JPH0878200A - Method and device for controlling magnetic field made by eddy current - Google Patents

Method and device for controlling magnetic field made by eddy current

Info

Publication number
JPH0878200A
JPH0878200A JP21342994A JP21342994A JPH0878200A JP H0878200 A JPH0878200 A JP H0878200A JP 21342994 A JP21342994 A JP 21342994A JP 21342994 A JP21342994 A JP 21342994A JP H0878200 A JPH0878200 A JP H0878200A
Authority
JP
Japan
Prior art keywords
magnetic field
eddy current
magnetic
vacuum duct
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21342994A
Other languages
Japanese (ja)
Inventor
Koji Matsuda
浩二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21342994A priority Critical patent/JPH0878200A/en
Publication of JPH0878200A publication Critical patent/JPH0878200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE: To control a magnetic field made by an eddy current generated in a conductive structure set in a fluctuating magnetic field with a simple structure by arranging a conductive auxiliary structure different from a main structure within the fluctuating magnetic field. CONSTITUTION: A deflecting electromagnet is formed by a vacuum duct 1 arranged between magnetic poles 3 of the deflecting magnet and an auxiliary structure (auxiliary coil) 2 consisting of four linear closed circuits. The magnetic field distribution formed in the duct 1 is determined by the eddy current of the vacuum duct wall and the current carried on the side closer to a charged particle beam orbit of the four coils 2. Since the magnetic field made by the eddy current of the duct 1 is canceled by the structure 2 different from the duct 1, the magnetic field in the duct 1 can be flattened even when the time change of intensity of the deflecting magnetic field is large. Further, since the magnetic field in the duct 1 is not sensitive to the setting position of the structure 2 or the form of the duel 1, the maintenance after set of the structure 2 is not required, and the structure 2 can be easily mounted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変動する磁場内で使用
される機器に係り、特に、加速器の電磁石の磁極間で使
用される機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device used in a fluctuating magnetic field, and more particularly to a device used between magnetic poles of an electromagnet of an accelerator.

【0002】[0002]

【従来の技術】従来、変動する磁場内で使用される機器
で、渦電流の作る磁場の影響が問題となるものは、導電
率の低い材質を使用することによって渦電流自信の発生
を抑えることで対処していた。例えば、早いサイクルの
シンクロトロンでは、真空ダクトの壁の渦電流を抑える
ために、有機樹脂,セラミックといった非導電性の物質
で真空ダクトを製作したり、壁を蛇腹状にして抵抗値を
上げ渦電流を軽減する方法がとられている。
2. Description of the Related Art Conventionally, equipment used in a fluctuating magnetic field, which is affected by the magnetic field generated by eddy currents, has a problem of suppressing self-confidence by using a material having low conductivity. I was dealing with it. For example, in a fast cycle synchrotron, in order to suppress the eddy current on the wall of the vacuum duct, the vacuum duct is made of a non-conductive material such as organic resin or ceramic, or the wall is accordion-shaped to increase the resistance value and increase the vortex current. Methods have been taken to reduce the current.

【0003】[0003]

【発明が解決しようとする課題】一般に、変動する磁場
中に導電性の物質があるとき、磁場の時間変化に伴った
電界が物質内に誘起され渦電流が流れる。渦電流は新た
な磁場を発生する。
Generally, when a conductive substance is present in a fluctuating magnetic field, an eddy current flows by inducing an electric field in the substance as the magnetic field changes with time. Eddy currents generate new magnetic fields.

【0004】例えば、シンクロトロンでは、偏向電磁石
の磁場強度をビームの加速と共に増加させるので、偏向
電磁石の磁極間には磁場の時間変化に伴って電界が誘起
される。磁極間には軌道を覆う真空ダクトがあり、これ
が導電性の物質で作られる場合には、真空ダクト壁に渦
電流が発生する。渦電流は真空ダクト内部に新たな磁場
を発生し偏向電磁石の磁場を乱すため、ビームの収束状
態が変化し、多量の渦電流が流れるときにはビームを発
散させる。
For example, in a synchrotron, since the magnetic field strength of the deflection electromagnet increases with the acceleration of the beam, an electric field is induced between the magnetic poles of the deflection electromagnet with the time change of the magnetic field. There is a vacuum duct covering the track between the magnetic poles, and if it is made of a conductive material, an eddy current is generated in the wall of the vacuum duct. The eddy current generates a new magnetic field inside the vacuum duct and disturbs the magnetic field of the deflecting electromagnet, so that the converged state of the beam changes and the beam is diverged when a large amount of eddy current flows.

【0005】従来の有機樹脂,セラミックといった非導
電性の物質で真空ダクトを製作し、渦電流の発生を抑え
る方法には次の欠点があった。まず、有機樹脂には、放
射線損傷に弱いことや壁から大量のガスが発生するとい
った欠点がある。また、セラミックで真空ダクトを製作
する場合には、セラミックを偏向電磁石1個分に相当す
る1m程度の管に焼上げるのは技術的に困難であるの
で、数cmの管をつなぎ合わせることになる。このことに
より、欠け易さ,脆さといった材料的な欠点に加えて、
管の継ぎ目での真空漏れの問題,コストが高くなるとい
った問題が生じる。また、真空ダクトを蛇腹状にして抵
抗値を上げ、渦電流の量を軽減する方法では、蛇腹を使
うことにより真空ダクトが大きくなり、電磁石の磁極間
距離が大きくなり、電源に負担がかかることになる。
The conventional method for producing a vacuum duct from a non-conductive material such as organic resin or ceramic to suppress the generation of eddy current has the following drawbacks. First, organic resins have the drawbacks of being vulnerable to radiation damage and generating a large amount of gas from the wall. Also, when a vacuum duct is made of ceramic, it is technically difficult to bake the ceramic into a tube of about 1 m, which is equivalent to one deflection electromagnet, so it is necessary to connect tubes of several cm. . As a result, in addition to material defects such as chipping and brittleness,
There are problems such as vacuum leakage at pipe joints and high cost. Also, in the method of reducing the amount of eddy current by increasing the resistance value by making the vacuum duct into a bellows shape, using the bellows makes the vacuum duct larger, the distance between the magnetic poles of the electromagnets increases, and the power supply is burdened. become.

【0006】本発明の第一の目的は、変動する磁場中に
設置された導電性の構造物に発生する渦電流により作ら
れる磁場を簡単な構造で制御する方法及び装置を提供す
るものである。
A first object of the present invention is to provide a method and apparatus for controlling a magnetic field generated by an eddy current generated in a conductive structure installed in a fluctuating magnetic field with a simple structure. .

【0007】第二の目的は、上記制御方法及び装置によ
り、ビーム損失を低減できる粒子加速器を提供すること
にある。
A second object is to provide a particle accelerator capable of reducing the beam loss by the above control method and apparatus.

【0008】[0008]

【課題を解決するための手段】上記第一の目的を達成す
るための手段は、渦電流の発生する主構造物の設置され
ている領域の変動磁場と同じ時間変化をする変動磁場内
に、前記主構造物とは別に補助構造物を設置する手段で
ある。
[Means for Solving the Problems] Means for achieving the above-mentioned first object are as follows: in a fluctuating magnetic field that changes with the same time as the fluctuating magnetic field of the area where the main structure in which the eddy current is generated is installed, It is a means for installing an auxiliary structure separately from the main structure.

【0009】上記第二の目的を達成するための手段は、
粒子加速器の電磁石の磁極間に設置される装置を主構造
物として、上記第一の目的を達成するための手段を適用
する手段である。
Means for achieving the above second object are as follows:
This is a means for applying the means for achieving the first object, with the device installed between the magnetic poles of the electromagnet of the particle accelerator as the main structure.

【0010】[0010]

【作用】渦電流の発生する主構造物の設置されている領
域の変動磁場と同じ時間変化をする変動磁場内に、主構
造物とは別の補助構造物を設置すると、補助構造物に流
れる渦電流の作る磁場は主構造物の渦電流が作る磁場に
重畳する。補助構造物に流れる渦電流の作る磁場は、補
助構造物の位置,抵抗値などを適当に選ぶことによって
制御できるので、重畳された全体の磁場の制御が可能と
なる。補助構造物は、適切な形状,配置等を選ぶことに
より簡単な構造にすることができる。主構造物と補助構
造物を、同じ時間変化をする変動磁場内に設置すること
により、それぞれの渦電流の作る磁場は常に同じ比率で
あり、外部から操作することなく常に同じ磁場分布を作
ることができる。
[Operation] If an auxiliary structure other than the main structure is installed in a variable magnetic field that changes with time as the variable magnetic field in the area where the main structure in which the eddy current is generated is installed, the auxiliary structure flows to the auxiliary structure. The magnetic field created by the eddy current is superimposed on the magnetic field created by the eddy current of the main structure. Since the magnetic field generated by the eddy current flowing in the auxiliary structure can be controlled by appropriately selecting the position, resistance value, etc. of the auxiliary structure, it is possible to control the entire superimposed magnetic field. The auxiliary structure can have a simple structure by selecting an appropriate shape and arrangement. By installing the main structure and the auxiliary structure in a variable magnetic field that changes with the same time, the magnetic fields created by the respective eddy currents are always in the same ratio, and the same magnetic field distribution is always created without external operation. You can

【0011】また、粒子加速器の電磁石の磁極間に設置
される装置について上記の手段を適用することによっ
て、電磁石の作る磁場が時間変化する時にも磁場の分布
を一定に制御することが可能になる。これによって、磁
場分布の変化に伴うビームの収束状態の変化を抑えるこ
とができ、ビームの損失を防ぐことができる。
Further, by applying the above means to the device installed between the magnetic poles of the electromagnet of the particle accelerator, it becomes possible to control the distribution of the magnetic field constant even when the magnetic field produced by the electromagnet changes with time. . As a result, it is possible to suppress the change in the converged state of the beam due to the change in the magnetic field distribution and prevent the beam loss.

【0012】[0012]

【実施例】以下で、本発明による粒子加速器の第一の実
施例として、偏向電磁石の磁極間に設置された真空ダク
トの渦電流による磁場の空間変化を低減し、磁場分布を
平坦化することを特徴とするシンクロトロンについて説
明する。
EXAMPLE As a first example of the particle accelerator according to the present invention, the spatial change of the magnetic field due to the eddy current of the vacuum duct installed between the magnetic poles of the bending electromagnet is reduced to flatten the magnetic field distribution. The synchrotron characterized by the following will be explained.

【0013】シンクロトロンは、導電性の真空ダクト
と,荷電粒子ビームに所定の方向の磁場を印加して周回
軌道を形成する偏向電磁石と,荷電粒子ビームを加速す
る加速手段を備えている。ビームが加速されるのに伴っ
て、偏向電磁石の磁場は強くなり、磁極間の真空ダクト
には渦電流が発生する。図1に電磁石の磁極3の間に設
置された、ステンレス製のレーストラック型の真空ダク
ト1と4本の線状の閉回路による補助構造物2(以下補
助コイルと呼ぶ)から構成される、偏向電磁石を示す。
補助コイルは止め具12によって真空ダクトと磁極に固
定される。ここで真空ダクトに取り付けた止め具は、磁
極側に取り付けてもよい。補助コイルは銅またはアルミ
ニウムなどの真空ダクトより導電率の高い材料で作ら
れ、電源を持たない閉じた回路を形成する。また、絶縁
被膜が施されて、真空ダクト,磁極から電気的に絶縁さ
れている。図2に偏向電磁石の断面図、図3に本実施例
の偏向電磁石全体の平面図を示す。コイル13は偏向磁
場を作るためのコイルであり、電源から磁場発生に必要
な電流が供給される。磁極を取り払って原理的に描く
と、図4のようになる。この断面図を図5に示す。磁極
により作られる偏向磁場は、矢印4で示すような上向き
の方向であるとする。その強度は空間的に一様である。
The synchrotron comprises a conductive vacuum duct, a deflection electromagnet for applying a magnetic field in a predetermined direction to the charged particle beam to form a circular orbit, and an accelerating means for accelerating the charged particle beam. As the beam is accelerated, the magnetic field of the deflection electromagnet becomes stronger and eddy current is generated in the vacuum duct between the magnetic poles. In FIG. 1, a racetrack type vacuum duct 1 made of stainless steel, which is installed between the magnetic poles 3 of the electromagnet, and four linear closed-circuit auxiliary structures 2 (hereinafter referred to as auxiliary coils), A bending electromagnet is shown.
The auxiliary coil is fixed to the vacuum duct and the magnetic poles by the stopper 12. The stopper attached to the vacuum duct here may be attached to the magnetic pole side. The auxiliary coil is made of a material that is more conductive than the vacuum duct, such as copper or aluminum, and forms a closed circuit with no power source. Further, an insulating coating is applied to electrically insulate the vacuum duct and magnetic poles. FIG. 2 shows a sectional view of the deflecting electromagnet, and FIG. 3 shows a plan view of the entire deflecting electromagnet of this embodiment. The coil 13 is a coil for creating a deflection magnetic field, and a current necessary for generating a magnetic field is supplied from a power supply. When the magnetic poles are removed and it is drawn in principle, it becomes as shown in FIG. This sectional view is shown in FIG. The deflection magnetic field created by the magnetic poles is assumed to be in the upward direction as shown by arrow 4. Its intensity is spatially uniform.

【0014】粒子の加速時には偏向磁場の強度が増し、
真空ダクト壁に図5で示したような方向の渦電流が流れ
る。この渦電流は真空ダクト内に、矢印5に示すよう
な、偏向磁場を減少させる向きの新たな磁場を発生す
る。図6のaに真空ダクト壁の渦電流が作る磁場分布を
示す。ところで、4本の補助コイルにも真空ダクトの渦
電流と同じ向きに渦を巻く図5の2a,2bに示したよ
うな電流が流れる。補助コイルの荷電粒子ビーム軌道か
ら遠い側2aは、図1のように磁極外部に配置する。す
ると、2aの部分の電流が作る磁場は磁極間隙内でほぼ
一様になるので、真空ダクト内部に作られる磁場分布
は、真空ダクト壁の渦電流と,4本の補助コイルの荷電
粒子ビーム軌道に近い側2bに流れる電流で決定され
る。なお、補助コイルの一部,荷電粒子ビーム軌道に近
い側2bは、真空ダクトに流れる渦電流の流れに沿うよ
うに配置されている。これによって、補助コイルの2b
の部分の作る磁場は、真空ダクトの内部において矢印6
に示すような真空ダクト壁に流れる渦電流が作る磁場と
は逆の向きになる。補助コイルに流れる電流の大きさは
補助コイルの線の太さと補助コイルの囲む磁束により決
まり、設置前にあらかじめ磁場分布を計算して、磁場の
空間変化を打ち消せるような補助コイルの太さ,配置を
選ぶ。そうすることで、真空ダクト内部の磁場分布を図
6のbに示すように平坦化できる。
When the particles are accelerated, the strength of the deflection magnetic field increases,
An eddy current in the direction shown in FIG. 5 flows through the vacuum duct wall. This eddy current generates a new magnetic field in the vacuum duct in the direction of decreasing the deflection magnetic field, as shown by arrow 5. FIG. 6a shows the magnetic field distribution created by the eddy current in the vacuum duct wall. By the way, currents such as those shown in 2a and 2b of FIG. 5 in which eddies are swirled in the same direction as the eddy current of the vacuum duct also flow through the four auxiliary coils. The side 2a of the auxiliary coil farther from the charged particle beam trajectory is arranged outside the magnetic pole as shown in FIG. Then, the magnetic field generated by the current in the portion 2a becomes almost uniform in the magnetic pole gap, so the magnetic field distribution generated inside the vacuum duct is the eddy current of the vacuum duct wall and the charged particle beam trajectories of the four auxiliary coils. It is determined by the current flowing on the side 2b close to. The part of the auxiliary coil and the side 2b close to the charged particle beam orbit are arranged along the flow of the eddy current flowing in the vacuum duct. As a result, the auxiliary coil 2b
The magnetic field created by the part of
The direction is opposite to the magnetic field created by the eddy current flowing in the vacuum duct wall as shown in. The magnitude of the current flowing through the auxiliary coil is determined by the thickness of the auxiliary coil wire and the magnetic flux surrounded by the auxiliary coil. Select the placement. By doing so, the magnetic field distribution inside the vacuum duct can be flattened as shown in FIG.

【0015】また、補助コイルの線の太さを太めにして
おき、図7に示したように補助コイルに可変抵抗器7を
接続することでも補助コイルの電流値を調節することが
でき、磁場分布を平坦化することができる。
The current value of the auxiliary coil can be adjusted by making the wire thickness of the auxiliary coil thicker and connecting the variable resistor 7 to the auxiliary coil as shown in FIG. The distribution can be flattened.

【0016】更に、図8に示すように、可変抵抗器7と
共に可変誘導器8を接続することで、補助コイルの時定
数を調節することもできる。
Furthermore, as shown in FIG. 8, by connecting the variable inductor 8 together with the variable resistor 7, the time constant of the auxiliary coil can be adjusted.

【0017】また、図9のように、補助コイルを2周巻
きにすることによっても同様の磁場分布を得ることがで
きる。
A similar magnetic field distribution can be obtained by winding the auxiliary coil twice as shown in FIG.

【0018】また、図10のように、偏向電磁石の磁極
3の間に、4本の補助コイルの替わりに4枚の板状の補
助構造物9(以下補助導体板と呼ぶ)を設置することに
よっても、磁場分布を平坦化することができる。図11
のaに真空ダクト壁の渦電流が作る磁場の分布を、bに
補助導体板のある時の磁場の分布を示す。磁場の空間変
化が打ち消されて磁場分布が平坦化されているのがわか
る。
Further, as shown in FIG. 10, four plate-shaped auxiliary structures 9 (hereinafter referred to as auxiliary conductor plates) are installed between the magnetic poles 3 of the bending electromagnet instead of the four auxiliary coils. Also, the magnetic field distribution can be flattened. Figure 11
The distribution of the magnetic field created by the eddy current in the vacuum duct wall is shown in a, and the distribution of the magnetic field when the auxiliary conductor plate is present is shown in b. It can be seen that the spatial change of the magnetic field is canceled and the magnetic field distribution is flattened.

【0019】次に、このシンクロトロンのビーム軌道修
正用電磁石について説明する。図12に、ビーム軌道修
正用電磁石の磁極間に設置されるステンレス製のレース
トラック型の真空ダクト1と2本の線状の閉回路による
補助構造物10(以下補助導体と呼ぶ)の説明図を示
す。ビーム軌道修正用電磁石は局所的な磁場を作るの
で、その磁場の時間変動により誘起される渦電流11
は、同心円状になる。補助導体の真空ダクトに近い部分
は、この渦電流に沿う形状にする。補助導体に流れる電
流は、真空ダクトに近い部分において真空ダクト壁の渦
電流と逆向きであるので、この部分の電流の作る磁場
は、真空ダクト壁の渦電流が作る磁場を打ち消すような
分布になる。補助導体の真空ダクトから遠い部分の電流
は、ほぼ一様な空間分布の磁場を作るので、全体とし
て、補助導体のないときに比べて平坦な磁場分布を得る
ことができる。
Next, the beam orbit correcting electromagnet of this synchrotron will be described. FIG. 12 is an explanatory view of a stainless racetrack type vacuum duct 1 installed between magnetic poles of a beam trajectory correcting electromagnet and an auxiliary structure 10 (hereinafter referred to as an auxiliary conductor) having two linear closed circuits. Indicates. Since the beam trajectory correcting electromagnet creates a local magnetic field, the eddy current 11 induced by the time variation of the magnetic field is generated.
Become concentric. The portion of the auxiliary conductor near the vacuum duct is shaped to follow this eddy current. Since the current flowing in the auxiliary conductor is in the opposite direction to the eddy current in the vacuum duct wall near the vacuum duct, the magnetic field created by the current in this part has a distribution that cancels the magnetic field created by the eddy current in the vacuum duct wall. Become. The current in the portion of the auxiliary conductor far from the vacuum duct creates a magnetic field with a substantially uniform spatial distribution, so that a flatter magnetic field distribution can be obtained as a whole as compared with the case without the auxiliary conductor.

【0020】以上の実施例では、ビーム軌道に対して上
下左右対称なレーストラック型の真空ダクトに対して本
発明を適用したので、補助構造物をビーム軌道に対して
上下左右対称な配置にすることで最大の磁場補正効果が
得られる。上下非対称な真空ダクトに対しては、上下非
対称な補助構造物,同様に左右非対称な真空ダクトに対
しては、左右非対称な補助構造物を配置することで磁場
補正効果が得られる。
In the above embodiment, since the present invention is applied to the racetrack type vacuum duct which is vertically and horizontally symmetrical with respect to the beam trajectory, the auxiliary structure is vertically and horizontally symmetrically arranged with respect to the beam trajectory. Therefore, the maximum magnetic field correction effect can be obtained. A magnetic field correction effect can be obtained by arranging a vertically asymmetric auxiliary structure for a vertically asymmetric vacuum duct, and a horizontally asymmetric auxiliary structure for a horizontally asymmetric vacuum duct.

【0021】[0021]

【発明の効果】真空ダクトの渦電流の作る磁場を真空ダ
クトとは別の補助構造物で打ち消しているため、偏向磁
場の強度の時間変化の仕方によらず、真空ダクト内の磁
場を平坦化することができる。また、真空ダクト内の磁
場は、補助構造物の設置位置や、真空ダクトの形状には
敏感でない。即ち、補助構造物の設置後の保守を必要と
せず、取り付けも容易である。
Since the magnetic field created by the eddy current in the vacuum duct is canceled by the auxiliary structure different from the vacuum duct, the magnetic field in the vacuum duct is flattened regardless of how the intensity of the deflection magnetic field changes with time. can do. Further, the magnetic field in the vacuum duct is not sensitive to the installation position of the auxiliary structure or the shape of the vacuum duct. That is, the auxiliary structure does not require maintenance after installation and is easy to install.

【0022】また、補助構造物の導電率を真空ダクトよ
りも高くすることで、補助構造物の大きさを小さくする
ことができる。
Further, by making the conductivity of the auxiliary structure higher than that of the vacuum duct, the size of the auxiliary structure can be reduced.

【0023】補助構造物として、上記実施例で説明した
ような補助コイルを用いる場合、補助コイルに可変抵抗
器を接続することで、より簡単に磁場制御が可能とな
る。また、可変誘導器を接続し、補助コイルの回路の時
定数を真空ダクトの渦電流の時定数と一致するように調
節することで、外部磁場に対する応答を良くすることが
でき、磁場の時間変化の大きな場合でも常に磁場分布を
平坦化できる。
When the auxiliary coil as described in the above embodiment is used as the auxiliary structure, the magnetic field can be controlled more easily by connecting the variable resistor to the auxiliary coil. Also, by connecting a variable inductor and adjusting the time constant of the circuit of the auxiliary coil to match the time constant of the eddy current of the vacuum duct, the response to the external magnetic field can be improved and the time change of the magnetic field can be improved. The magnetic field distribution can always be flattened even in the case of large.

【0024】また、補助コイルを磁極の中心より大きく
ずれた位置に配置しなければならない場合、それぞれの
補助コイルの囲む磁束が少なくなり、必要な電流を発生
できなくなる。この場合は、図9のような2周巻きの補
助コイルにすることで必要な電流を発生することができ
る。
Further, when the auxiliary coils have to be arranged at a position largely deviated from the center of the magnetic poles, the magnetic flux surrounded by the respective auxiliary coils becomes small, and the necessary current cannot be generated. In this case, a necessary current can be generated by using a two-turn auxiliary coil as shown in FIG.

【0025】また、補助構造物として、実施例で説明し
たような補助導体板を用いる場合、真空ダクトと補助導
体板を一体化し、簡単な構造にすることができる。ま
た、図11に示されるように広い範囲にわたって磁場を
平坦化することができる。
When the auxiliary conductor plate described in the embodiment is used as the auxiliary structure, the vacuum duct and the auxiliary conductor plate can be integrated into a simple structure. Further, as shown in FIG. 11, the magnetic field can be flattened over a wide range.

【0026】また、磁場分布が局所的であるときには、
図12の方法で真空ダクトの渦電流の作る磁場の6極成
分を打ち消すことができる。
When the magnetic field distribution is local,
The 6-pole component of the magnetic field generated by the eddy current in the vacuum duct can be canceled by the method of FIG.

【0027】以上のように、偏向電磁石部分での真空ダ
クト壁の渦電流の作る磁場を平坦化することができるの
で、ビーム加速時のビーム損失の少ない粒子加速器を実
現できる。
As described above, since the magnetic field generated by the eddy current in the vacuum duct wall in the deflecting electromagnet can be flattened, it is possible to realize a particle accelerator with less beam loss during beam acceleration.

【0028】また、ビーム軌道修正用電磁石での真空ダ
クト壁の渦電流の作る磁場を平坦化することによって、
ビーム軌道の早い修正を行うことが可能となる。
Further, by flattening the magnetic field created by the eddy current in the vacuum duct wall of the beam trajectory correcting electromagnet,
It is possible to quickly correct the beam trajectory.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加速器の偏向電磁石の磁極間に設置さ
れた導電性の真空ダクトと,補助コイルの斜視図。
FIG. 1 is a perspective view of a conductive vacuum duct installed between magnetic poles of a bending electromagnet of an accelerator of the present invention and an auxiliary coil.

【図2】本発明の加速器の導電性の真空ダクトと補助コ
イルを設置した偏向電磁石の磁極付近の断面図。
FIG. 2 is a cross-sectional view of the vicinity of magnetic poles of a bending electromagnet provided with a conductive vacuum duct and an auxiliary coil of the accelerator of the present invention.

【図3】本発明の加速器の導電性の真空ダクトと補助コ
イルを設置した偏向電磁石を上から見た平面図。
FIG. 3 is a plan view of a bending electromagnet having an electrically conductive vacuum duct and an auxiliary coil of the accelerator according to the present invention as viewed from above.

【図4】真空ダクトと補助コイルの配置を原理的に描い
た説明図。
FIG. 4 is an explanatory diagram that illustrates the arrangement of a vacuum duct and auxiliary coils in principle.

【図5】真空ダクトと補助コイルの配置を原理的に描い
た断面図。
FIG. 5 is a cross-sectional view illustrating the arrangement of a vacuum duct and an auxiliary coil in principle.

【図6】偏向電磁石の磁極間に設置される真空ダクトの
内部の磁場分布を示したグラフ。
FIG. 6 is a graph showing a magnetic field distribution inside a vacuum duct installed between magnetic poles of a bending electromagnet.

【図7】補助コイルに可変抵抗器を接続したときの回路
図。
FIG. 7 is a circuit diagram when a variable resistor is connected to the auxiliary coil.

【図8】補助コイルに可変抵抗器と可変誘導器を接続し
たときの回路図。
FIG. 8 is a circuit diagram when a variable resistor and a variable inductor are connected to an auxiliary coil.

【図9】補助コイルを2周巻きにしたときの回路図。FIG. 9 is a circuit diagram when the auxiliary coil is wound twice.

【図10】本発明の加速器の偏向電磁石の磁極間に設置
された導電性の真空ダクトと補助導体板の斜視図。
FIG. 10 is a perspective view of a conductive vacuum duct and an auxiliary conductor plate installed between the magnetic poles of the bending electromagnet of the accelerator of the present invention.

【図11】偏向電磁石の磁極間に設置される真空ダクト
の内部の磁場分布を示したグラフ。
FIG. 11 is a graph showing a magnetic field distribution inside a vacuum duct installed between magnetic poles of a bending electromagnet.

【図12】本発明の加速器のビーム軌道修正用電磁石の
磁極間に設置される導電性の真空ダクトと補助コイルの
斜視図。
FIG. 12 is a perspective view of a conductive vacuum duct and an auxiliary coil installed between the magnetic poles of the beam trajectory correcting electromagnet of the accelerator of the present invention.

【符号の説明】[Explanation of symbols]

1…真空ダクト、2…補助コイル、3…偏向電磁石の磁
極、12…止め具。
DESCRIPTION OF SYMBOLS 1 ... Vacuum duct, 2 ... Auxiliary coil, 3 ... Magnetic pole of a bending electromagnet, 12 ... Stopper.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】導電性の主構造物が変動する磁場内にあ
り、渦電流が誘起されて新たな磁場を作るとき、前記変
動する磁場と同じ時間変化をする変動磁場内に前記主構
造物とは別の導電性の補助構造物を配置し、前記補助構
造物に流れる渦電流の作る磁場を主構造物の渦電流が作
る磁場に重畳することにより磁場を制御することを特徴
とする渦電流の作る磁場の制御方法。
1. A main structure having a conductive main structure in a fluctuating magnetic field, and when an eddy current is induced to create a new magnetic field, the main structure is in a fluctuating magnetic field changing with the same time as the fluctuating magnetic field. A vortex characterized in that a conductive auxiliary structure different from the above is disposed, and the magnetic field is controlled by superposing the magnetic field generated by the eddy current flowing in the auxiliary structure on the magnetic field generated by the eddy current of the main structure. How to control the magnetic field created by electric current.
【請求項2】請求項1に於いて、前記補助構造物の一部
を前記主構造物の渦電流の流れに沿うように配置する磁
場制御方法。
2. The magnetic field control method according to claim 1, wherein a part of the auxiliary structure is arranged along the eddy current flow of the main structure.
【請求項3】導電性の主構造物が変動する磁場内にあ
り、渦電流が誘起されて新たな磁場を作るとき、前記変
動する磁場と同じ時間変化をする変動磁場内に配置され
る導電性の物質で構成され、その導電性の物質内に流れ
る渦電流の作る磁場によって前記主構造物に流れる渦電
流の作る磁場を制御することを特徴とする磁場制御装
置。
3. A conductive structure in which a conductive main structure is in a fluctuating magnetic field, and when an eddy current is induced to create a new magnetic field, it is arranged in a fluctuating magnetic field that changes with the same time as the fluctuating magnetic field. A magnetic field control device comprising a conductive substance, wherein the magnetic field generated by the eddy current flowing in the main structure is controlled by the magnetic field generated by the eddy current flowing in the conductive substance.
【請求項4】請求項3に於いて、前記主構造物の渦電流
の流れに沿うように、前記導電性の物質の一部を配置す
る磁場制御装置。
4. The magnetic field control device according to claim 3, wherein a part of the conductive material is arranged along the eddy current flow of the main structure.
【請求項5】導電性の真空ダクト内の荷電粒子ビームに
所定の方向の磁場を印加して周回軌道を形成する偏向電
磁石と,前記荷電粒子ビームを加速する加速手段を備え
た粒子加速器において、電磁石の磁場の時間変化によっ
て真空ダクトに渦電流が誘起されて新たな磁場を作ると
き、前記電磁石の磁極間に導電性のある非磁性体を設置
したことを特徴とする粒子加速器。
5. A particle accelerator provided with a deflecting electromagnet for applying a magnetic field in a predetermined direction to a charged particle beam in a conductive vacuum duct to form a circular orbit, and an accelerating means for accelerating the charged particle beam, A particle accelerator, wherein a non-conductive material is installed between magnetic poles of the electromagnet when an eddy current is induced in a vacuum duct by a time change of a magnetic field of the electromagnet to create a new magnetic field.
【請求項6】請求項5に於いて、前記非磁性体の一部を
真空ダクトの渦電流の流れに沿うように配置する粒子加
速器。
6. The particle accelerator according to claim 5, wherein a part of the non-magnetic material is arranged along the eddy current flow in the vacuum duct.
【請求項7】請求項5に於いて、前記非磁性体を真空ダ
クト壁材よりも導電率の高い物質で製作する粒子加速
器。
7. The particle accelerator according to claim 5, wherein the non-magnetic material is made of a material having a conductivity higher than that of a vacuum duct wall material.
【請求項8】請求項5に於いて、前記非磁性体を前記荷
電粒子ビームの軌道の両側に配置する粒子加速器。
8. The particle accelerator according to claim 5, wherein the non-magnetic material is arranged on both sides of an orbit of the charged particle beam.
【請求項9】請求項8に於いて、前記非磁性体を前記荷
電粒子ビームの軌道に対称に配置する粒子加速器。
9. The particle accelerator according to claim 8, wherein the non-magnetic material is arranged symmetrically with respect to the trajectory of the charged particle beam.
【請求項10】請求項5に於いて、前記非磁性体を線状
の閉回路で構成する粒子加速器。
10. The particle accelerator according to claim 5, wherein the non-magnetic material is composed of a linear closed circuit.
【請求項11】請求項10に於いて、前記非磁性体の作
る閉回路の一部を真空ダクトの渦電流の流れに沿うよう
に配置し、他の部分を電磁石の磁極の外部に配置する粒
子加速器。
11. The non-magnetic material according to claim 10, wherein a part of the closed circuit formed by the non-magnetic material is arranged along the flow of the eddy current in the vacuum duct, and the other part is arranged outside the magnetic pole of the electromagnet. Particle accelerator.
【請求項12】請求項10に於いて、前記閉回路に抵抗
器を接続する粒子加速器。
12. The particle accelerator according to claim 10, wherein a resistor is connected to the closed circuit.
【請求項13】請求項10に於いて、前記閉回路に誘導
器を接続する粒子加速器。
13. The particle accelerator according to claim 10, wherein an inductor is connected to the closed circuit.
【請求項14】請求項5に於いて、前記非磁性体が板状
である粒子加速器。
14. The particle accelerator according to claim 5, wherein the non-magnetic material is a plate.
【請求項15】請求項5に於いて、前記非磁性体を複数
個の点対称な位置の電磁石の磁極間に設置する粒子加速
器。
15. The particle accelerator according to claim 5, wherein the non-magnetic material is installed between a plurality of magnetic poles of electromagnets at point-symmetrical positions.
JP21342994A 1994-09-07 1994-09-07 Method and device for controlling magnetic field made by eddy current Pending JPH0878200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21342994A JPH0878200A (en) 1994-09-07 1994-09-07 Method and device for controlling magnetic field made by eddy current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21342994A JPH0878200A (en) 1994-09-07 1994-09-07 Method and device for controlling magnetic field made by eddy current

Publications (1)

Publication Number Publication Date
JPH0878200A true JPH0878200A (en) 1996-03-22

Family

ID=16639087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21342994A Pending JPH0878200A (en) 1994-09-07 1994-09-07 Method and device for controlling magnetic field made by eddy current

Country Status (1)

Country Link
JP (1) JPH0878200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458949A2 (en) 2010-11-30 2012-05-30 Hitachi, Ltd. Magnetic field control apparatus and dipole magnet
JP2012150005A (en) * 2011-01-19 2012-08-09 Mitsubishi Electric Corp Charged particle beam deflection device
WO2019104878A1 (en) * 2017-11-30 2019-06-06 合肥中科离子医学技术装备有限公司 Method for adjusting particle orbit centring by using first harmonic in cyclotron
US10375815B2 (en) 2017-11-30 2019-08-06 Hefei Cas Ion Medical And Technical Devices Co., Ltd. Method for adjusting particle orbit alignment by using first harmonic in cyclotron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458949A2 (en) 2010-11-30 2012-05-30 Hitachi, Ltd. Magnetic field control apparatus and dipole magnet
JP2012119101A (en) * 2010-11-30 2012-06-21 Hitachi Ltd Magnetic field controller and deflection electromagnet device
US8598971B2 (en) 2010-11-30 2013-12-03 Hitachi, Ltd. Magnetic field control apparatus and dipole magnet
EP2458949A3 (en) * 2010-11-30 2014-02-19 Hitachi, Ltd. Magnetic field control apparatus and dipole magnet
JP2012150005A (en) * 2011-01-19 2012-08-09 Mitsubishi Electric Corp Charged particle beam deflection device
WO2019104878A1 (en) * 2017-11-30 2019-06-06 合肥中科离子医学技术装备有限公司 Method for adjusting particle orbit centring by using first harmonic in cyclotron
US10375815B2 (en) 2017-11-30 2019-08-06 Hefei Cas Ion Medical And Technical Devices Co., Ltd. Method for adjusting particle orbit alignment by using first harmonic in cyclotron

Similar Documents

Publication Publication Date Title
JP2667832B2 (en) Deflection magnet
US7163602B2 (en) Apparatus for generating planar plasma using concentric coils and ferromagnetic cores
US5117212A (en) Electromagnet for charged-particle apparatus
JPH04273409A (en) Superconducting magnet device; particle accelerator using said superconducting magnet device
JP2019149387A (en) Compact deflecting magnet
JP4276340B2 (en) Cyclotron electromagnet design method and cyclotron system
JP2013529360A (en) Highly efficient magnetic scanning system
US7253572B2 (en) Electromagnetic induced accelerator based on coil-turn modulation
JPH0878200A (en) Method and device for controlling magnetic field made by eddy current
JPS5944744B2 (en) magnetic deflection coil
US10726986B2 (en) Apparatus and method for magnetic field compression using a toroid coil structure
US11837428B2 (en) Systems and methods for electron beam focusing in electron beam additive manufacturing
KR0175922B1 (en) Method and device for the deflection of a beam
JP4296001B2 (en) Circular accelerator
US20230093623A1 (en) Systems and methods for creating an electron coil magnet
JP7249906B2 (en) Superconducting coil and superconducting magnet device
de Rijk Warm Magnets
US2617026A (en) Induction accelerator for electrons
RU2008525C1 (en) Polychannel plasma engine with closed electron drift
JP2004134417A (en) Insulating transformer for heating electron gun cathode
KR20230163889A (en) Film-type generator coil
KR20220032006A (en) Shielding structures in a plasma environment
de Rijk arXiv: Warm Magnets
KR20240003127A (en) Generator coil that is fused with cube or bead-shaped iron and wire or film-shaped copper
KR20230123360A (en) Variable quadrupole magnet system for controlling charged particles