基を存在させ、それ以外の領域にも特定のO
H基濃度分布をもたせるようにしていた。
In order to avoid such ultraviolet ray-induced distortion and white turbidity of the arc tube, Japanese Patent Application Laid-Open No. H11-33716 discloses an OH tube in the thickness direction of silica glass.
Focusing on the base concentration distribution, a high concentration of OH groups is present in a region very close to the inner surface of the arc tube, and a specific O
An H group concentration distribution was provided.

【0012】[0012]

【発明が解決しようとする課題】ところで、このような
ショートアーク型の放電ランプは通常楕円鏡である集光
鏡によって集光される装置に使用されるものである。こ
のような装置では、照射面の照度は陰極先端部の発光部
からの光の取り込みが大きく、したがって、陰極先端部
の形状変化は照射面の照度値に大きく影響を与えるもの
である。
Incidentally, such a short arc type discharge lamp is used for a device which is condensed by a converging mirror which is usually an elliptical mirror. In such an apparatus, the illuminance of the irradiated surface is such that light from the light-emitting portion at the cathode tip is large, so that a change in the shape of the cathode tip greatly affects the illuminance value of the irradiated surface.

【0013】発光管の内表面に極近い領域に高濃度のO
H基を存在させた放電ランプでは、照射面での照度が急
速に劣化する問題が見られる。発明者の鋭意検討によれ
ば、発光管の内表面に極近い領域に高濃度のOH基が存
在すると、放電ランプの点灯初期、ランプ始動と共に発
光管が高温になりOH基を内表面から放出する。通常、
発光管の電極にタンタル、ジルコニウムなどのゲッター
が装着されており、そのゲッター能力を超えるスピード
で発光管内にOH基が放出されると、放出されたOH基
はHOとなって発光管内に拡散し、電極などと反応し
低融点金属酸化物を形成する。電極先端では高温動作し
ているので、それが陰極先端の形状変化をもたらし、ア
ークの輝度の低下をもたらし、さらに、アークが広がる
ことにより集光効率の低下という要因が相乗して、照射
面照度の急速な低下を招くと考えられる。
In a region very close to the inner surface of the arc tube, a high concentration of O
In a discharge lamp in which an H group is present, there is a problem that the illuminance on the irradiation surface is rapidly deteriorated. According to the inventor's intensive studies, when a high concentration of OH groups is present in a region very close to the inner surface of the arc tube, the arc tube becomes high in temperature at the start of the discharge lamp and at the start of the lamp, and the OH groups are released from the inner surface. I do. Normal,
A getter such as tantalum or zirconium is attached to the electrode of the arc tube, and when the OH group is released into the arc tube at a speed exceeding the getter capability, the released OH group becomes H 2 O and enters the arc tube. Diffuses and reacts with electrodes and the like to form low melting point metal oxides. Since the tip of the electrode operates at a high temperature, it changes the shape of the tip of the cathode, lowers the brightness of the arc, and further reduces the light-collecting efficiency due to the spread of the arc. Is thought to cause a rapid decline in

【0014】本発明は、上記の事情に鑑みてなされたも
のであって、その目的は、紫外線の照射により誘起され
るガラスの歪みを抑制して発光管の破壊を防止しでき、
発光管の白濁を抑制することにより高い放射強度で真空
紫外域から赤外域の光が効率良く放射できるとともに、
集光鏡に組み込んで使用する場合、照射面での照度維持
率が高い放電ランプを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress distortion of glass induced by irradiation of ultraviolet rays and prevent breakage of an arc tube.
By suppressing white turbidity of the arc tube, light from the vacuum ultraviolet region to the infrared region can be efficiently emitted with high radiation intensity,
It is an object of the present invention to provide a discharge lamp having a high illuminance maintenance ratio on an irradiation surface when used by being incorporated in a condenser mirror.

【0015】[0015]

【課題を解決するための手段】請求項1に記載の放電ラ
ンプは、シリカガラスよりなる発光管内に一対の電極が
対向配置され、当該発光管内に希ガスが封入された放電
ランプにおいて、前記発光管の少なくとも紫外線発散度
が最大となる発光管中央部分において、発光管の厚さを
d(μm)、発光管内表面からの距離をx(μm)とした
とき、0≦x≦20(μm)の領域の平均OH基濃度n
が、10ppm≦n≦190ppmであり、20(μ
m)≦x≦200(μm)の領域の平均OH基濃度nが、
200ppm≦nであることを特徴とする。
According to a first aspect of the present invention, there is provided a discharge lamp in which a pair of electrodes are opposed to each other in an arc tube made of silica glass and a rare gas is sealed in the arc tube. When the thickness of the arc tube is d (μm) and the distance from the inner surface of the arc tube is x (μm), at least at the center portion of the arc tube where the degree of ultraviolet radiation is maximum, 0 ≦ x ≦ 20 (μm) Average OH group concentration n in the region
Is 10 ppm ≦ n ≦ 190 ppm, and 20 (μ
m) ≦ x ≦ 200 (μm)
200 ppm ≦ n.

【0016】請求項2に記載の放電ランプは、シリカガ
ラスよりなる発光管内に一対の電極が対向配置され、当
該発光管内に希ガスと水銀が封入された放電ランプにお
いて、前記希ガスは、アルゴン及び又はクリプトンと、
キセノンであり、前記アルゴンの分圧とクリプトンの分
圧が、アルゴンの分圧をPA(Pa)、クリプトンの分
圧をPK(Pa)としたときに、PA+PK≧1.0×
10(Pa)となるように封入されており、前記キセ
ノンの分圧が、2.0×10(Pa)以下となるよう
に封入されており、前記水銀が、0.1mg/cm
上7mg/cm 以下となるように封入されており、前
記発光管の少なくとも紫外線発散度が最大となる発光管
中央部分において、発光管の厚さをd(μm)、発光管
内表面からの距離をx(μm)としたとき、0≦x≦2
0(μm)の領域の平均OH基濃度nが、10ppm≦
n≦190ppmであり、20(μm)≦x≦200
(μm)の領域の平均OH基濃度nが、200ppm≦
nであることを特徴とする。
[0016] The discharge lamp according to claim 2 is a silica lamp.
A pair of electrodes are arranged opposite to each other in an arc tube made of glass.
Discharge lamp with rare gas and mercury sealed in the arc tube
Wherein the noble gas is argon and / or krypton;
Xenon, the partial pressure of argon and the partial pressure of krypton.
The pressure is the partial pressure of argon, PA (Pa), krypton
When the pressure is PK (Pa), PA + PK ≧ 1.0 ×
105(Pa).
Non partial pressure is 2.0 × 105(Pa)
And the mercury is 0.1 mg / cm3Less than
Upper 7mg / cm 3It is enclosed so that it is as follows
The arc tube that has at least the maximum UV emission of the arc tube
In the central part, the thickness of the arc tube is d (μm), and the arc tube
When the distance from the inner surface is x (μm), 0 ≦ x ≦ 2
The average OH group concentration n in the region of 0 (μm) is 10 ppm ≦
n ≦ 190 ppm and 20 (μm) ≦ x ≦ 200
(Μm), the average OH group concentration n is 200 ppm ≦
n.

【0017】[0017]

【発明の実施の形態】本発明の放電ランプは、従来技術
で説明した図1の放電ランプと外形形状は同様であるの
で、図1を用いて説明する。放電空間を形成する発光管
1の内部に一対の電極2が対向配置され、発光管1内に
希ガスとしてキセノンが封入されているショートアーク
型の放電ランプである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The discharge lamp of the present invention has the same outer shape as the discharge lamp of FIG. 1 described in the prior art, and will be described with reference to FIG. This is a short arc type discharge lamp in which a pair of electrodes 2 are arranged opposite to each other inside an arc tube 1 forming a discharge space, and xenon is sealed in the arc tube 1 as a rare gas.

【0018】具体的な仕様は、電極間距離は4.5m
m、封入されているキセノンの圧力は300K換算で3
×10Pa、出力2KWである。なお、発光管にキセ
ノンを300K換算で3×10Paの圧力で封入した
が、キセノン以外にアルゴン、クリプトンであっても良
く、それらの混合ガスであっても良い、少なくとも希ガ
スが300K換算で全圧で0.1×10Pa以上しな
ければ希ガスによる紫外線発光効率を充分に得ることが
できないものである。
The specific specification is that the distance between the electrodes is 4.5 m
m, the pressure of the enclosed xenon is 3 in 300K conversion
× 10 5 Pa, output 2 KW. In addition, xenon was sealed in the arc tube at a pressure of 3 × 10 5 Pa in terms of 300K. However, other than xenon, argon or krypton may be used, or a mixed gas thereof may be used. Unless the total pressure is 0.1 × 10 5 Pa or more, sufficient ultraviolet light emission efficiency cannot be obtained by the rare gas.

【0019】そして、発光管1はシリカガラスよりな
り、この明細書で言う紫外線発散度が最大となる発光管
中央部分とは、図2に示すように、電極2間の中間点P
を通り、電極2間の軸線Xと直交する仮想線Yが発光管
1と交差する部分を紫外線発散度が最大となる発光管中
央部分と規定し、この部分の発光管の厚さをd(μm)
としたときの発光管の所定深さの平均OH基濃度を図3
の実験データ説明図に示すランプ2のようにしたもので
ある。具体的な数値は、発光管の内表面から20μm
までの平均OH基濃度が10ppm、発光管の内表面
から20〜200μmまでの平均OH基濃度が200p
pm、発光管の内表面から200〜d−600μmま
での平均OH基濃度が5ppm、である。
The arc tube 1 is made of silica glass. The central portion of the arc tube where the degree of emission of ultraviolet rays in this specification is maximum is, as shown in FIG.
, A portion where a virtual line Y orthogonal to the axis X between the electrodes 2 intersects the arc tube 1 is defined as the center portion of the arc tube where the degree of ultraviolet radiation is maximum, and the thickness of the arc tube at this portion is d ( μm)
Fig. 3 shows the average OH group concentration at a predetermined depth of the arc tube when
This is like the lamp 2 shown in FIG. The specific value is 20 μm from the inner surface of the arc tube.
The average OH group concentration from 20 to 200 μm from the inner surface of the arc tube is 200 ppm.
pm, the average OH group concentration from the inner surface of the arc tube to 200 to d-600 μm is 5 ppm.

【0020】そして、上記の本発明の放電ランプを含め
本発明の放電ランプと比較用の放電ランプを合計5本作
成し、それぞれの放電ランプにおいて発光管のOH基濃
度のみ異なるようにして、点灯50時間後の陰極先端の
変形観測と発光管の白濁の有無の確認を行い、さらに点
灯400時間後の発光管の歪の状況の確認を行なった実
験データを図3に示す。なお、全ての放電ランプは、電
極間距離は4.5mm、封入されているキセノンの圧力
は300K換算で3×10Pa、出力2KWであり、
各放電ランプの発光管の平均OH基濃度は図3に示すと
おりである。
Then, a total of five discharge lamps for comparison with the discharge lamp of the present invention including the above-described discharge lamp of the present invention were prepared, and each discharge lamp was lit so that only the OH group concentration of the arc tube was different. FIG. 3 shows experimental data obtained by observing deformation of the tip of the cathode 50 hours later and checking for the presence or absence of white turbidity in the arc tube, and further confirming the state of distortion of the arc tube 400 hours after lighting. In all the discharge lamps, the distance between the electrodes was 4.5 mm, the pressure of the enclosed xenon was 3 × 10 5 Pa in terms of 300 K, and the output was 2 KW.
The average OH group concentration of the arc tube of each discharge lamp is as shown in FIG.

【0021】図3に示すように、発光管の深さ方向の平
均OH濃度を変える方法は、発光管となる原管のシリカ
ガラスに適宜の量の水蒸気を導入し外部から加熱して1
次原管を製造し、この1次原管をそのまま発光管に加工
したり、1次原管をさらに真空加熱して2次原管を製造
してこの2次原管を発光管に加工したりして、適宜発光
管の平均OH基濃度を発光管の所定の深さ方向で変化さ
せるものである。
As shown in FIG. 3, a method for changing the average OH concentration in the depth direction of the arc tube is to introduce an appropriate amount of water vapor into the silica glass of the original tube to be the arc tube and heat the silica glass from the outside.
A secondary tube is manufactured, and the primary tube is processed into an arc tube as it is, or the primary tube is further heated in vacuum to produce a secondary tube, and the secondary tube is processed into an arc tube. As a result, the average OH group concentration of the arc tube is appropriately changed in a predetermined depth direction of the arc tube.

【0022】図3の実験データからわかるように、本発
明の放電ランプであるランプ2、ランプ3、ランプ4
は、発光管の紫外線発散度が最大となる発光管中央部分
において、発光管の厚さをd(μm)、発光管内表面か
らの距離をx(μm)としたとき、0≦x≦20(μ
m)の領域の平均OH基濃度nが10ppm≦n≦19
0ppmであること、20(μm)≦x≦200(μ
m)の領域の平均OH基濃度nがn≧200ppmであ
ること、200(μm)≦x≦d−600(μm)の領
域の平均OH基濃度nがn≦800ppmであること、
という3条件を全て満足しており、この結果、陰極先端
の変形がなく、発光管の歪が小さく十分に小さくでき歪
による発光管の破裂を防止でき、発光管の白濁も無いと
いう優れた効果を奏する放電ランプである。
As can be seen from the experimental data shown in FIG. 3, the discharge lamps of the present invention, Lamp 2, Lamp 3, Lamp 4
When the thickness of the arc tube is d (μm) and the distance from the inner surface of the arc tube is x (μm) at the center of the arc tube where the degree of ultraviolet emission of the arc tube is maximum, 0 ≦ x ≦ 20 ( μ
The average OH group concentration n in the region m) is 10 ppm ≦ n ≦ 19
0 ppm, 20 (μm) ≦ x ≦ 200 (μ
The average OH group concentration n in the region of m) is n ≧ 200 ppm, the average OH group concentration n in the region of 200 (μm) ≦ x ≦ d-600 (μm) is n ≦ 800 ppm,
As a result, there is no deformation of the tip of the cathode, the distortion of the arc tube is small enough, the arc tube can be prevented from exploding due to the distortion, and the arc tube has no cloudiness. Which is a discharge lamp.

【0023】一方、比較用の放電ランプであるランプ1
とランプ5では、発光管の紫外線発散度が最大となる発
光管中央部分において、平均OH基濃度が本発明の平均
OH基濃度範囲から外れており、ランプ1では発光管の
白濁が生じ歪もかなり大きく発光管内のガスの圧力なで
何等かの影響により発光管が破裂する恐れが十分にあ
り、ランプ5では陰極先端の変形が見られるなどの不具
合が発生している。
On the other hand, lamp 1 as a comparative discharge lamp
In the lamp 5, the average OH group concentration is out of the average OH group concentration range of the present invention in the central portion of the arc tube where the emission degree of ultraviolet light of the arc tube is maximum, and in the lamp 1, the arc tube becomes cloudy and distortion occurs. There is a sufficient risk that the arc tube may burst due to some influence due to the pressure of the gas inside the arc tube, and the lamp 5 has a defect such as deformation of the cathode tip.

【0024】このような実験データから、本発明の放電
ランプは、発光管の内表面の極近傍の領域のOH基濃度
を低くすることで、ランプ始動と共に発光管内に放出さ
れるOH基の量を抑制し発光管の白濁を抑制できるとと
もに、陰極の変形を防止できる。さらに、発光管の深さ
方向中央部のOH基濃度を高くすることで、ランプ点灯
中にOH基の濃度拡散により絶えずOH基を発光管の内
表面に供給できるので、発光管の深さ方向中央部から内
表面近くにかけて高い濃度のOH基を存在させることで
紫外線による歪みの影響を抑制するすることができる。
From the above experimental data, it can be seen that the discharge lamp of the present invention reduces the concentration of OH groups in the region extremely near the inner surface of the arc tube, thereby reducing the amount of OH groups released into the arc tube when the lamp is started. And the clouding of the arc tube can be suppressed, and the deformation of the cathode can be prevented. Furthermore, by increasing the OH group concentration at the center in the depth direction of the arc tube, the OH groups can be constantly supplied to the inner surface of the arc tube by the concentration diffusion of the OH groups during lamp operation. The presence of a high concentration of OH groups from the center to the vicinity of the inner surface can suppress the influence of distortion due to ultraviolet rays.

【0025】なお、陰極先端の変形は、陰極先端を20
倍の拡大投影機で拡大し初期からの変形の違いを目視で
調べた。
In addition, the deformation of the tip of the cathode is as follows.
The difference in the deformation from the initial stage was visually inspected by enlarging with a double magnification projector.

【0026】発光管の平均OH基濃度の測定は次のよう
に行なった。IR(赤外線)領域の吸収測定を行ない、
波長3673cm−1の赤外線吸収強度からOH基濃度
を求めた。発光管の深さ方向の特定領域における濃度
は、試料となる発光管を厚さ方向に化学研磨(HF/H
SOの混酸でエッチングする)して、その研磨前後
でのIR吸光の度合いを比較し、研磨された領域に含ま
れた平均OH基濃度を算出した。
The measurement of the average OH group concentration of the arc tube was performed as follows. Perform absorption measurement in the IR (infrared) region,
The OH group concentration was determined from the infrared absorption intensity at a wavelength of 3673 cm -1 . The concentration in a specific region in the depth direction of the arc tube is determined by chemically polishing (HF / H
Etching with a mixed acid of 2 SO 4 ) was performed, and the degree of IR absorption before and after the polishing was compared to calculate the average OH group concentration contained in the polished region.

【0027】発光管の紫外線による歪みの測定は、試料
とする発光管および偏光板を直交ニコルの関係に配置
し、拡散光を照らし複屈折により試料中を透過してくる
光の強弱を得る方法(光弾性測定)で行ない、測定部位は
放電ランプを垂直にした場合に陰極の先端部の略水平横
方向に位置する発光管ガラス部分(紫外線放射発散度が
最大となる部分:図2参照)について行なった。
The distortion of the arc tube due to ultraviolet rays is measured by arranging an arc tube and a polarizing plate as a sample in a crossed Nicols relationship, illuminating diffused light, and obtaining the intensity of light transmitted through the sample by birefringence. (Photoelasticity measurement), the measurement site is the arc tube glass part located almost horizontally and horizontally at the tip of the cathode when the discharge lamp is vertical (the part where the emission of ultraviolet radiation is maximum: see FIG. 2). It was performed about.

【0028】次に、上記本発明の放電ランプであるラン
プ2、ランプ3、ランプ4と、比較用の放電ランプであ
るランプ1とランプ5を連続点灯させ、それぞれの放電
ランプにおいて、集光鏡によって集光された照射面にお
ける点灯初期の波長365nmの光の値を1と規定した
場合の時間の経過に伴う照度維持率の変化を調べた。結
果を図4に示す。図4からわかるように、本発明のラン
プ2、ランプ3、ランプ4は1500時間点灯後も90
%の照度維持率を保つことができていることがわかる。
これは発光管の白濁もなく、陰極の変形も起こっていな
いからでる。一方、比較用の放電ランプであるランプ1
とランプ5は点灯直後に照度維持率の低下が激しく、特
にランプ1では300時間点灯後、照度維持率が50%
まで半減し、ランプ5では1500時間点灯後、照度維
持率が65%まで低下した。これは発光管の白濁が発生
し、最も大きな要因として陰極の変形が起こっているか
らである。
Next, the lamps 2, 3, and 4 as the discharge lamps of the present invention and the lamps 1 and 5 as the discharge lamps for comparison are continuously turned on. The change of the illuminance maintenance rate with the passage of time when the value of the light having a wavelength of 365 nm at the initial stage of lighting on the irradiation surface condensed by the method was defined as 1 was examined. FIG. 4 shows the results. As can be seen from FIG. 4, the lamps 2, 3 and 4 of the present invention remain 90 hours after being turned on for 1500 hours.
It can be seen that the illuminance maintenance rate of% can be maintained.
This is because the arc tube is not clouded and the cathode is not deformed. On the other hand, lamp 1 which is a discharge lamp for comparison
And the lamp 5 has a sharp decrease in the illuminance maintenance ratio immediately after lighting, and particularly, the lamp 1 has a 50% illuminance maintenance ratio after lighting for 300 hours.
After lighting the lamp 5 for 1500 hours, the illuminance maintenance ratio was reduced to 65%. This is because clouding of the arc tube occurs, and the biggest factor is deformation of the cathode.

【0029】次に、上記本発明の放電ランプであるラン
プ2に、水銀と希ガスとしてアルゴン及び又はクリプト
ンと、キセノンを封入した。そして、アルゴンの分圧を
PA(Pa)、クリプトンの分圧をPK(Pa)で表わ
し、PA+PK≧1.0×10(Pa)とし、それら
に加えて、キセノンが2.0×10(Pa)以下の範
囲で封入し、水銀が0.1mg/cm以上7mg/c
以下を封入した本発明の放電ランプを作成した。
Next, mercury, argon and / or krypton as a rare gas, and xenon were sealed in the lamp 2 as the discharge lamp of the present invention. The partial pressure of argon is represented by PA (Pa), and the partial pressure of krypton is represented by PK (Pa), and PA + PK ≧ 1.0 × 10 5 (Pa). In addition, xenon is 2.0 × 10 5 (Pa) Enclosed in the following range, mercury is 0.1 mg / cm 3 or more and 7 mg / c
m 3 was prepared discharge lamp of the present invention encapsulating following.

【0030】このような本発明の放電ランプは、上記の
他の本発明の放電ランプであるランプ2、ランプ3、ラ
ンプ4と同様に発光管の白濁が抑制され、陰極先端の変
形もなく、紫外線による歪も抑制され、長時間点灯して
も照射面での照度維持率が高いものである。
The discharge lamp of the present invention suppresses clouding of the arc tube and does not deform the tip of the cathode, similarly to the other discharge lamps of the present invention, such as the lamps 2, 3, and 4. Distortion due to ultraviolet rays is also suppressed, and the illuminance maintenance ratio on the irradiation surface is high even when the lamp is turned on for a long time.

【0031】このように、アルゴンの分圧をPAとクリ
プトンの分圧をPKをPA+PK≧1.0×10(P
a)と規定することにより、波長365nmの紫外線強
度を高めることができる。さらに、キセノンが分圧を
2.0×10(Pa)以下と規定することにより、波
長365nmの紫外線強度を実効的に得る事ができる。
なお、キセノンの分圧が0.13×10(Pa)未満
であると放電容器の白濁現象が生じる恐れがある。
As described above, the partial pressure of argon is defined as PA and the partial pressure of krypton is defined as PK + PAK ≧ 1.0 × 10 5 (P
By defining a), the intensity of the ultraviolet light having a wavelength of 365 nm can be increased. Further, when the xenon regulates the partial pressure to 2.0 × 10 5 (Pa) or less, it is possible to effectively obtain an ultraviolet intensity of a wavelength of 365 nm.
If the partial pressure of xenon is less than 0.13 × 10 5 (Pa), a clouding phenomenon may occur in the discharge vessel.

【0032】また、水銀の封入量について0.1mg/
cm以上7mg/cm以下である理由は、0.1m
g/cm未満であると波長365nmの紫外線強度を
実効的に得ることができず、7mg/cmを越えると
波長365nmの発光のスペクトル幅が広がってしまう
ということが起こるからである。
The amount of mercury enclosed was 0.1 mg /
cm 3 or more 7mg / cm 3 or less reason, 0.1m
If it is less than g / cm 3 , it is impossible to effectively obtain an ultraviolet intensity of 365 nm wavelength, and if it exceeds 7 mg / cm 3 , the spectrum width of the emission of 365 nm wavelength will be widened.

【0033】[0033]

【発明の効果】以上説明したように、本発明の放電ラン
プによれば、紫外線の照射により誘起されるガラスの歪
みを抑制して発光管の破壊を防止しでき、発光管の白濁
を抑制することにより高い放射強度で真空紫外域から赤
外域の光が効率良く放射できるとともに、集光鏡に組み
込んで使用する場合、照射面での照度維持率が高い放電
ランプとなる。
As described above, according to the discharge lamp of the present invention, the distortion of the glass induced by the irradiation of ultraviolet rays can be suppressed, and the destruction of the arc tube can be prevented. Accordingly, light in the vacuum ultraviolet region to the infrared region can be efficiently radiated with high radiation intensity, and when used in a condensing mirror, a discharge lamp having a high illuminance maintenance ratio on an irradiation surface is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放電ランプの説明図である。FIG. 1 is an explanatory diagram of a discharge lamp.

【図2】紫外線発散度が最大となる発光管中央部分の説
明図である。
FIG. 2 is an explanatory diagram of a central portion of an arc tube in which the degree of ultraviolet radiation is maximum.

【図3】本発明の放電ランプと比較用放電ランプの陰極
先端の変形、発光管の白濁、発光管の歪を確認した実験
データ説明図である。
FIG. 3 is an explanatory diagram of experimental data for confirming deformation of a cathode tip, opacity of an arc tube, and distortion of an arc tube of a discharge lamp of the present invention and a comparative discharge lamp.

【図4】本発明の放電ランプと比較用の放電ランプの照
度維持率の実験データ説明図である。
FIG. 4 is an explanatory diagram of experimental data of the illuminance maintenance ratio of the discharge lamp of the present invention and a discharge lamp for comparison.

【符号の説明】[Explanation of symbols]

1 発光管 2 電極 3 排気管 1 arc tube 2 electrode 3 exhaust tube

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5C015 PP03 PP04 PP05 PP07 PP08 5C039 HH02 HH15 5C043 AA03 CC02 CC05 CD01 DD03 EB15 EC06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5C015 PP03 PP04 PP05 PP07 PP08 5C039 HH02 HH15 5C043 AA03 CC02 CC05 CD01 DD03 EB15 EC06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリカガラスよりなる発光管内に一対の
電極が対向配置され、当該発光管内に希ガスが封入され
た放電ランプにおいて、 前記発光管の少なくとも紫外線発散度が最大となる発光
管中央部分において、発光管の厚さをd(μm)、発光
管内表面からの距離をx(μm)としたとき、0≦x≦
20(μm)の領域の平均OH基濃度nが、10ppm
≦n≦190ppmであり、20(μm)≦x≦200
(μm)の領域の平均OH基濃度nが、200ppm≦
nであることを特徴とする放電ランプ。
1. A discharge lamp in which a pair of electrodes are opposed to each other in an arc tube made of silica glass, and a rare gas is sealed in the arc tube. In the above, when the thickness of the arc tube is d (μm) and the distance from the inner surface of the arc tube is x (μm), 0 ≦ x ≦
The average OH group concentration n in the region of 20 (μm) is 10 ppm
≦ n ≦ 190 ppm, and 20 (μm) ≦ x ≦ 200
(Μm), the average OH group concentration n is 200 ppm ≦
n. A discharge lamp, wherein n is n.
【請求項2】 シリカガラスよりなる発光管内に一対の
電極が対向配置され、当該発光管内に希ガスと水銀が封
入された放電ランプにおいて、 前記希ガスは、アルゴン及び又はクリプトンと、キセノ
ンであり、 前記アルゴンの分圧とクリプトンの分圧が、アルゴンの
分圧をPA(Pa)、クリプトンの分圧をPK(Pa)
としたときに、PA+PK≧1.0×10(Pa)と
なるように封入されており、 前記キセノンの分圧が、2.0×10(Pa)以下と
なるように封入されており、 前記水銀が、0.1mg/cm以上7mg/cm
下となるように封入されており、 前記発光管の少なくとも紫外線発散度が最大となる発光
管中央部分において、発光管の厚さをd(μm)、発光
管内表面からの距離をx(μm)としたとき、0≦x≦
20(μm)の領域の平均OH基濃度nが、10ppm
≦n≦190ppmであり、20(μm)≦x≦200
(μm)の領域の平均OH基濃度nが、200ppm≦
nであることを特徴とする放電ランプ。
2. A discharge lamp in which a pair of electrodes are arranged opposite to each other in an arc tube made of silica glass and a rare gas and mercury are sealed in the arc tube, wherein the rare gas is argon and / or krypton and xenon. The partial pressure of argon and the partial pressure of krypton are expressed as follows: the partial pressure of argon is PA (Pa), and the partial pressure of krypton is PK (Pa).
In this case, PA + PK ≧ 1.0 × 10 5 (Pa), and the xenon partial pressure is 2.0 × 10 5 (Pa) or less. The mercury is sealed so as to be 0.1 mg / cm 3 or more and 7 mg / cm 3 or less, and the thickness of the arc tube is at least at the central portion of the arc tube where the degree of ultraviolet radiation is maximum. Where d (μm) is the distance and x (μm) is the distance from the inner surface of the arc tube, 0 ≦ x ≦
The average OH group concentration n in the region of 20 (μm) is 10 ppm
≦ n ≦ 190 ppm, and 20 (μm) ≦ x ≦ 200
(Μm), the average OH group concentration n is 200 ppm ≦
n. A discharge lamp, wherein n is n.
JP2001078224A 2001-03-19 2001-03-19 Discharge lamp Expired - Lifetime JP3591470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078224A JP3591470B2 (en) 2001-03-19 2001-03-19 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078224A JP3591470B2 (en) 2001-03-19 2001-03-19 Discharge lamp

Publications (2)

Publication Number Publication Date
JP2002279932A true JP2002279932A (en) 2002-09-27
JP3591470B2 JP3591470B2 (en) 2004-11-17

Family

ID=18934868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078224A Expired - Lifetime JP3591470B2 (en) 2001-03-19 2001-03-19 Discharge lamp

Country Status (1)

Country Link
JP (1) JP3591470B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092865A (en) * 2004-09-22 2006-04-06 Ushio Inc Short arc type discharge lamp
JP2009295469A (en) * 2008-06-06 2009-12-17 Ushio Inc Excimer lamp
JP2009295468A (en) * 2008-06-06 2009-12-17 Ushio Inc Excimer lamp
CN101944471A (en) * 2009-07-02 2011-01-12 优志旺电机株式会社 Short arc discharge lamp

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678059B2 (en) 2009-03-02 2011-04-27 ウシオ電機株式会社 Short arc type discharge lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750151A (en) * 1993-08-03 1995-02-21 Ushio Inc Excimer discharge lamp
JPH07215731A (en) * 1994-01-28 1995-08-15 Shinetsu Quartz Prod Co Ltd High purity quartz glass for ultraviolet lamp and its production
JPH087836A (en) * 1994-06-21 1996-01-12 Ushio Inc Discharge lamp for semiconductor exposure
JPH11339716A (en) * 1998-05-28 1999-12-10 Ushio Inc Ultraviolet lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750151A (en) * 1993-08-03 1995-02-21 Ushio Inc Excimer discharge lamp
JPH07215731A (en) * 1994-01-28 1995-08-15 Shinetsu Quartz Prod Co Ltd High purity quartz glass for ultraviolet lamp and its production
JPH087836A (en) * 1994-06-21 1996-01-12 Ushio Inc Discharge lamp for semiconductor exposure
JPH11339716A (en) * 1998-05-28 1999-12-10 Ushio Inc Ultraviolet lamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092865A (en) * 2004-09-22 2006-04-06 Ushio Inc Short arc type discharge lamp
JP2009295469A (en) * 2008-06-06 2009-12-17 Ushio Inc Excimer lamp
JP2009295468A (en) * 2008-06-06 2009-12-17 Ushio Inc Excimer lamp
CN101944471A (en) * 2009-07-02 2011-01-12 优志旺电机株式会社 Short arc discharge lamp

Also Published As

Publication number Publication date
JP3591470B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
US9615439B2 (en) System and method for inhibiting radiative emission of a laser-sustained plasma source
KR102228496B1 (en) System and method for inhibiting VUV radiation emission of laser-sustained plasma source
JP4400136B2 (en) Short arc type mercury vapor discharge lamp
JP2891997B1 (en) UV lamp
JP3591470B2 (en) Discharge lamp
JPH0794150A (en) Rare gas discharge lamp and display device using the lamp
KR100349800B1 (en) Discharge lamp
JP3267153B2 (en) Metal vapor discharge lamp
JPH0750151A (en) Excimer discharge lamp
JP3252513B2 (en) Dielectric barrier discharge lamp
US7105989B2 (en) Plasma lamp and method
JP2006344383A (en) Light irradiation device
JP6660594B2 (en) Discharge lamp
JP4475171B2 (en) Flash lamp
JP4294533B2 (en) Excimer lamp glass, excimer lamp discharge vessel and excimer lamp
JP2018037277A (en) Laser drive lamp
JP3198519B2 (en) UV irradiation device
JP3170932B2 (en) Dielectric barrier discharge lamp
JP2007026675A (en) Light irradiation device, lamp for it, and light irradiation method
JP2991933B2 (en) Discharge lamp for semiconductor exposure
JP2915256B2 (en) Cadmium metal vapor discharge lamp
JPH087835A (en) Discharge lamp for semiconductor exposure
JP2004221490A (en) Excimer irradiation device and its initial adjustment method
JP2003282020A (en) Discharge lamp
JP2003282021A (en) Manufacturing method of high-pressure discharge lamp and quartz glass bulb for lamp and illumination device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3591470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140903

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term