JP2891997B1 - UV lamp - Google Patents

UV lamp

Info

Publication number
JP2891997B1
JP2891997B1 JP16279898A JP16279898A JP2891997B1 JP 2891997 B1 JP2891997 B1 JP 2891997B1 JP 16279898 A JP16279898 A JP 16279898A JP 16279898 A JP16279898 A JP 16279898A JP 2891997 B1 JP2891997 B1 JP 2891997B1
Authority
JP
Japan
Prior art keywords
discharge vessel
average
group concentration
ultraviolet
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16279898A
Other languages
Japanese (ja)
Other versions
JPH11339716A (en
Inventor
幸裕 森本
幸夫 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP16279898A priority Critical patent/JP2891997B1/en
Application granted granted Critical
Publication of JP2891997B1 publication Critical patent/JP2891997B1/en
Publication of JPH11339716A publication Critical patent/JPH11339716A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

【要約】 【課題】 高い放射輝度で真空紫外域〜紫外域の光が効
率よく得られ、放射光束維持率が高くて寿命が長く、安
全に点灯使用できる紫外線ランプを提供すること。 【解決手段】 シリカガラス製放電容器にアルゴン、ク
リプトン、キセノンのうち少なくとも1種類の希ガスが
300K換算で全圧0.1×105Pa以上封入され、
必要に応じて0.7mg/cc以上7mg/cc以下の
量の水銀が封入されて、放電容器の少なくとも一部はそ
の内表面から200μmまでの深さでの平均OH基濃度
が7.8×1024個/m3以上であり、かつ内表面から
深さ20μmまでの領域の平均OH基濃度が1.5×1
25個/m3以上1.2×1026個/m3以下であり、か
つ内表面からの深さ200μmより深い領域から放電容
器の外表面からの深さ600μmまでの領域間の平均O
H基濃度が6.2×1025個/m3以下である紫外線ラ
ンプとする。
To provide an ultraviolet lamp that can efficiently obtain light in a vacuum ultraviolet region to an ultraviolet region with high radiance, has a high radiant flux maintenance factor, has a long life, and can be used safely. SOLUTION: At least one rare gas of argon, krypton and xenon is sealed in a silica glass discharge vessel at a total pressure of 0.1 × 10 5 Pa or more in terms of 300K,
If necessary, mercury in an amount of 0.7 mg / cc or more and 7 mg / cc or less is sealed, and at least a part of the discharge vessel has an average OH group concentration of 7.8 × at a depth from its inner surface to 200 μm. 10 24 particles / m 3 or more, and the average OH group concentration in the region from the inner surface to a depth of 20 μm is 1.5 × 1
0 25 pieces / m 3 or more and 1.2 × 10 26 pieces / m 3 or less, and the average O between the area deeper than 200 μm from the inner surface and 600 μm deeper from the outer surface of the discharge vessel.
An ultraviolet lamp having an H group concentration of 6.2 × 10 25 lamps / m 3 or less is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光化学産業分野や半
導体製造分野等に使用される紫外線を放出する紫外線ラ
ンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet lamp which emits ultraviolet light, which is used in the photochemical industry and the semiconductor manufacturing field.

【0002】[0002]

【従来の技術】従来から放電ランプのバッファガスには
ネオン、アルゴン、クリプトン、キセノンなどの希ガス
が使用される。希ガスがプラズマ中で励起されるとエキ
シマ発光する。このことは特開平7−50151号公報
などに記載されている。例えば、図1にショートアーク
型キセノンランプの外観図を示すが、放電ランプ1の放
電容器2の材質を合成石英ガラスにするとエキシマ光に
よる真空紫外域から赤外域まで幅広い放射が得られる。
キセノンエキシマ(Xe2 *)の放射原理は誘電体障壁放
電ランプと同じであるが、キセノンランプはショートア
ーク型にできるために、真空紫外域から紫外域の光を放
出する点発光の光源として比較的利用できる。
2. Description of the Related Art Rare gases such as neon, argon, krypton, and xenon are conventionally used as buffer gases for discharge lamps. When the rare gas is excited in the plasma, it emits excimer light. This is described in JP-A-7-50151 and the like. For example, FIG. 1 shows an external view of a short arc xenon lamp. When the material of the discharge vessel 2 of the discharge lamp 1 is synthetic quartz glass, a wide range of radiation from the vacuum ultraviolet region to the infrared region by excimer light can be obtained.
The principle of xenon excimer (Xe 2 * ) emission is the same as that of a dielectric barrier discharge lamp. However, since a xenon lamp can be made into a short arc type, it is compared as a point light source that emits light from the vacuum ultraviolet region to the ultraviolet region. Available.

【0003】Xe2 *発光波長は160〜200nmにあ
り、シリカガラスの吸収端に発光帯がかかる。それゆえ
真空紫外発光を効率よく取り出すために、放電容器2を
薄くする工夫をしているが、放電容器の強度が弱まり、
ランプ点灯中に排気管用チップ3(以下、チップと略
す。)の根元からの破壊(チップ割れ)が起こる。ま
た、電気入力を高入力にする(光を高出力させる)とチ
ップ割れが起こるまでの時間が早まった。
[0003] The Xe 2 * emission wavelength is in the range of 160 to 200 nm, and a luminescence band is applied to the absorption edge of silica glass. Therefore, in order to extract the vacuum ultraviolet light efficiently, the discharge vessel 2 is made thinner, but the strength of the discharge vessel is reduced,
While the lamp is lit, the exhaust pipe chip 3 (hereinafter, abbreviated as chip) is broken (chip crack) from the root. In addition, when the electric input is set to a high input (high output of light), the time until chip breakage occurs hastened.

【0004】このチップ破壊は、ランプ点灯時の放電容
器内のガス温度上昇による高ガス圧力負荷も一因である
が、紫外線照射により誘起されるガラスの歪みも一因で
ある。紫外線誘起の歪みが、構造的に異形であるチップ
3に応力集中を起こすことも原因していると考えられ
る。特に長時間の点灯時には、前記双方の相乗効果が起
こり、チップ3の取り付け部周辺を起点として放電容器
2の破壊が起こる。
[0004] This chip destruction is partly due to a high gas pressure load due to a rise in gas temperature in the discharge vessel when the lamp is turned on, but also partly to glass distortion induced by ultraviolet irradiation. It is considered that the UV-induced distortion causes stress concentration on the chip 3 which is structurally irregular. In particular, when the lighting is performed for a long time, a synergistic effect of the two occurs, and the discharge vessel 2 is broken starting from the vicinity of the mounting portion of the chip 3.

【0005】また、水銀ランプにおいてはキセノン、ア
ルゴン、クリプトンの何れかの希ガスか、または数種類
組み合わせた希ガスがバッファガスとして放電容器内に
封入されることがある。何れのガスもエキシマ状態(X
2 *、Ar2 *、Kr2 *)で前述のエキシマ光が発生す
る。アルゴンおよび/またはクリプトンをバッファガス
にすると、ランプの発光効率、アーク安定性、アーク集
中化が向上する一方、放電容器が白濁しやすく、照度維
持率の低下を招くという不具合が起こることがある。
In a mercury lamp, a rare gas of xenon, argon, and krypton, or a rare gas obtained by combining several kinds of rare gases may be sealed in a discharge vessel as a buffer gas. All gases are in excimer state (X
e 2 * , Ar 2 * , Kr 2 * ), the above-mentioned excimer light is generated. When argon and / or krypton are used as the buffer gas, the luminous efficiency, arc stability, and arc concentration of the lamp are improved, but the discharge vessel is likely to become cloudy, which causes a decrease in the illuminance maintenance rate.

【0006】発明者の検討から、この放電容器の白濁現
象は、シリカ粒の堆積が原因であることが判った。Ar
2 *、Kr2 *はシリカガラスの吸収端よりも高いエネルギ
ーの光を放射する。この光の照射によって、Si−Oの
結合が切れ、シリカガラスが昇華し放電容器内表面に沈
着するものと推定される。
[0006] From the study of the inventor, it has been found that the clouding phenomenon of the discharge vessel is caused by the accumulation of silica particles. Ar
2 * and Kr 2 * emit light of higher energy than the absorption edge of silica glass. It is presumed that the Si-O bond is broken by this light irradiation, and the silica glass sublimates and deposits on the inner surface of the discharge vessel.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明の目的
は、高い放射輝度で真空紫外域から紫外域の光が効率よ
く得られ、放射光束維持率が高くて寿命が長く、安全に
点灯使用できる紫外線ランプを提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to efficiently obtain light from the vacuum ultraviolet region to the ultraviolet region with a high radiance, a high radiant flux maintenance factor, a long life, and a safe lighting operation. It is to provide an ultraviolet lamp which can be used.

【0008】[0008]

【課題を解決するための手段】そこで、上記課題を解決
するために、請求項1に記載の発明は、放電容器がシリ
カガラスで構成されており、該放電容器にアルゴン、ク
リプトン、キセノンのうち少なくとも1種類の希ガスが
300K換算で全圧で0.1×105Pa以上封入さ
れ、必要に応じて0.7mg/cc以上7mg/cc以
下の量の水銀が封入されている紫外線ランプであって、
該放電容器の少なくとも紫外線放射発散度が最大となる
部分は、その内表面から200μmまでの深さでの平均
OH基濃度が7.8×1024個/m3以上であり、かつ
該内表面から深さ20μmまでの領域の平均OH基濃度
が1.5×1025個/m3以上1.2×1026個/m3
下であり、かつ該内表面からの深さ200μmより深い
領域から放電容器の外表面からの深さ600μmまでの
領域の間の平均OH基濃度が6.2×1025個/m3
下である紫外線ランプとするものである。
Therefore, in order to solve the above-mentioned problems, according to the first aspect of the present invention, the discharge vessel is made of silica glass, and the discharge vessel is made of argon, krypton, or xenon. An ultraviolet lamp in which at least one kind of rare gas is filled at 0.1 × 10 5 Pa or more at a total pressure in terms of 300K, and mercury in a quantity of 0.7 mg / cc to 7 mg / cc as needed. So,
At least a portion of the discharge vessel where the ultraviolet radiation emission degree is maximum has an average OH group concentration of 7.8 × 10 24 / m 3 or more at a depth from the inner surface up to 200 μm, and The average OH group concentration in a region from to a depth of 20 μm is 1.5 × 10 25 / m 3 or more and 1.2 × 10 26 / m 3 or less, and a depth deeper than 200 μm from the inner surface. An ultraviolet lamp having an average OH group concentration of not more than 6.2 × 10 25 / m 3 in a region from the outer surface of the discharge vessel to a depth of 600 μm from the outer surface of the discharge vessel.

【0009】ここで、紫外線放射発散度が最大となる部
分とは放電容器の外面から放射される紫外線量が最大と
なる部分であり、一対の電極を対向配置させた放電ラン
プにおいては、放電容器の略中央の容器壁部分である。
Here, the portion where the ultraviolet radiation emission degree is maximum is the portion where the amount of ultraviolet radiation radiated from the outer surface of the discharge vessel is maximum, and in a discharge lamp in which a pair of electrodes are opposed to each other, the discharge vessel Of the container wall at the substantially central portion of FIG.

【0010】前記紫外線ランプにおいて、放電容器にア
ルゴン、クリプトン、キセノンのうち少なくとも1種類
の希ガスが300K換算で全圧で0.1×105Pa以
上封入される理由は、封入された希ガス圧力が、300
K換算で全圧で0.1×105Pa未満であると希ガス
による紫外線発光効率を充分に得ることができないから
である。
In the ultraviolet lamp, the reason why at least one rare gas of argon, krypton, and xenon is sealed in the discharge vessel at 0.1 × 10 5 Pa or more at a total pressure of 300K in terms of the sealed rare gas Pressure is 300
If the total pressure is less than 0.1 × 10 5 Pa in terms of K, it is not possible to obtain sufficient ultraviolet light emission efficiency by the rare gas.

【0011】また、水銀の封入量について0.7mg/
cc以上7mg/cc以下である理由は、0.7mg/
cc未満であると波長365nmの紫外線強度を実効的
に得ることができないし、7mg/ccを超えると波長
365nmの発光のスペクトル幅が広がってしまうから
である。
The amount of mercury enclosed is 0.7 mg /
The reason that the concentration is between cc and 7 mg / cc is 0.7 mg / cc.
If it is less than cc, it is impossible to effectively obtain an ultraviolet intensity at a wavelength of 365 nm, and if it is more than 7 mg / cc, the spectrum width of light emission at a wavelength of 365 nm is widened.

【0012】また、請求項2に記載の発明は、放電容器
がシリカガラスで構成されており、該放電容器に、アル
ゴンの分圧をPA(Pa)、クリプトンの分圧をPK
(Pa)としたときに、PA+PK≧1.0×10
5(Pa)の条件でアルゴンとクリプトンが封入され、
それらに加えて、キセノンが分圧として、0.13×1
5Pa以上2.0×105Pa以下の範囲で封入され、
水銀が所定量封入されている紫外線ランプであって、該
放電容器の少なくとも紫外線放射発散度が最大となる部
分は、その内表面から200μmまでの深さでの平均O
H基濃度が1.5×1025個/m3以上であり、かつ該
内表面から深さ20μmまでの領域の平均OH基濃度が
1.5×1025個/m3以上1.2×1026個/m3以下
であり、かつ該内表面からの深さ200μmより深い領
域から放電容器の外表面からの深さ600μmまでの領
域の間の平均OH基濃度が7.8×1023以上1.5×
1025個/m3以下である紫外線ランプとするというも
のである。
According to a second aspect of the present invention, the discharge vessel is made of silica glass, and the discharge vessel has a partial pressure of argon (PA) and a partial pressure of krypton (PK).
(Pa), PA + PK ≧ 1.0 × 10
Argon and krypton are sealed under the condition of 5 (Pa),
In addition, xenon has a partial pressure of 0.13 × 1
Encapsulated in a range of not less than 0 5 Pa and not more than 2.0 × 10 5 Pa,
An ultraviolet lamp filled with a predetermined amount of mercury, wherein at least a portion of the discharge vessel having the maximum emission of ultraviolet radiation has an average O 2 at a depth of 200 μm from its inner surface.
The H group concentration is 1.5 × 10 25 / m 3 or more, and the average OH group concentration in the region from the inner surface to a depth of 20 μm is 1.5 × 10 25 / m 3 or more and 1.2 × The average OH group concentration is 7.8 × 10 23 between a region of not more than 10 26 / m 3 and a depth of more than 200 μm from the inner surface to a depth of 600 μm from the outer surface of the discharge vessel. 1.5 ×
The ultraviolet lamp is 10 25 lamps / m 3 or less.

【0013】前記紫外線ランプにおいて、アルゴンの分
圧PA、クリプトンの分圧をPKでPA+PK≧1.0
×105(Pa)とし、それらに加えて、キセノンが
0.13×105Pa以上2.0×105Pa以下の範囲
で封入される理由は、PA+PK<1.0×105(P
a)であると、波長365nmの紫外線強度を高めるこ
とができず、またクリプトンとアルゴンに加えてキセノ
ンが分圧として、0.13×105Pa未満であると放
電容器の白濁現象が生じるからであり、一方2.0×1
5Pa以上であると波長365nmの紫外線強度を実
効的に得ることができないからである。
In the ultraviolet lamp, the partial pressure of argon PA and the partial pressure of krypton are defined as PK + PK ≧ 1.0 by PK.
X10 5 (Pa) and, in addition, xenon is encapsulated in the range of 0.13 × 10 5 Pa or more and 2.0 × 10 5 Pa or less because PA + PK <1.0 × 10 5 (P
In the case of a), the intensity of ultraviolet light having a wavelength of 365 nm cannot be increased, and when the partial pressure of xenon in addition to krypton and argon is less than 0.13 × 10 5 Pa, clouding of the discharge vessel occurs. While 2.0 × 1
If it is 0 5 Pa or more intensity of ultraviolet light having a wavelength of 365nm is not achieved effectively.

【0014】シリカガラスがOH基を含有すると紫外線
による歪みを受け難くすることは知られている(例えば
特開平7−50151号公報)。しかし、多量のOH基
が含まれているときの効果や、紫外線ランプの放電容器
用のシリカガラスに適したOH基の濃度分布は知られて
いなかった。今回、OH基が多量にシリカガラスのバル
ク全体に含まれていると紫外線照射によって放電容器壁
の厚み中央部に圧縮歪みが発生し、内面と外面には引っ
張り歪みが発生することが推定された。
It is known that silica glass contains an OH group to be less susceptible to distortion by ultraviolet rays (for example, Japanese Patent Application Laid-Open No. 7-50151). However, the effect when a large amount of OH groups are contained and the concentration distribution of OH groups suitable for silica glass for a discharge vessel of an ultraviolet lamp have not been known. In this study, it was estimated that, if a large amount of OH groups were contained in the entire bulk of the silica glass, compressive strain was generated at the center of the thickness of the discharge vessel wall by ultraviolet irradiation, and tensile strain was generated on the inner and outer surfaces. .

【0015】シリカガラスは引っ張りに弱く、圧縮に強
いが、OH基を放電容器壁の厚み中央部よりも特に内表
面に高濃度に分布させることで、内面に発生する引っ張
り歪みを緩和することや、真空紫外光によるシリカガラ
スの昇華を抑制すること、シリカガラスを変質させる真
空紫外光を吸収することができ、300nm以下に発生
する吸収中心や白濁の発生を驚くほど抑制することを可
能にすることを見出した。
[0015] Silica glass is weak in tension and strong in compression, but by distributing OH groups at a higher concentration especially on the inner surface than at the center of the thickness of the discharge vessel wall, it is possible to reduce the tensile strain generated on the inner surface. It can suppress the sublimation of silica glass due to vacuum ultraviolet light, absorb the vacuum ultraviolet light that changes the silica glass, and surprisingly suppress the generation of absorption centers and white turbidity occurring below 300 nm. I found that.

【0016】[0016]

【発明の実施の形態】実際に紫外線ランプを作製し、紫
外線照射により誘起される放電容器のガラスの歪みの大
きさや、シリカガラスの昇華によっておこる放電容器内
壁のガラス白濁についてOH基濃度との関係を調べた。
なお、本発明はショートアーク型の紫外線ランプに限ら
ず、ロングアーク型の紫外線ランプや、電極を放電容器
内に持たない誘電体障壁放電ランプ等、真空紫外域から
紫外域の光を放出する紫外線ランプに適用される。
BEST MODE FOR CARRYING OUT THE INVENTION The relationship between the magnitude of OH group concentration and the magnitude of distortion of glass in a discharge vessel induced by ultraviolet irradiation and glass turbidity of the inner wall of the discharge vessel caused by sublimation of silica glass were actually produced by producing an ultraviolet lamp. Was examined.
The present invention is not limited to the short arc type ultraviolet lamp, but may be a long arc type ultraviolet lamp, a dielectric barrier discharge lamp having no electrode in the discharge vessel, or an ultraviolet ray that emits light in the vacuum ultraviolet region to the ultraviolet region. Applies to lamps.

【0017】<実施例1>出力2kWのショートアーク
型キセノンランプを作製した。封入ガスはXeで圧力は
300K換算で3×105Paであり、電極間距離は
4.5mmのショートアーク型ランプである。放電容器
用の素材である原管のシリカガラスには、(1)平均O
H基濃度が4.0×1023個/m3であるものと、
(2)平均OH基濃度が6.0×1025個/m3である
ものと、(3)平均OH基濃度が9.4×1025個/m
3であるものを使用した。そして、上記(1)、
(2)、(3)の原管を使用し、図2の表に示したよう
に放電容器の厚み方向で、紫外線放射発散度が最大とな
る部分のOH基濃度が異なる次に示すA1〜A5の5種
類の放電容器を使用したキセノンランプを作製した。
Example 1 A short arc xenon lamp having an output of 2 kW was manufactured. The filling gas is Xe, the pressure is 3 × 10 5 Pa in terms of 300K, and the distance between the electrodes is a short arc type lamp having a distance of 4.5 mm. The original silica glass used as the material for the discharge vessel includes (1) average O
An H group concentration of 4.0 × 10 23 / m 3 ;
(2) an average OH group concentration of 6.0 × 10 25 / m 3 and (3) an average OH group concentration of 9.4 × 10 25 / m 3
The one that was 3 was used. And (1),
The original tubes of (2) and (3) are used, and as shown in the table of FIG. Xenon lamps using five types of discharge vessels A5 were produced.

【0018】A1は(1)の原管のまま放電容器に加工
したもの、A2は(1)の原管にOH基を導入しただけ
のもの、A3は(2)の原管にOH基を導入して真空加
熱したもの、A4は(2)の原管にOH基を導入しただ
けのもの、A5は(3)の原管にOH基を導入しただけ
のものである。なお、OH基の導入はシリカガラスの原
管の中へ水蒸気を導入して後、外部から加熱する方法で
行なった。
A1 was prepared by processing the discharge vessel as it was in (1), A2 was obtained by simply introducing an OH group into the (1) raw tube, and A3 was prepared by adding an OH group to the (2) raw tube. Introduced and heated in a vacuum, A4 is only the OH group introduced into the original tube of (2), and A5 is only the OH group introduced into the original tube of (3). The introduction of OH groups was carried out by introducing water vapor into a silica glass raw tube and then heating the silica glass from the outside.

【0019】OH基濃度の測定は次のように行なった。
IR(赤外線)領域の吸収測定を行ない、波長3673
cm-1の赤外線吸収強度からOH基濃度を求めた。ガラ
スの深さ方向のある領域の濃度は、試料となるシリカガ
ラスを厚さ方向に化学研磨(HF/H2SO4でエッチン
グする)して、その研磨前後でのIR吸光の度合いを比
較し、研磨された領域に含まれた平均OH基濃度を算出
した。
The measurement of the OH group concentration was performed as follows.
An absorption measurement in an IR (infrared) region was performed, and a wavelength of 3673 was measured.
The OH group concentration was determined from the infrared absorption intensity at cm -1 . The concentration of a certain region in the depth direction of the glass is obtained by chemically polishing (etching with HF / H 2 SO 4 ) the silica glass as a sample in the thickness direction and comparing the degree of IR absorption before and after the polishing. The average OH group concentration contained in the polished area was calculated.

【0020】本実施例においては、点灯時間は400時
間後の紫外線照射で放電容器に誘起されたガラス歪みの
測定を行なった。ガラス歪みの測定は、試料とするガラ
ス板および偏向板を直交ニコルの関係に配置し、拡散光
を照らし複屈折により試料中を透過してくる光の強弱を
得る方法(光弾性測定)で行ない、測定部位は放電ラン
プを垂直にした場合に陰極の先端部の略水平横方向に位
置する放電容器ガラス部分(紫外線放射発散度が最大と
なる部分)について行なった。
In this embodiment, the glass distortion induced in the discharge vessel by the irradiation of ultraviolet light after the lighting time of 400 hours was measured. The glass distortion is measured by a method of arranging a glass plate and a polarizing plate as a sample in a crossed Nicols relationship and irradiating diffused light to obtain the intensity of light transmitted through the sample by birefringence (photoelasticity measurement). The measurement was performed on the glass portion of the discharge vessel (the portion where the degree of emission of ultraviolet radiation becomes maximum) which is located substantially in the horizontal direction at the tip of the cathode when the discharge lamp is vertical.

【0021】図2の評価結果から判るように、A2、A
3、A4の放電ランプで400時間点灯後も放電容器の
紫外線誘起による歪みは小さいものであった。
As can be seen from the evaluation results shown in FIG.
3. Even after the A4 discharge lamp was operated for 400 hours, the distortion of the discharge vessel induced by ultraviolet rays was small.

【0022】なお、ロングアークランプや誘電体障壁放
電ランプにおいて、同様に歪み測定をする場合の測定部
位は、放電容器の長さ方向の中央部に位置する放電容器
ガラス部分ということになる。また、誘電体障壁放電ラ
ンプの一部の型においては平面状のガラス面から紫外線
放出するものがあり、その場合は紫外線放射発散度が最
大となる部分は平面状のガラス面部分の中央部となる。
In the case of a long arc lamp or a dielectric barrier discharge lamp, the measurement site when the strain is measured in the same manner is the discharge vessel glass portion located at the center in the longitudinal direction of the discharge vessel. In addition, some types of dielectric barrier discharge lamps emit ultraviolet light from a flat glass surface, in which case the maximum emission of ultraviolet radiation is at the center of the flat glass surface. Become.

【0023】<実施例2>次に、出力2kWの水銀ラン
プを作製した。放電容器内には、ArとKrが合計で1
×105Pa、Xeが1×105Pa封入され、水銀が4
mg/cc封入されている。放電容器用の素材である原
管のシリカガラスには、チタン(Ti)を100wtp
pm含むシリカガラスを用いた。(4)平均OH基濃度
が4.0×1023個/m3であるものと、(5)平均O
H基濃度が1.56×1025個/m3であるものを使
い、図3の表に示したように放電容器の厚み方向で、紫
外線放射発散度が最大となる部分のOH基濃度が異なる
次に示すB1〜B4の4種類の放電容器を使用して水銀
ランプを作製した。
Example 2 Next, a mercury lamp having an output of 2 kW was manufactured. Ar and Kr are 1 in total in the discharge vessel.
× 10 5 Pa, Xe 1 × 10 5 Pa sealed, mercury 4
mg / cc. 100 wtp of titanium (Ti) is used for the silica glass of the original tube, which is a material for the discharge vessel.
Silica glass containing pm was used. (4) an average OH group concentration of 4.0 × 10 23 / m 3 and (5) an average O
An H-group concentration of 1.56 × 10 25 particles / m 3 was used. As shown in the table of FIG. A mercury lamp was manufactured using four different discharge vessels B1 to B4 shown below.

【0024】B1は(4)の原管のまま放電容器に加工
したもの、B2は(1)の原管にOH基を導入しただけ
のもの、B3は(2)の原管にOH基を導入して真空加
熱したもの、B4は(2)の原管のまま放電容器に加工
したものである。なお、OH基の導入は実施例1と同様
にて、シリカガラスの原管の中へ水蒸気を導入しての
ち、外部から加熱する方法で行なった。
B1 was prepared by processing the discharge vessel as it was in (4), B2 was obtained by simply introducing OH groups into (1), and B3 was prepared by adding OH groups to (2). Introduced and vacuum-heated, B4 was processed into a discharge vessel with the original tube of (2). The introduction of OH groups was carried out in the same manner as in Example 1, by introducing water vapor into the silica glass raw tube and then heating from the outside.

【0025】図3に示したように、300時間点灯後の
放電容器の白濁の度合いについて見ると、B1ではかな
りの白濁があり、B2、B4で白濁はなく、B3では白
濁が少し生じた。そして、シリカガラスの昇華に起因す
る放電容器の白濁の進行による照度維持率の変化につい
て1500時間まで点灯して確認を行なった。波長36
5nmの紫外線照度維持率を点灯初期の値を1と規格化
して測定の結果を図4に示す。B2、B4で1500時
間点灯後も放電容器の白濁も生じず照度維持率は点灯初
期の90%もあった。B1は照度維持率の劣化が激しく
300時間で点灯初期の50%まで半減し、B3も15
00時間点灯後は点灯初期の45%程度にまで照度が低
下した。
As shown in FIG. 3, the degree of white turbidity of the discharge vessel after lighting for 300 hours was significant in B1, not white turbid in B2 and B4, and slightly turbid in B3. Then, the change in the illuminance maintenance rate due to the progress of the clouding of the discharge vessel due to the sublimation of the silica glass was confirmed by lighting up to 1500 hours. Wavelength 36
FIG. 4 shows the measurement results obtained by normalizing the 5 nm ultraviolet illuminance maintenance factor to 1 at the initial stage of lighting. Even after lighting for 1500 hours in B2 and B4, the discharge vessel did not become cloudy, and the illuminance maintenance ratio was 90% of the initial lighting. In B1, the illuminance maintenance rate deteriorated drastically, halving to 50% of the initial lighting in 300 hours, and B3 was also reduced to 15%.
After lighting for 00 hours, the illuminance decreased to about 45% of the initial lighting.

【0026】[0026]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、放電容器内面に発生する引っ張り歪みを
緩和でき、放電容器の排気管用チップ部への応力集中を
抑制でき、排気管用チップ部での破裂危険性の少ない安
全な紫外線ランプとすることができる。
As described above, according to the first aspect of the present invention, the tensile strain generated on the inner surface of the discharge vessel can be reduced, the stress concentration on the exhaust pipe tip of the discharge vessel can be suppressed, and the exhaust gas can be exhausted. A safe ultraviolet lamp with little risk of rupture at the tube tip can be provided.

【0027】また、請求項1に記載の発明によれば、真
空紫外光によるシリカガラスの昇華を抑制し、シリカガ
ラスを変質させる真空紫外光を吸収することができ、3
00nm以下に発生する吸収中心や白濁の発生を驚くほ
ど抑制することを可能にし、放射光束維持率が高くて寿
命が長い紫外線ランプとすることができる。
According to the first aspect of the present invention, it is possible to suppress sublimation of silica glass due to vacuum ultraviolet light and absorb vacuum ultraviolet light that changes the quality of the silica glass.
It is possible to surprisingly suppress the generation of absorption centers and white turbidity occurring at a wavelength of 00 nm or less, and to provide an ultraviolet lamp having a high radiant flux maintenance factor and a long life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ショートアーク型キセノンランプの外観図を
示す。
FIG. 1 shows an external view of a short arc type xenon lamp.

【図2】 OH基濃度と放電容器の紫外線歪みとの関係
表を示す。
FIG. 2 is a table showing the relationship between OH group concentration and ultraviolet distortion of a discharge vessel.

【図3】 OH基濃度と放電容器の白濁度合いとの関係
表を示す。
FIG. 3 is a table showing the relationship between the OH group concentration and the degree of cloudiness of the discharge vessel.

【図4】 照度維持率の測定結果を示す。FIG. 4 shows a measurement result of an illuminance maintenance ratio.

【符号の説明】[Explanation of symbols]

1 放電ランプ 2 放電容器 3 排気管用チップ DESCRIPTION OF SYMBOLS 1 Discharge lamp 2 Discharge vessel 3 Exhaust pipe tip

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01J 61/30 H01J 61/16 H01J 61/20 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) H01J 61/30 H01J 61/16 H01J 61/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放電容器がシリカガラスで構成されてお
り、該放電容器にアルゴン、クリプトン、キセノンのう
ち少なくとも1種類の希ガスが300K換算で全圧で
0.1×105Pa以上封入され、必要に応じて0.7
mg/cc以上7mg/cc以下の量の水銀が封入され
ている紫外線ランプであって、 該放電容器の少なくとも紫外線放射発散度が最大となる
部分は、その内表面から200μmまでの深さでの平均
OH基濃度が7.8×1024個/m3以上であり、かつ
該内表面から深さ20μmまでの領域の平均OH基濃度
が1.5×1025個/m3以上1.2×1026個/m3
下であり、かつ該内表面からの深さ200μmより深い
領域から放電容器の外表面からの深さ600μmまでの
領域の間の平均OH基濃度が6.2×1025個/m3
下であることを特徴とする紫外線ランプ。
1. A discharge vessel is made of silica glass, and at least one rare gas of argon, krypton, and xenon is filled in the discharge vessel at a pressure of 300 K at a total pressure of 0.1 × 10 5 Pa or more. 0.7 if necessary
An ultraviolet lamp filled with mercury in an amount of not less than 7 mg / cc and not more than 7 mg / cc, wherein at least a portion of the discharge vessel having the maximum emission of ultraviolet radiation has a depth from its inner surface up to 200 μm. The average OH group concentration is 7.8 × 10 24 / m 3 or more, and the average OH group concentration in a region from the inner surface to a depth of 20 μm is 1.5 × 10 25 / m 3 or more. × 10 26 / m 3 or less, and the average OH group concentration in a region from a depth of more than 200 μm from the inner surface to a depth of 600 μm from the outer surface of the discharge vessel is 6.2 × 10 6 An ultraviolet lamp characterized by being at most 25 lamps / m 3 .
【請求項2】 放電容器がシリカガラスで構成されてお
り、該放電容器に、アルゴンの分圧をPA(Pa)、ク
リプトンの分圧をPK(Pa)としたときに、PA+P
K≧1.0×105(Pa)の条件でアルゴンとクリプ
トンが封入され、それらに加えて、キセノンが分圧とし
て、0.13×105Pa以上2.0×105Pa以下の
範囲で封入され、水銀が0.7mg/cc以上7mg/
cc以下の量封入されている紫外線ランプであって、 該放電容器の少なくとも紫外線放射発散度が最大となる
部分は、その内表面から200μmまでの深さでの平均
OH基濃度が1.5×1025個/m3以上であり、かつ
該内表面から深さ20μmまでの領域の平均OH基濃度
が1.5×1025個/m3以上1.2×1026個/m3
下であり、かつ該内表面からの深さ200μmより深い
領域から放電容器の外表面からの深さ600μmまでの
領域の間の平均OH基濃度が7.8×1023以上1.5
×1025個/m3以下であることを特徴とする紫外線ラ
ンプ。
2. The discharge vessel is made of silica glass. When the partial pressure of argon is PA (Pa) and the partial pressure of krypton is PK (Pa), PA + P
Argon and krypton are sealed under the condition of K ≧ 1.0 × 10 5 (Pa), and in addition, xenon is a partial pressure of 0.13 × 10 5 Pa or more and 2.0 × 10 5 Pa or less. And mercury is 0.7mg / cc or more and 7mg / cc
cc or less of the enclosed ultraviolet lamp, wherein at least the portion of the discharge vessel where the ultraviolet radiation emission degree is maximum has an average OH group concentration at a depth from its inner surface up to 200 μm of 1.5 × 10 25 is the / m 3 or more, and an average OH group concentration in the region to a depth of 20μm from the inner surface of 1.5 × 10 25 / m 3 or more 1.2 × 10 26 atoms / m 3 or less And the average OH group concentration between a region deeper than 200 μm from the inner surface and a region deeper than 600 μm from the outer surface of the discharge vessel is 7.8 × 10 23 to 1.5.
× 10 25 lamps / m 3 or less.
JP16279898A 1998-05-28 1998-05-28 UV lamp Expired - Lifetime JP2891997B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16279898A JP2891997B1 (en) 1998-05-28 1998-05-28 UV lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16279898A JP2891997B1 (en) 1998-05-28 1998-05-28 UV lamp

Publications (2)

Publication Number Publication Date
JP2891997B1 true JP2891997B1 (en) 1999-05-17
JPH11339716A JPH11339716A (en) 1999-12-10

Family

ID=15761422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16279898A Expired - Lifetime JP2891997B1 (en) 1998-05-28 1998-05-28 UV lamp

Country Status (1)

Country Link
JP (1) JP2891997B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047130A1 (en) 2009-11-05 2011-05-12 Ushio Denki K.K. Short-arc discharge lamp
DE102010022630B4 (en) * 2009-07-02 2012-10-31 Ushio Denki K.K. Short arc discharge lamp with hydrogen getter on the electrode shaft
US20230046314A1 (en) * 2021-08-10 2023-02-16 Kla Corporation Laser-sustained plasma lamps with graded concentration of hydroxyl radical

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591470B2 (en) * 2001-03-19 2004-11-17 ウシオ電機株式会社 Discharge lamp
JP4736900B2 (en) * 2006-03-30 2011-07-27 ウシオ電機株式会社 Short arc type mercury lamp
JP5528683B2 (en) * 2008-06-06 2014-06-25 ウシオ電機株式会社 Excimer lamp
JP5151816B2 (en) * 2008-08-29 2013-02-27 ウシオ電機株式会社 Excimer lamp
JP5299132B2 (en) * 2009-07-07 2013-09-25 ウシオ電機株式会社 Xenon short arc lamp for digital projector
JP6206176B2 (en) * 2013-12-26 2017-10-04 ウシオ電機株式会社 Method for producing pattern forming body
JP6395496B2 (en) * 2014-08-11 2018-09-26 株式会社オーク製作所 Short arc discharge lamp and light source device
JP6492511B2 (en) * 2014-10-08 2019-04-03 ウシオ電機株式会社 Pattern forming body manufacturing method and light irradiation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022630B4 (en) * 2009-07-02 2012-10-31 Ushio Denki K.K. Short arc discharge lamp with hydrogen getter on the electrode shaft
DE102010047130A1 (en) 2009-11-05 2011-05-12 Ushio Denki K.K. Short-arc discharge lamp
US20230046314A1 (en) * 2021-08-10 2023-02-16 Kla Corporation Laser-sustained plasma lamps with graded concentration of hydroxyl radical
US11887835B2 (en) * 2021-08-10 2024-01-30 Kla Corporation Laser-sustained plasma lamps with graded concentration of hydroxyl radical

Also Published As

Publication number Publication date
JPH11339716A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JP2891997B1 (en) UV lamp
US9615439B2 (en) System and method for inhibiting radiative emission of a laser-sustained plasma source
TWI435369B (en) Excimer lamp
JP4400136B2 (en) Short arc type mercury vapor discharge lamp
JP2002373625A (en) Electric discharge lamp, black light and operating method therefor
JP3591470B2 (en) Discharge lamp
JP3178162B2 (en) Dielectric barrier discharge lamp
JP3292016B2 (en) Discharge lamp and vacuum ultraviolet light source device
KR940009200B1 (en) Protective coating for high-intensity metal halide discharge lamps
KR100349800B1 (en) Discharge lamp
JP3267153B2 (en) Metal vapor discharge lamp
JP6660594B2 (en) Discharge lamp
JP4865965B2 (en) Liquid treatment apparatus and method using ultraviolet rays
JP4294533B2 (en) Excimer lamp glass, excimer lamp discharge vessel and excimer lamp
JP3252513B2 (en) Dielectric barrier discharge lamp
JP4475171B2 (en) Flash lamp
JP3175410B2 (en) UV light source
JP3198519B2 (en) UV irradiation device
JP4432321B2 (en) Initial adjustment method of excimer irradiation equipment
JP2018037277A (en) Laser drive lamp
CN1502563A (en) Ultraviolet ray device for treating liquid and method thereof
JP2915256B2 (en) Cadmium metal vapor discharge lamp
JPH07267674A (en) High-purity silica glass for short-wavelength ultraviolet lamp
JP2008500691A (en) Low pressure discharge lamp with metal halide
WO2002024587A1 (en) Quartz glass for short wave length ultraviolet ray, discharge lamp using the same, container therefor and ultraviolet irradiation apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term