JPH0875661A - Defect detecting equipment - Google Patents

Defect detecting equipment

Info

Publication number
JPH0875661A
JPH0875661A JP6208886A JP20888694A JPH0875661A JP H0875661 A JPH0875661 A JP H0875661A JP 6208886 A JP6208886 A JP 6208886A JP 20888694 A JP20888694 A JP 20888694A JP H0875661 A JPH0875661 A JP H0875661A
Authority
JP
Japan
Prior art keywords
illumination
light
optical system
subject
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6208886A
Other languages
Japanese (ja)
Other versions
JP3483948B2 (en
Inventor
Shinichi Tsuchisaka
新一 土坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP20888694A priority Critical patent/JP3483948B2/en
Publication of JPH0875661A publication Critical patent/JPH0875661A/en
Application granted granted Critical
Publication of JP3483948B2 publication Critical patent/JP3483948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To realize a plurality of illumination methods by one optical system, and exact classification of defects and to realize a judging function similar to the human ability of inspection by visual observation. CONSTITUTION: In the equipment for detecting a defect by casting an illuminating light on the surface S of an object of inspection whereon a lattice pattern is formed, an illuminating optical system 2 which casts on the surface of the object of inspection the illuminating light in the direction intersecting the aforesaid pattern perpendicularly in a prescribed sphere of illumination of the surface from an oblique position and converges a diffracted light generated on the surface to a prescribed position is provided. This equipment has image input means 3 and 4 which pick up an image of the aforesaid sphere of illumination from a position being apart from the aforesaid surface of the object of inspection in such a degree as not to be illuminated by the illuminating light and excluding the position of convergence of the diffracted light and/or the point of convergence thereof, and a display means 7 which visualized image signals of a diffracted light zone outputted from the image input means 3 and 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス又はシリコンウ
エハ上に0.3 〜20μm程度の配線を格子状に規則正しく
刻印してなる液晶基板又はICウエハの傷,シミ,膜厚
ムラ,ステッパのショットずれ,塵などを検査する外観
検用の欠陥検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass or silicon wafer on which a wiring of about 0.3 to 20 .mu.m is regularly engraved in a grid pattern, and scratches, stains, film thickness unevenness, and shot shift of a stepper on a liquid crystal substrate or IC wafer. , Defect detection device for visual inspection to inspect dust, etc.

【0002】[0002]

【従来の技術】現在、液晶基板やICウエハの外観検査
は、種々の光束の照明光を様々な角度から照射し、被検
物を回転又は揺動させながら、観察者が顕微鏡の観察像
を直接に目視することにより行われることが多い。
2. Description of the Related Art At present, in visual inspection of liquid crystal substrates and IC wafers, illumination light of various luminous fluxes is irradiated from various angles, and an observer observes a microscope image while rotating or rocking the subject. Often done by direct visual inspection.

【0003】欠陥検出の原理は、その種類に応じて相違
している場合が多い。基板表面の塵,突起,傷などの欠
陥検出は、光照射によって基板表面の欠陥から発せられ
る散乱光を利用することができる。
The principle of defect detection often differs depending on its type. For detecting defects such as dust, protrusions, and scratches on the substrate surface, scattered light emitted from the defects on the substrate surface by light irradiation can be used.

【0004】ショットずれの欠陥は、規則正しいパター
ンに検査光が照射されることによりパターンエッジより
発生する回折光が作り出す分光縞との比較により被検体
のパターン変形による分光縞の乱れを検出することによ
り発見できる。ショットずれとは、下地のパターンに対
してステッパーの移動誤差により新しく作られたパター
ンがずれてしまう現象のことである。また、回折光の分
光縞とは、回折格子による光の分光作用であり、白色光
が青色から赤色光に分光される現象をいう。一般に、対
角10′程度のパネルでは、パネルの1/4の大きさの
ショットを4ショットうつことにより1枚の印画を終了
するが、1つのショットずれがあるとパネルの1/4は
色が変ってみえる。
The defect of the shot shift is detected by detecting the disturbance of the spectral fringes due to the pattern deformation of the subject by comparing with the spectral fringes generated by the diffracted light generated from the pattern edge by irradiating the regular pattern with the inspection light. Can be found. Shot misalignment is a phenomenon in which a newly created pattern is misaligned with the underlying pattern due to a stepper movement error. In addition, the spectral fringe of diffracted light is a spectral action of light by a diffraction grating, and is a phenomenon in which white light is dispersed into blue light from red light. Generally, in a panel with a diagonal of 10 ', one shot is completed by moving four shots that are 1/4 the size of the panel, but if there is one shot shift, 1/4 of the panel will be colored. Seems to change.

【0005】レジストの膜厚ムラや飛び散りの欠陥は、
等膜厚干渉縞の乱れを利用して検出することができる。
さらに、シミと呼ばれる欠陥は、周りの地色より黒ずん
だ部分をさし、光の吸収性の高いことを利用して検出で
きる。
Defects in resist film thickness unevenness and scattering are
It is possible to detect by utilizing the disturbance of the equal-thickness interference fringes.
Further, a defect called a stain can be detected by utilizing the fact that it has a high light absorption property, which refers to a portion darker than the surrounding background color.

【0006】観察者による目視検査では、これら各種欠
陥の多くを、上述した照明下で基板を回転,揺動させ
て、目の位置を図13(a)〜(c)に示すように変え
ながら一回で検出していた。
In a visual inspection by an observer, many of these various defects are rotated and rocked on the substrate under the above-mentioned illumination to change the eye positions as shown in FIGS. 13 (a) to 13 (c). It was detected once.

【0007】図13(a)は、基板表面の塵,突起の検
出に適した目の位置を示している。基板表面と検査光の
角度は小さくし、目は検査光が基板で反射した反射光束
を僅かに外した位置となっている。
FIG. 13A shows eye positions suitable for detecting dust and protrusions on the substrate surface. The angle between the surface of the substrate and the inspection light is made small, and the eyes are at a position where the reflected light beam reflected by the inspection light from the substrate is slightly removed.

【0008】図13(b)は、回折光の観察に適した目
の位置を示している。目は基板と対向した位置に置き、
基板表面と検査光との角度は大きくするのが好ましい。
図13(c)は、干渉縞の観察に適した目の位置を示し
ている。検査光は基板表とは直角に近い角度を有してお
り、目は反射光束中に置いている。
FIG. 13B shows eye positions suitable for observing diffracted light. Place your eyes facing the board,
It is preferable to increase the angle between the substrate surface and the inspection light.
FIG. 13C shows eye positions suitable for observing interference fringes. The inspection light has an angle close to a right angle with the substrate surface, and the eyes are placed in the reflected light flux.

【0009】ところで、最近は欠陥の定量化,検査の省
力化,高速化にともない外観検査を自動化する要請が強
くなっており、このような要請に応えるかたちでいくつ
かの装置が提案されている(特開平5−232032号
等)。かかる欠陥検出装置は、人間の目では発見不可能
な欠陥を検出することに主眼を置いたものと、人間の目
視観察と同等の検出能力を持たせることに主眼を置いた
ものとの2つのタイプに分類される。特に、後者のタイ
プは、これまでの欠陥検査が目で行われていた経緯から
目を基準にした欠陥判定を各製造プロセスに適用したい
ため目と同じ欠陥判定を行える装置で製造プロセスを管
理したいとの観点から開発が進められている。
By the way, recently, with the quantification of defects, labor saving of inspection, and speeding up of the inspection, there has been a strong demand for automating the appearance inspection, and several devices have been proposed in order to meet such demand. (JP-A-5-233202). Such a defect detection device has two types, one that focuses on detecting a defect that cannot be detected by the human eye and one that focuses on providing a detection capability equivalent to that of human visual observation. Classified into types. In particular, the latter type wants to apply the defect judgment based on the eyes to each manufacturing process from the background that the defect inspection so far has been done visually, and thus wants to manage the manufacturing process with an apparatus that can make the same defect judgment as the eyes. Development is proceeding from the viewpoint.

【0010】[0010]

【発明が解決しようとする課題】ところが、上述したよ
うに人間の目視観察では種々の照明法により何種類もの
欠陥を検出しているが、現在の多くの欠陥検出装置は1
つの照明法しか持たないため散乱,回折,干渉の検出原
理を同時に満たすことができず、いずれか1つの検出原
理で検出可能な欠陥しか検出することができなかった。
このため、いくつもの種類の欠陥を検出して、全ての種
類の欠陥の発生原因をその発生した製造プロセスへそれ
ぞれフィードバックするような用途には十分に対応でき
ていなかった。
However, as described above, many kinds of defects are detected by various illumination methods in the visual observation of human beings, but many defect detection devices at present have one defect.
Since it has only one illumination method, it cannot satisfy the detection principles of scattering, diffraction, and interference at the same time, and can detect only defects that can be detected by any one of the detection principles.
For this reason, it has not been possible to sufficiently cope with an application in which several types of defects are detected and the causes of generation of all types of defects are respectively fed back to the manufacturing process in which they occur.

【0011】また、欠陥種別を画像処理で判断する場
合、一般には欠陥の大,小,明,暗の4つのファクター
から推定することになるが、1つの照明法のみでは欠陥
によっては十分な情報を得ることができないといった不
具合がある。
Further, when the defect type is judged by image processing, it is generally estimated from four factors of large, small, bright, and dark of the defect, but only one illumination method provides sufficient information depending on the defect. There is a problem that you can not get.

【0012】本発明は、以上のような実情に鑑みてなさ
れたもので、複数の照明法を1つの光学系で実現でき、
欠陥種別を正確に分類することができ、人間の目視観察
による検査能力と同様の判断機能を実現できる欠陥検出
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a plurality of illumination methods can be realized by one optical system,
It is an object of the present invention to provide a defect detection apparatus capable of accurately classifying defect types and realizing a judgment function similar to the inspection ability by human visual observation.

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成するために以下のような手段を講じた。請求項1に対
応する本発明は、規則正しく格子状のパターンが形成さ
れた被検体の表面に照明光を照射して当該被検体の欠陥
を検出する欠陥検出装置において、被検体表面に対して
斜めの位置から被検体表面の所定の照明範囲に前記パタ
ーンと直交する方向の照明光を照射し、被検体表面で発
生した回折光を所定位置に収束させる照明光学系と、前
記照明光をけらない程度に前記被検体表面から離れた位
置であり、かつ前記回折光の収束位置及び又は回折光の
収束点以外の位置から前記照明範囲を撮影する画像入力
手段と、前記画像入力手段から出力される回折光帯の画
像信号を可視化する表示手段とを具備する構成とした。
The present invention has taken the following means in order to achieve the above object. The present invention corresponding to claim 1 is a defect detection apparatus for irradiating the surface of a subject on which a regular grid pattern is formed with illumination light to detect a defect of the subject, which is oblique to the surface of the subject. An illumination optical system for irradiating a predetermined illumination range on the surface of the subject with illumination light in a direction orthogonal to the pattern from the position to converge the diffracted light generated on the surface of the subject to a predetermined position, and the illumination light is not turned off. Image input means for photographing the illumination range from a position other than the convergence surface of the diffracted light and a position other than the convergent position of the diffracted light, which is a position far from the surface of the subject, and is output from the image input means. A display means for visualizing an image signal in the diffracted light band is provided.

【0014】請求項2に対応する本発明は、前記照明光
学系を、光源と、この光源から発した光を収束光に変換
して前記照明範囲に照射する凸レンズとを備えて構成し
た。請求項3に対応する本発明は、前記照明光学系を、
光源と、この光源から発した光をアフォーカルな平行光
束に変換して前記照明範囲に照射する照射レンズとを備
えた構成とし、前記画像入力手段と前記被検体表面との
間であって前記照明光をけらない程度に被検体表面から
離れた位置に前記照明範囲に対応した径を有し照明範囲
から入射する平行光束を前記画像入力手段の受光部に収
束させる結像レンズを配置している。
According to a second aspect of the present invention, the illumination optical system includes a light source, and a convex lens that converts light emitted from the light source into convergent light and irradiates the illumination range. The present invention corresponding to claim 3 provides the illumination optical system,
A light source and an irradiation lens that converts the light emitted from the light source into an afocal parallel light flux and irradiates the illumination range, and between the image input unit and the subject surface, An imaging lens having a diameter corresponding to the illumination range and converging a parallel light flux incident from the illumination range to the light receiving portion of the image input means is arranged at a position far from the surface of the subject so as not to block the illumination light. There is.

【0015】請求項4に対応する本発明は、前記画像入
力手段を、回折光の収束位置に配置された第1の撮像手
段と、前記回折光の収束位置近傍に配置された第2の撮
像手段とから構成している。
According to a fourth aspect of the present invention, the image input means includes a first image pickup means arranged at a convergent position of the diffracted light and a second image pickup means arranged near the convergent position of the diffracted light. And means.

【0016】請求項5に対応する本発明は、少なくとも
一方向に連続する複数の直線が形成された被検体表面に
照明光を照射して当該被検体の欠陥を検出する欠陥検出
装置において、光源と、この光源から発した光を収束光
する凸レンズとを備え、被検体表面に対して斜めの位置
から被検体表面の所定の照明範囲に前記直線と直交する
方向の第1の照明光を照射する第1の照明光学系と、被
検体表面に対して斜めの位置から前記照明範囲に前記直
線と斜交する第2の照明光を照射する第2の照明光学系
と、前記収束光学系による回折光の収束位置及び又は回
折光の収束位置以外の位置から前記照明範囲を撮影する
画像入力手段と、前記画像入力手段から出力される照明
範囲の画像を可視化する表示手段とを具備する構成とし
た。
According to a fifth aspect of the present invention, in a defect detection apparatus for illuminating an object surface having a plurality of straight lines continuous in at least one direction with illumination light to detect a defect of the object, a light source. And a convex lens that converges the light emitted from the light source, and irradiates a first illumination light in a direction orthogonal to the straight line to a predetermined illumination range on the subject surface from a position oblique to the subject surface. A first illumination optical system, a second illumination optical system for irradiating the illumination range with second illumination light obliquely intersecting the straight line from a position oblique to the surface of the subject, and the converging optical system. A configuration comprising image input means for photographing the illumination range from a position other than the convergent position of the diffracted light and a position other than the convergent position of the diffracted light, and a display means for visualizing an image of the illuminated range output from the image input means. did.

【0017】請求項6に対応する本発明は、規則正しく
格子状のパターンが形成された被検体の表面に照明光を
照射して当該被検体の欠陥を検出する欠陥検出装置にお
いて、被検体表面に対して斜めの位置から被検体表面の
所定の照明範囲に前記パターンと直交する方向の第1の
照明光を照射する第1の照明光学系と、被検体表面に対
して斜めの位置から前記照明範囲に前記パターンと斜交
する第2の照明光を照射する第2の照明光学系と、前記
第1,第2の照明光をけらない程度に前記被検体表面か
ら離れた位置に配置され、前記第1の照明光により被検
体表面で発生した回折光を収束させる収束光学系と、前
記収束光学系による回折光の収束位置及び又は回折光の
収束位置以外の位置から前記照明範囲を撮影する画像入
力手段と、前記画像入力手段から出力される照明範囲の
画像を可視化する表示手段とを具備する構成とした。
According to a sixth aspect of the present invention, there is provided a defect detection device for irradiating the surface of a subject, on which a regular grid pattern is formed, with illumination light to detect defects in the subject. On the other hand, a first illumination optical system for irradiating a predetermined illumination range on the surface of the subject with a first illumination light in a direction orthogonal to the pattern, and the illumination from a position oblique to the surface of the subject. A second illumination optical system that irradiates a second illumination light that obliquely intersects the pattern in a range, and is arranged at a position far from the subject surface to the extent that the first and second illumination lights are not cut off; A converging optical system for converging the diffracted light generated on the surface of the subject by the first illumination light and a converging position of the diffracted light by the converging optical system and / or a position other than the converging position of the diffracted light is imaged in the illumination range. Image input means and the image The image of the illumination range to be output from the input means is configured to include a display means for visualizing.

【0018】請求項7に対応する本発明は、前記第1の
照明光学系を、光源と、この光源から発した光をアフォ
ーカルな平行光束に変換して前記照明範囲に照射する照
射レンズとを備えた構成とし、前記収束光学系を、前記
画像入力手段と前記被検体表面との間であって前記第
1,第2の照明光をけらない程度に被検体表面から離れ
た位置に配置され、前記照明範囲に対応した口径を有し
照明範囲から入射する平行光束を画像入力手段の受光部
に収束させる結像レンズを備えた構成とした。
According to a seventh aspect of the present invention, the first illumination optical system includes a light source, and an illumination lens that converts the light emitted from the light source into an afocal parallel light flux and irradiates the illumination range. And the converging optical system is arranged between the image input means and the surface of the subject at a position distant from the subject surface to the extent that the first and second illumination lights are not blocked. The image forming lens has a diameter corresponding to the illumination range and converges the parallel light flux incident from the illumination range to the light receiving portion of the image input unit.

【0019】請求項8に対応する本発明は、標本表面の
前記照明範囲を干渉照明する干渉照明光学系を備えたこ
とを特徴とする。請求項9に対応する本発明は、前記干
渉照明光学系を、画像入力手段の受光部と標本表面との
間に設けられたハーフミラーと、このハーフミラーで折
り曲げた光軸上における前記結像レンズの焦点位置に設
けられ前記結像レンズの開口数を満たす拡散光源とを備
えて構成している。
The present invention corresponding to claim 8 is characterized by comprising an interference illumination optical system for performing interference illumination on the illumination range of the sample surface. According to a ninth aspect of the present invention, in the interference illumination optical system, a half mirror provided between a light receiving portion of an image input unit and a sample surface, and the image formation on the optical axis bent by the half mirror. And a diffused light source provided at the focal position of the lens and satisfying the numerical aperture of the imaging lens.

【0020】[0020]

【作用】本発明は、以上のような手段を講じたことによ
り次のような作用を奏する。請求項1に対応する本発明
によれば、被検体表面に対して斜めの位置から被検体表
面の所定の照明範囲にパターンと直交する方向の照明光
が照明光学系により照射される。被検体表面で発生した
回折光は所定位置で収束し回折光の分光縞の帯が形成さ
れる。このようにして形成された回折光の帯の中に、例
えば画像入力手段を構成するカメラのレンズ瞳を配置す
れば、被検体の各部の回折光の発生具合を可視化表示で
きる。また、回折光の収束点以外で標本表面の照明範囲
を撮影すれば、その撮影画面中に標本表面の塵,傷等に
より発生する散乱光が現れる。これは暗視野観察と同様
な原理である。従って、1つの照明光学系で回折光と散
乱光の2つの照明法が実現される。
The present invention has the following effects by taking the above measures. According to the present invention corresponding to claim 1, the illumination optical system irradiates the illumination light in the direction orthogonal to the pattern from a position oblique to the subject surface to a predetermined illumination range on the subject surface. The diffracted light generated on the surface of the subject is converged at a predetermined position to form a band of spectral fringes of the diffracted light. By arranging the lens pupil of the camera that constitutes the image input means in the band of diffracted light thus formed, the generation of diffracted light at each part of the subject can be visualized and displayed. Further, if the illumination range on the sample surface is photographed at a point other than the convergent point of the diffracted light, scattered light generated by dust, scratches, etc. on the sample surface appears in the photographing screen. This is the same principle as dark field observation. Therefore, two illumination methods of diffracted light and scattered light can be realized with one illumination optical system.

【0021】請求項2に対応する本発明によれば、照明
光学系が凸レンズで収束光を生成して標本表面の照明範
囲に照射するので、標本表面で発生した回折光が照明光
の集光位置を通って被検体と直交方向に分光縞の帯を作
る。
According to the second aspect of the present invention, since the illumination optical system generates the convergent light by the convex lens and irradiates it to the illumination range on the sample surface, the diffracted light generated on the sample surface condenses the illumination light. A band of spectral fringes is formed in a direction orthogonal to the subject through the position.

【0022】請求項3に対応する本発明によれば、光源
から発した光が照射レンズでアフォーカルな平行光束に
変換されて標本の照明範囲に照射され、標本表面で発生
する回折光が結像レンズで画像入力手段の受光部に収束
させられる。平行光束での照射では回折光は自ら収束し
ない。回折光は照射光の平面内で波長毎に異なる角度で
発生しているので、これらを結像レンズにより収束させ
る必要がある。
According to the present invention corresponding to claim 3, the light emitted from the light source is converted into an afocal parallel light flux by the irradiation lens and is irradiated onto the illumination range of the sample, and the diffracted light generated on the sample surface is combined. It is converged by the image lens on the light receiving portion of the image input means. Diffracted light does not converge by irradiation with a parallel light flux. Since the diffracted light is generated at different angles for each wavelength within the plane of the irradiation light, it is necessary to converge these by the imaging lens.

【0023】請求項4に対応する本発明によれば、回折
光の収束位置に配置された第1の撮像手段により回折光
の帯を含んだ照明範囲の画像が撮影され、回折光の収束
位置近傍に配置された第2の撮像手段により散乱光の情
報含んだ照明範囲の画像が撮影される。
According to the present invention corresponding to claim 4, an image of an illumination range including a band of diffracted light is photographed by the first imaging means arranged at the converged position of diffracted light, and the converged position of diffracted light is obtained. An image of the illumination range including the scattered light information is taken by the second image pickup means arranged in the vicinity.

【0024】請求項5に対応する本発明によれば、被検
体表面に対して斜めの位置から被検体表面の所定の照明
範囲に直線と直交する方向の収束照明光が第1の照明光
学系により照射される。被検体表面で発生した回折光は
自ら収束して所定位置で回折光の帯が形成される。この
ようにして形成された回折光の帯の中に配置した画像入
力手段で被検体の回折光の発生状況が可視化表示され
る。
According to the present invention corresponding to claim 5, the convergent illumination light in the direction orthogonal to the straight line from the position oblique to the surface of the subject to the predetermined illumination range of the subject surface is the first illumination optical system. Is illuminated by. The diffracted light generated on the surface of the subject is converged by itself to form a band of diffracted light at a predetermined position. The generation state of the diffracted light of the subject is visualized and displayed by the image input means arranged in the band of the diffracted light thus formed.

【0025】また、被検体表面に対して斜めの位置から
照明範囲にパターンと斜交する第2の照明光が第2の照
明光学系により照射される。パターンと斜交する方向か
ら標本表面を照明すると、直交する方向から照明する場
合(第1の照明光による場合)に比べて標本表面の塵,
突起等の欠陥の検出効率が高くなる。また、第1の照明
光学系と第2の照明光学系とを交互に駆動すれば、回折
光の収束位置で回折光による画像と散乱光による画像の
両方を取得することができる。
Further, the second illumination optical system irradiates the second illumination light which obliquely intersects the pattern from the position oblique to the surface of the subject to the illumination range. When the sample surface is illuminated from the direction oblique to the pattern, dust on the sample surface, as compared with the case of illuminating from the orthogonal direction (when using the first illumination light),
The efficiency of detecting defects such as protrusions is increased. Further, by alternately driving the first illumination optical system and the second illumination optical system, it is possible to acquire both the image by the diffracted light and the image by the scattered light at the converging position of the diffracted light.

【0026】請求項6に対応する本発明によれば、被検
体表面に対して斜めの位置から被検体表面の所定の照明
範囲にパターンと直交する方向の照明光が第1の照明光
学系により照射される。被検体表面で発生した回折光は
収束光学系により所定位置で収束し回折光の帯が形成さ
れる。このようにして形成された回折光の帯の中に配さ
れた画像入力手段で被検体表面での回折光の発生状況が
可視化表示される。
According to the present invention corresponding to claim 6, illumination light in a direction orthogonal to the pattern from a position oblique to the surface of the subject to a predetermined illumination range of the subject surface is emitted by the first illumination optical system. Is irradiated. The diffracted light generated on the surface of the subject is converged at a predetermined position by the converging optical system to form a band of diffracted light. The generation state of the diffracted light on the surface of the subject is visualized and displayed by the image input means arranged in the band of the diffracted light thus formed.

【0027】また、被検体表面に対して斜めの位置から
照明範囲にパターンと斜交する第2の照明光が第2の照
明光学系により照射される。パターンと斜交する方向か
ら標本表面を照明すると、直交する方向から照明する場
合(第1の照明光による場合)に比べて標本表面の塵,
突起等の欠陥の検出効率が高くなる。また、第1の照明
光学系と第2の照明光学系とを交互に駆動すれば、回折
光の収束位置で回折光による画像と散乱光による画像の
両方を取得することができる。
Further, the second illumination optical system irradiates the second illumination light obliquely intersecting the pattern from the position oblique to the surface of the subject to the illumination range. When the sample surface is illuminated from the direction oblique to the pattern, dust on the sample surface, as compared with the case of illuminating from the orthogonal direction (when using the first illumination light),
The efficiency of detecting defects such as protrusions is increased. Further, by alternately driving the first illumination optical system and the second illumination optical system, it is possible to acquire both the image by the diffracted light and the image by the scattered light at the converging position of the diffracted light.

【0028】請求項7に対応する本発明によれば、第1
の照明光学系の照射レンズにより平行光束となった第1
の照明光が標本の照明範囲に照射され、標本表面で発生
した回折光が収束光学系を構成する結像レンズにより画
像入力手段の受光部に収束させられる。
According to the present invention corresponding to claim 7, the first
1st parallel light flux was formed by the illumination lens of the illumination optical system of
Is irradiated onto the illumination range of the sample, and the diffracted light generated on the sample surface is converged on the light receiving section of the image input means by the imaging lens forming the converging optical system.

【0029】請求項8に対応する本発明によれば、標本
表面の前記照明範囲が干渉照明光学系により照明され
る。被検体が例えばガラス基板とその上に形成された薄
膜との2層構造をしていれば、薄膜の表面反射と裏面反
射との位相差により干渉縞が形成される。この干渉縞が
画像入力手段で撮影される。従って、照明光学系又は第
1の照明光学系と、干渉照明光学系とを切替えてそれぞ
れの照明法での画像を取り込むことにより、回折,散
乱,干渉による各検査が可能になる。
According to the present invention corresponding to claim 8, the illumination range on the sample surface is illuminated by the interference illumination optical system. If the subject has a two-layer structure of, for example, a glass substrate and a thin film formed on the glass substrate, interference fringes are formed due to the phase difference between the front surface reflection and the back surface reflection of the thin film. This interference fringe is photographed by the image input means. Therefore, by switching between the illumination optical system or the first illumination optical system and the interference illumination optical system and capturing the image by each illumination method, each inspection by diffraction, scattering, and interference becomes possible.

【0030】請求項9に対応する本発明によれば、拡散
光源の像がハーフミラーで反射して標本表面の照明範囲
に投影される。ここで、標本表面に照明光を照射するこ
とにより発生した回折光を帯状に集光する理論について
述べる。格子状の配線が刻印された基板表面に配線に対
して直角に斜め上方から照明光を照射すると、0次〜n
次の回折光が図7に示す方向に発生する。このとき回折
光は、同図に示す式に従い、配線のピッチと波長によっ
て回折角が変えられる。
According to the present invention corresponding to claim 9, the image of the diffused light source is reflected by the half mirror and projected onto the illumination range of the sample surface. Here, the theory of converging the diffracted light generated by irradiating the specimen surface with the illumination light into a band will be described. When the illumination light is applied to the surface of the substrate on which the grid-like wiring is engraved at a right angle to the wiring from obliquely above, 0th to n
The next diffracted light is generated in the direction shown in FIG. At this time, the diffraction angle of the diffracted light is changed according to the pitch and the wavelength of the wiring according to the formula shown in FIG.

【0031】入射光が白色光であれば、回折光に対して
図8(a)に示すように白紙を配置すると、その白紙に
は同図(b)に示すように赤〜青の回折光のラインが形
成される。
If the incident light is white light, a white paper is arranged with respect to the diffracted light as shown in FIG. 8A, and red to blue diffracted light is placed on the white paper as shown in FIG. 8B. Lines are formed.

【0032】また、図9(a)に示すように、基板表面
の配線と45度の角度をなす入射光を斜め上方から照射
すると、0次反射光は入射光と基板とで作る平面内にあ
るが回折光は入射光平面ではなくa〜cのように折り曲
げられる。
Further, as shown in FIG. 9A, when incident light forming an angle of 45 degrees with the wiring on the surface of the substrate is irradiated obliquely from above, the 0th-order reflected light falls within a plane formed by the incident light and the substrate. However, the diffracted light is bent like a to c rather than the incident light plane.

【0033】次に、収束光束を基板の配線方向と直角に
斜め上方から入射させる場合について考える。このとき
収束角が15度程度までは回折光と0次反射光が同一平
面近くにあるので、両者のずれを無視して図示すれば図
10,図11のようになる。図11に示すように、0次
反射光の集光点を通って回折光によるナイフエッジ状の
光束ができる。このナイフエッジ状の光束(分光縞の帯
状光束)には照野全体からの回折光が包含されている。
この帯状光束中にTVカメラを配置すれば基板表面の情
報を得ることができる。
Next, let us consider a case where the convergent light beam is made incident obliquely from above at a right angle to the wiring direction of the substrate. At this time, since the diffracted light and the 0th-order reflected light are close to the same plane until the convergence angle is about 15 degrees, the difference between the diffracted light and the 0th-order reflected light is neglected and shown in FIGS. 10 and 11. As shown in FIG. 11, a knife-edge-shaped light beam is formed by the diffracted light through the converging point of the 0th-order reflected light. The knife-edge-shaped luminous flux (spectral fringe band-shaped luminous flux) includes diffracted light from the entire illumination field.
If a TV camera is arranged in this band-shaped light flux, information on the substrate surface can be obtained.

【0034】[0034]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明の第1実施例に係る欠陥検出装置の構成図
である。同図に示す1はステージであり、そのステージ
1に標本Sが載置されている。ステージ1は直交する2
方向へ移動可能なX−Yステージからなる。標本Sは、
ガラス又はシリコン基板上に無数の配線が規則正しく格
子状に刻印された液晶基板又はICウエハである。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a defect detection device according to a first embodiment of the present invention. Reference numeral 1 shown in the figure is a stage, and the sample S is placed on the stage 1. Stage 1 is orthogonal 2
It consists of an XY stage that can move in any direction. Sample S is
It is a liquid crystal substrate or an IC wafer in which innumerable wirings are regularly engraved in a grid pattern on a glass or silicon substrate.

【0035】本実施例の欠陥検出装置は、標本S表面の
斜め上方より標本S表面の照明範囲に配線と直交する方
向から収束する第1の照明光を照射する第1の照明光学
系2を備えている。
The defect detecting apparatus of this embodiment includes a first illumination optical system 2 for irradiating a first illumination light which converges from an obliquely upper side of the surface of the sample S to an illumination range of the surface of the sample S from a direction orthogonal to the wiring. I have it.

【0036】また、標本Sの上方で第1の照明光をけら
ない程度に標本表面から離れた位置であり、かつ標本表
面で発生した回折光が帯状に収束する位置(照射レンズ
13の焦点位置)に第1のTVカメラ3が配置され、そ
の帯状収束位置の近傍であって回折光の収束点外に第2
のTVカメラ4が配置されている。実際には、紙面の垂
直方向の近傍位置に配置される。
The position above the sample S, which is distant from the sample surface to the extent that the first illumination light is not blocked, and the diffracted light generated on the sample surface converges in a band shape (the focal position of the irradiation lens 13). ) Is provided with a first TV camera 3 and a second TV camera 3 is provided near the band-shaped convergence position and outside the convergence point of the diffracted light.
The TV camera 4 of is arranged. Actually, it is arranged at a position near the vertical direction of the paper surface.

【0037】これらTVカメラ3,4のそれぞれの映像
出力端子に画像処理装置5が接続され、この画像処理装
置5にコンピュータ6及び表示手段としてのモニタ7が
接続されている。
An image processing device 5 is connected to the video output terminals of each of the TV cameras 3 and 4, and a computer 6 and a monitor 7 as a display means are connected to the image processing device 5.

【0038】第1の照明光学系2は、発光強度が高くか
つ様々な波長を持つ第1の照明光を発する光源11と、
光源11から発した第1の照明光をアフォーカルな光束
に変換する集光レンズ12と、集光レンズ12から出射
する平行光束を収束光に変換して標本Sの所定の照射範
囲に照射する照射レンズ13とからなる。
The first illumination optical system 2 has a light source 11 which emits first illumination light having high emission intensity and various wavelengths,
A condenser lens 12 that converts the first illumination light emitted from the light source 11 into an afocal light flux, and a parallel light flux that is emitted from the condenser lens 12 is converted into convergent light, which is applied to a predetermined irradiation range of the sample S. The irradiation lens 13 is included.

【0039】なお、光源11として水銀ランプの一種で
あるメタルランプが用いられているものとする。また、
照射レンズ13による照射範囲は大きいほど好ましい
が、照射範囲が大きいとレンズ径が大型化し又は減光量
が増大することから、標本Sが360mm×460mmの大
きさの基板であれば、それを4分割した範囲(180mm
×230mm)となるように集光レンズ12,照射レンズ
13の直径を設定する。具体的には、集光レンズ12,
照射レンズ13の直径を400mm程度に設定し、照射レ
ンズ13の焦点距離を1000mm〜1300mmにする。
これらレンズはガラス性,アクリル性のいずれでもよ
く、またフレネルレンズで代用することもできる。
It is assumed that a metal lamp, which is a kind of mercury lamp, is used as the light source 11. Also,
The larger the irradiation range of the irradiation lens 13, the more preferable. However, if the irradiation range is large, the lens diameter becomes large or the amount of light reduction increases, so if the sample S is a substrate of 360 mm × 460 mm, it is divided into four. Range (180mm
The diameters of the condenser lens 12 and the irradiation lens 13 are set so as to be (230 mm). Specifically, the condenser lens 12,
The diameter of the irradiation lens 13 is set to about 400 mm, and the focal length of the irradiation lens 13 is set to 1000 mm to 1300 mm.
These lenses may be either glass or acrylic, and Fresnel lenses can be substituted.

【0040】標本Sを4分割して検査する場合は、標本
Sの4つの検査位置が自動で照射範囲に移動するように
ステージ1の駆動制御部に予め設定しておく。第1,第
2のTVカメラ3,4に備えられたカメラレンズは、焦
点距離が20mm〜50mm程度のズームレンズからなり、
標本Sの大きさにカメラ視野を合わせたり、標本Sが格
子パターンであることから生じるモアレ縞を消去するの
に用いられる。
When the sample S is divided into four and inspected, the drive control section of the stage 1 is set in advance so that the four inspection positions of the sample S are automatically moved to the irradiation range. The camera lens provided in the first and second TV cameras 3 and 4 is a zoom lens having a focal length of about 20 mm to 50 mm,
It is used to adjust the camera field of view to the size of the sample S, and to eliminate moire fringes caused by the sample S having a lattice pattern.

【0041】次に、以上のように構成された本実施例の
動作について説明する。光源11から発した第1の照明
光は集光レンズ12で平行光束に変換され、さらに照射
レンズ13によって収束光に変換されて標本Sの所定の
照射範囲に入射する。
Next, the operation of this embodiment configured as described above will be described. The first illumination light emitted from the light source 11 is converted into a parallel light flux by the condenser lens 12, further converted into convergent light by the irradiation lens 13, and is incident on a predetermined irradiation range of the sample S.

【0042】このように第1の照明光学系2により収束
光からなる第1の照明光で標本Sが照明されると、図1
0(a)(b)に示すような標本表面に格子状に刻印さ
れた配線パターンによって発生した回折光が照射レンズ
13の焦点位置を通って帯状に収束する。この回折光の
帯状の収束位置に配置された第1のTVカメラ3で、被
検体表面の像を撮影する。この像は被検体表面の各部の
回折光の発生状況を含んでおり、電気信号に変換され処
理装置5へ入力される。
When the first illumination optical system 2 illuminates the sample S with the first illumination light composed of the converged light in this way, as shown in FIG.
The diffracted light generated by the wiring pattern engraved in a lattice shape on the sample surface as shown in 0 (a) and (b) passes through the focal position of the irradiation lens 13 and converges in a band shape. An image of the surface of the subject is captured by the first TV camera 3 arranged at the band-shaped convergence position of the diffracted light. This image contains the generation status of the diffracted light at each part on the surface of the subject and is converted into an electric signal and input to the processing device 5.

【0043】また、標本Sの照射範囲に塵,傷等がある
と、その部位で散乱光が発生する。回折光の帯状収束位
置からずらして配置した第2のTVカメラ4にて照明範
囲を撮影することにより散乱光を含んだ画像が取得され
る。
If dust, scratches, etc. are present in the irradiation area of the sample S, scattered light is generated at that portion. An image including scattered light is acquired by photographing the illumination range with the second TV camera 4 arranged so as to be displaced from the band-shaped converging position of the diffracted light.

【0044】なお、分光縞帯からの像にも傷等からの散
乱光が含まれているが、回折光と散乱光とが重なり合う
ため検出効率が落ちる。第2のTVカメラ4で検出され
た散乱光の情報が含まれた電気信号は画像処理装置5へ
入力される。
Although the image from the spectral fringe band also contains scattered light from scratches and the like, the detection efficiency decreases because the diffracted light and the scattered light overlap. The electric signal including the information on the scattered light detected by the second TV camera 4 is input to the image processing device 5.

【0045】画像処理装置5は、種々の欠陥を検出する
のに適した複数のフィルタリング処理機能と欠陥位置検
出機能とを備えている。画像処理装置5は、第1のTV
カメラ3の出力信号を取り込むと、回折光検査に対応し
たフイルタリング処理を施して欠陥検出を実施する。欠
陥が検出されると欠陥の大小及び明暗を画像処理で求
め、その4ファクターから欠陥の種類を判別する。ま
た、ある処理のみで欠陥として検出されたならば、上記
4つのファクターにその処理内容及び照明法を判定のた
めの新たなファクターとして加えた上で欠陥の種類を判
別する。また第2のTVカメラ4の出力信号を取り込む
と、散乱光検査に対応したフイルタリング処理を施して
欠陥検出を実施する。特に、第2のTVカメラ4の出力
を画像処理することにより欠陥の大小,明暗が検出でき
れば“大”は傷,“小”は塵などと判定できる。この画
像処理結果はコンピュータ6及びモニタ7へ出力され
る。
The image processing apparatus 5 has a plurality of filtering processing functions suitable for detecting various defects and a defect position detecting function. The image processing device 5 is the first TV
When the output signal of the camera 3 is fetched, the filtering process corresponding to the diffracted light inspection is performed to detect the defect. When a defect is detected, the size and brightness of the defect are obtained by image processing, and the type of defect is discriminated from the four factors. If a defect is detected only by a certain process, the content of the process and the illumination method are added as new factors for the determination to the above four factors, and then the type of the defect is determined. Further, when the output signal of the second TV camera 4 is taken in, the filtering process corresponding to the scattered light inspection is performed to detect the defect. In particular, if the size and defect of the defect can be detected by image-processing the output of the second TV camera 4, it can be determined that "large" is a scratch and "small" is dust. The image processing result is output to the computer 6 and the monitor 7.

【0046】モニタ7には、第1,第2のTVカメラ
3,4の原画像や処理画像が表示される。また、モニタ
7上に表示された画像に対してマウス等のポインティン
グデバイスを使って観察者が画面上で発見した欠陥の位
置座標を直接入力することもできる。
On the monitor 7, original images and processed images of the first and second TV cameras 3 and 4 are displayed. Further, the position coordinates of the defect found by the observer on the screen can be directly input to the image displayed on the monitor 7 by using a pointing device such as a mouse.

【0047】コンピュータ6は、このようにして得られ
た画像処理結果を所定の記憶部に保存すると共に、製造
プロセスに欠陥要因をフィードバックするため製造プロ
セスを管理している外部装置へ転送する。
The computer 6 saves the image processing result thus obtained in a predetermined storage unit and transfers it to an external device that manages the manufacturing process in order to feed back the defect factor to the manufacturing process.

【0048】このように本実施例によれば、標本S表面
の斜め上方より標本Sの照明範囲に配線と直交する方向
から収束する第1の照明光を照射すると共に、標本Sの
上方で第1の照明光をけらない程度に標本表面から離れ
た位置であり、かつ標本表面で発生した回折光が帯状に
収束する位置に第1のTVカメラ3を配置し、その帯状
収束位置の近傍であって回折光の収束点外に第2のTV
カメラ4を配置したので、第1のTVカメラ3の出力に
よれば標本表面の照射範囲全体の回折光から欠陥検査を
行うことができ、第2のTVカメラ4の出力によれば散
乱光による欠陥検査が可能になる。従って、1つの照明
光学系2のみで回折光と散乱光とによる2つの欠陥検査
が可能になる。
As described above, according to this embodiment, the first illumination light which converges from the direction orthogonal to the wiring is irradiated onto the illumination range of the sample S from diagonally above the surface of the sample S, and the first illumination light is emitted above the sample S. The first TV camera 3 is arranged at a position far away from the sample surface to the extent that the illumination light of No. 1 is not converged, and the diffracted light generated on the sample surface converges in a band shape. There is a second TV outside the convergence point of the diffracted light.
Since the camera 4 is arranged, the defect inspection can be performed from the diffracted light of the entire irradiation range of the sample surface according to the output of the first TV camera 3, and the scattered light according to the output of the second TV camera 4. Defect inspection becomes possible. Therefore, only one illumination optical system 2 can inspect two defects by diffracted light and scattered light.

【0049】本実施例によれば、第1のTVカメラ3と
第2のTVカメラ4とを近接配置しているので、2つの
TVカメラで捕らえられる標本画像が近似したものとな
り、欠陥座標の認識が容易になる利点がある。
According to this embodiment, since the first TV camera 3 and the second TV camera 4 are arranged close to each other, the sample images captured by the two TV cameras are similar to each other, and the defect coordinates It has the advantage of being easy to recognize.

【0050】なお、上記実施例では2台のTVカメラを
備えているが、1台のTVカメラを回折光の帯状収束位
置と回折光の収束点外とを移動可能に構成すれば、1台
のTVカメラで上記実施例と同等の検査が可能になる。
Although two TV cameras are provided in the above embodiment, if one TV camera is configured to be movable between the band-shaped converging position of diffracted light and the outside of the converging point of diffracted light, one TV camera is provided. With this TV camera, the same inspection as in the above embodiment can be performed.

【0051】次に、図2を参照して本発明の第2実施例
について説明する。本実施例は、光源11から発した第
1の照明光を、照射範囲に対応した径を有する凸レンズ
21でアフォーカルな状態にして、標本表面の斜め上方
から配線と直交する角度で標本表面に入射させる。ま
た、標本Sの真上であって第1の照明光を遮らない位置
に、検査範囲よりも十分に大きい径を有する結像レンズ
22を配置し、結像レンズ22の焦点付近に第1のTV
カメラ3の瞳が来るようにしている。また、第1のTV
カメラ3に近接した紙面と直交した位置に第2のTVカ
メラ4を配置している。なお、第1,第2のTVカメラ
3,4の映像出力端子には第1実施例と同様に画像処理
装置5,コンピュータ6,モニタ7が接続されている。
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the first illumination light emitted from the light source 11 is brought into an afocal state by the convex lens 21 having a diameter corresponding to the irradiation range, and is obliquely above the sample surface and is reflected on the sample surface at an angle orthogonal to the wiring. Make it incident. Further, the imaging lens 22 having a diameter sufficiently larger than the inspection range is arranged at a position directly above the sample S and not blocking the first illumination light, and the first lens is provided near the focus of the imaging lens 22. TV
The eyes of the camera 3 are coming. Also, the first TV
The second TV camera 4 is arranged at a position orthogonal to the paper surface close to the camera 3. The image processing device 5, the computer 6 and the monitor 7 are connected to the video output terminals of the first and second TV cameras 3 and 4 as in the first embodiment.

【0052】このように構成された実施例では、光源1
1から発した第1の照明光が凸レンズ21でアフォーカ
ルな状態にされて標本表面に照射される。また、標本表
面で発生した回折光は平行光束となって結像レンズ22
に入射し、結像レンズ22で収束作用を受けてレンズ2
2の焦点位置に回折光の帯となって集光する。
In the embodiment thus constructed, the light source 1
The first illumination light emitted from No. 1 is made afocal by the convex lens 21 and is irradiated on the sample surface. Further, the diffracted light generated on the surface of the sample becomes a parallel light flux, and the imaging lens 22
Incident on the lens 2 and undergoes a converging action on the imaging lens 22.
A band of diffracted light is condensed at the focal position of 2.

【0053】このように本実施例によれば、第1の照射
光と標本Sとのなす角度が一定となると共に光量ムラが
少なくなるので、このような照明下において取得された
標本像で欠陥検出を行うことにより欠陥検出能力を向上
させることができる。
As described above, according to the present embodiment, the angle between the first irradiation light and the sample S is constant and the unevenness of the light amount is reduced, so that the defect of the sample image acquired under such illumination is reduced. The defect detection capability can be improved by performing the detection.

【0054】次に、図3及び図4を参照して本発明の第
3実施例について説明する。図3は本実施例の光学系の
状態を標本Sの上方から見た図であり、図4は同光学系
を横から見た図である。なお、図2に示す光学要素と同
一機能を有する部分には同一符号を付している。
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a view of the state of the optical system of the present embodiment seen from above the sample S, and FIG. 4 is a view of the same optical system seen from the side. The parts having the same functions as those of the optical element shown in FIG. 2 are designated by the same reference numerals.

【0055】本実施例は、アフォーカル光である第1の
照明光とほぼ同じ照野をもつ一対の第2の照明光A,B
を、標本Sの斜め上方から同じ照野へ、標本表面に刻印
された配線に対して45度近傍の角度で入射する一対の
第2の照明光学系25A,25Bを備えている。第2の
照明光学系25A,25Bは、それぞれ光源23a,2
3bと、光源23a,23bから発した光を第1の照明
光とほぼ同じ領域へ投影するレンズ24a,24bとか
ら構成されている。
In this embodiment, a pair of second illumination lights A and B having substantially the same illumination field as the first illumination light which is an afocal light.
A pair of second illumination optical systems 25A and 25B which are incident from above the sample S to the same illumination field at an angle of about 45 degrees with respect to the wiring engraved on the sample surface. The second illumination optical systems 25A and 25B include light sources 23a and 2B, respectively.
3b and lenses 24a, 24b for projecting the light emitted from the light sources 23a, 23b onto the substantially same region as the first illumination light.

【0056】また、本実施例では、第1の照明光学系に
よる第1の照明光と、第2の照明光学系25A,25B
の各第2の照明光を、それぞれ独立に遮光可能なシャッ
ター機構が設けられている。
Further, in this embodiment, the first illumination light from the first illumination optical system and the second illumination optical systems 25A and 25B are used.
A shutter mechanism that can independently shield each of the second illumination lights is provided.

【0057】なお、結像レンズ22の焦点位置には第1
のTVカメラ3が配置され(第2のTVカメラ4は装備
しない)、第1のTVカメラ3の映像出力端子には画像
処理装置等が接続されているのは第1実施例と同様であ
る。
It should be noted that the first position is at the focal position of the imaging lens 22.
The second TV camera 3 is arranged (the second TV camera 4 is not provided), and the image processing device or the like is connected to the video output terminal of the first TV camera 3 as in the first embodiment. .

【0058】このように構成された本実施例では、第1
の照明光学系による第1の照明光のみで標本を照明する
ことにより第2実施例と同様に回折光照明による欠陥検
査が可能となる。また、第2の照明光学系25A,25
Bによる第2の照明光のみを標本Sに照射すると、標本
表面の配線に対して45度近傍の角度となる第2の照明
光が斜め上方から照射される。第2の照明光学系の角度
(45度)は、実験結果より最も検出能力の高い位置で
あったことから決定した角度である。
In the present embodiment having such a configuration, the first
By illuminating the sample only with the first illumination light from the illumination optical system, the defect inspection by the diffracted light illumination can be performed as in the second embodiment. In addition, the second illumination optical system 25A, 25
When the sample S is irradiated with only the second illumination light from B, the second illumination light having an angle of about 45 degrees with respect to the wiring on the sample surface is emitted obliquely from above. The angle (45 degrees) of the second illumination optical system is the angle determined from the position having the highest detection ability as a result of the experiment.

【0059】ここで、標本表面の塵や突起は、照明光を
標本の配線とほぼ平行にして照射した方がより効率良く
検出できる。この理由は標本表面の塵や突起が標本表面
から突出しているからである。しかし、標本表面から凹
んでいる欠陥は、配線に対して平行照明ではなく、むし
ろ45度〜60度の角度があったほうが効率良く検出で
き、かつ標本表面の塵や突起は検出効率は多少落ちるが
検出可能なレベルにある。
Here, dust and projections on the surface of the sample can be detected more efficiently by illuminating the illumination light substantially parallel to the wiring of the sample. The reason for this is that dust and projections on the surface of the sample protrude from the surface of the sample. However, a defect that is recessed from the sample surface can be detected efficiently if the angle is 45 ° to 60 ° rather than parallel illumination with respect to the wiring, and the detection efficiency of dust and protrusions on the sample surface is somewhat reduced. Is at a detectable level.

【0060】従って、最も検出効率の高い配線に対して
45度近傍の角度で、第2の照明光による散乱光照明が
実施される。このような散乱光照明により発生した散乱
光は結像レンズ22により固定されている第1のTVカ
メラ3上に収束され、画像処理装置において散乱光照明
に対応した欠陥検査が行われる。なお、第2の照明光学
系25A,25Bの双方で同時に散乱光照明してもよい
し、交互に散乱光照明するようにしても良い。
Therefore, the scattered light illumination by the second illumination light is performed at an angle near 45 degrees with respect to the wiring having the highest detection efficiency. The scattered light generated by such scattered light illumination is converged on the first TV camera 3 fixed by the imaging lens 22, and a defect inspection corresponding to the scattered light illumination is performed in the image processing device. Note that both the second illumination optical systems 25A and 25B may simultaneously illuminate the scattered light, or may alternately illuminate the scattered light.

【0061】このように本実施例によれば、第2の照明
光学系25A,25Bにより、標本表面から凹んでいる
欠陥に対して最も検出効率が高くなる配線に対して45
度近傍の角度で第2の照明光A,Bを照射するようにし
たので、標本表面から凹んでいる欠陥であっても高い検
出効率を実現することができる。
As described above, according to the present embodiment, the second illumination optical systems 25A and 25B provide 45 for the wiring which has the highest detection efficiency for the defect recessed from the sample surface.
Since the second illumination lights A and B are emitted at an angle close to 60 degrees, high detection efficiency can be realized even for a defect that is recessed from the sample surface.

【0062】次に、図5を参照して本発明の第4実施例
について説明する。なお、図2に示す光学要素と同一機
能を有する部分には同一符号を付している。本実施例
は、図2に示す第1の照明光学系20と共に、標本Sを
干渉照明する第2の照明光学系30を備えている。第2
の照明光学系30は、結像レンズ22と第1のTVカメ
ラ3との間に所定角度で配置されたハーフミラー31
と、ハーフミラー31で折り曲げられた光軸上の結像レ
ンズ22の共焦点位置に配置された直径10mmの開口を
有する開口部32と、開口部32の後側に配置された干
渉光源33とを備えている。第1の照明光学系20の光
源11と第2の照明光学系30の光源33はそれぞれ独
立に点灯制御可能になっている。その他の構成は図2の
第2実施例と同様である。また、本実施例で対象となる
被検体は、ガラス基板の上面に薄膜が形成されているも
のとする。
Next, a fourth embodiment of the present invention will be described with reference to FIG. The parts having the same functions as those of the optical element shown in FIG. 2 are designated by the same reference numerals. The present embodiment includes a first illumination optical system 20 shown in FIG. 2 and a second illumination optical system 30 for interference illumination of the sample S. Second
The illumination optical system 30 of the half mirror 31 is disposed between the imaging lens 22 and the first TV camera 3 at a predetermined angle.
An opening 32 having an opening with a diameter of 10 mm arranged at the confocal position of the imaging lens 22 on the optical axis bent by the half mirror 31, and an interference light source 33 arranged behind the opening 32. Is equipped with. The light source 11 of the first illumination optical system 20 and the light source 33 of the second illumination optical system 30 can be independently turned on and controlled. The other structure is similar to that of the second embodiment shown in FIG. Further, the subject to be examined in the present embodiment has a thin film formed on the upper surface of the glass substrate.

【0063】本実施例においては、第1の照明光学系2
0の光源11を消して、第2の照明光学系30だけで照
明すると、干渉光源33で発した第2の照明光が結像レ
ンズ22の共焦点位置に置かれた開口部33の開口を通
ってハーフミラー31で結像レンズ22側へ反射され
る。そして、第2の照明光が結像レンズ22で平行光束
とされて標本Sに照射される。標本面では、薄膜の表面
で反射する表面反射成分と薄膜の裏面(ガラス基板の表
面)で反射する裏面反射成分とが発生する。この2つの
成分が両者の位相差に応じて干渉縞を形成する。その結
果、第1のTVカメラ3には標本面の干渉パターンが投
影される。その干渉パターンが第1のTVカメラ3で撮
影されて画像処理装置へ入力される。上述したように干
渉パターンを利用すれば薄膜の膜厚ムラが検出できるの
で、画像処理装置では膜厚ムラ検出に対応した画像処理
を施して膜厚ムラの検出を行う。
In this embodiment, the first illumination optical system 2
When the light source 11 of 0 is turned off and illumination is performed only by the second illumination optical system 30, the second illumination light emitted by the interference light source 33 causes the opening of the opening 33 placed at the confocal position of the imaging lens 22. It is reflected by the half mirror 31 toward the imaging lens 22 side. Then, the second illumination light is made into a parallel light flux by the image forming lens 22 and is applied to the sample S. On the sample surface, a front surface reflection component reflected on the surface of the thin film and a back surface reflection component reflected on the back surface of the thin film (front surface of the glass substrate) are generated. The two components form an interference fringe according to the phase difference between the two components. As a result, the interference pattern of the sample surface is projected on the first TV camera 3. The interference pattern is captured by the first TV camera 3 and input to the image processing apparatus. As described above, since the film thickness unevenness of the thin film can be detected by using the interference pattern, the image processing apparatus performs image processing corresponding to the film thickness unevenness detection to detect the film thickness unevenness.

【0064】また、第2の照明光学系30の光源33を
消して、第1の照明光学系20だけで照明すれば、前述
した第2実施例と同様に回折光検査が実施できる。この
ように本実施例によれば、第1の照明光学系20による
照明で回折光及び散乱光による欠陥検査を行うことがで
き、第2の照明光学系30による照明で干渉による欠陥
検査ができる。従って、回折,干渉,散乱による表面検
査の結果と使用照明法とから精度の高い欠陥分類を行う
ことができ、また人間による目視観察により近い判断機
能を実現することができる。
Further, if the light source 33 of the second illumination optical system 30 is turned off and illumination is performed only by the first illumination optical system 20, the diffracted light inspection can be carried out as in the second embodiment described above. As described above, according to the present embodiment, the defect inspection by the diffracted light and the scattered light can be performed by the illumination by the first illumination optical system 20, and the defect inspection by the interference can be performed by the illumination by the second illumination optical system 30. . Therefore, it is possible to perform highly accurate defect classification based on the result of the surface inspection due to diffraction, interference, and scattering and the illumination method used, and it is possible to realize a judgment function closer to human visual observation.

【0065】図6は、第4実施例の変形例を示してい
る。この変形例は、第2の照明光学系40を、干渉光源
41と、この干渉光源41から発した第2の照明光をア
フォーカルな状態の平行光束にする凸レンズ42と、標
本Sと結像レンズ22との間に配置され凸レンズ42か
ら入射する第2の照明光を標本S側へ光軸と平行に反射
させるハーフミラー43とを備えている。
FIG. 6 shows a modification of the fourth embodiment. In this modified example, the second illumination optical system 40 includes an interference light source 41, a convex lens 42 for converting the second illumination light emitted from the interference light source 41 into a parallel light flux in an afocal state, a sample S and an image. A half mirror 43 is provided between the lens 22 and the half mirror 43 that reflects the second illumination light incident from the convex lens 42 toward the sample S side in parallel with the optical axis.

【0066】このような変形例によれば、第2の照明光
の結像レンズ22での表面反射が第1のTVカメラ3に
入射しなくなるといった利点がある。なお、前述した図
3の第3実施例では、第1の照明光学系からアフォーカ
ルな状態の第1の照明光を照射しているが、図1に示す
第1の照明光学系2のように、ある角度で収束する光束
を第1の照明光として使用することができる。
According to such a modification, there is an advantage that the surface reflection of the second illumination light on the imaging lens 22 does not enter the first TV camera 3. In the third embodiment of FIG. 3 described above, the first illumination optical system irradiates the first illumination light in an afocal state, but unlike the first illumination optical system 2 shown in FIG. In addition, the light flux that converges at a certain angle can be used as the first illumination light.

【0067】図12は、本発明の第5実施例に係る欠陥
検出装置の光学系の構成を示す図である。本実施例は、
第1実施例で説明した第1の照明光学系2と、図3の第
3実施例で説明した第2の照明光学系25とを組み合わ
せた構成を有している。このような第1,第2の照明光
学系を備えた場合、収束光学系(結像レンズ22)は不
要である。本実施例によれば、収束光学系を備えること
なく、第3実施例と同様の効果を奏することができる。
FIG. 12 is a view showing the arrangement of the optical system of the defect detecting apparatus according to the fifth embodiment of the present invention. In this example,
It has a configuration in which the first illumination optical system 2 described in the first example and the second illumination optical system 25 described in the third example of FIG. 3 are combined. When such first and second illumination optical systems are provided, the converging optical system (imaging lens 22) is unnecessary. According to this embodiment, the same effect as that of the third embodiment can be obtained without providing the converging optical system.

【0068】また、以上の説明では被検体の表面に刻印
された配線パターンとして格子状のものを説明したが、
本発明は回折光を生じさせれば良いので、複数本の直線
が一方向に連続するようなパターンであっもよい。本発
明は上記実施例に限定されるものではなく、本発明の要
旨を逸脱しない範囲内で種々変形実施可能である。
In the above explanation, the wiring pattern imprinted on the surface of the subject has been described as a grid pattern.
Since the present invention only needs to generate diffracted light, it may be a pattern in which a plurality of straight lines are continuous in one direction. The present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.

【0069】[0069]

【発明の効果】以上詳記したように本発明によれば、複
数の照明法を1つの光学系で実現でき、欠陥種別を正確
に分類することができ、人間の目視観察による検査能力
と同様の判断機能を実現できる欠陥検出装置を提供でき
る。
As described in detail above, according to the present invention, a plurality of illumination methods can be realized by one optical system, defect types can be accurately classified, and the inspection ability is the same as that of human visual observation. It is possible to provide a defect detection device that can realize the above judgment function.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る欠陥検出装置の構成
図である。
FIG. 1 is a configuration diagram of a defect detection apparatus according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る欠陥検出装置の光学
系の構成図である。
FIG. 2 is a configuration diagram of an optical system of a defect detection device according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係る欠陥検出装置の光学
系の上面図である。
FIG. 3 is a top view of an optical system of a defect detection device according to a third exemplary embodiment of the present invention.

【図4】本発明の第3実施例に係る欠陥検出装置の光学
系の側面図である。
FIG. 4 is a side view of an optical system of a defect detecting device according to a third embodiment of the present invention.

【図5】本発明の第4実施例に係る欠陥検出装置の光学
系の側面図である。
FIG. 5 is a side view of an optical system of a defect detecting device according to a fourth embodiment of the present invention.

【図6】第4実施例に係る欠陥検出装置の変形例の光学
系の側面図である。
FIG. 6 is a side view of an optical system of a modified example of the defect detection apparatus according to the fourth example.

【図7】格子状の配線が刻印された基板表面に光を入射
した際の0次反射光及びn次回折光の発生方向を示す図
である。
FIG. 7 is a diagram showing generation directions of 0th-order reflected light and n-th order diffracted light when light is incident on the surface of a substrate on which grid-like wiring is engraved.

【図8】回折光によるライン形成を示す図である。FIG. 8 is a diagram showing line formation by diffracted light.

【図9】基板表面の配線に斜交する入射光に対する回折
光発生方向を示す図である。
FIG. 9 is a diagram showing a diffracted light generation direction with respect to incident light obliquely intersecting the wiring on the substrate surface.

【図10】照射レンズ,レンズ照野及び0次反射光の集
光点との関係を示す図である。
FIG. 10 is a diagram showing a relationship between an irradiation lens, a lens illumination field, and a converging point of zero-order reflected light.

【図11】図10の光学配置を横から見た状態を示す図
である。
11 is a diagram showing a state of the optical arrangement of FIG. 10 as viewed from the side.

【図12】本発明の第5実施例に係る欠陥検出装置の光
学系の上面図である。
FIG. 12 is a top view of an optical system of a defect detection device according to a fifth exemplary embodiment of the present invention.

【図13】種々の照明法と観察者の目の位置とを示す図
である。
FIG. 13 is a diagram showing various illumination methods and positions of eyes of an observer.

【符号の説明】[Explanation of symbols]

1…ステージ、2,20…第1の照明光学系、3…第1
のTVカメラ、4…第2のTVカメラ、5…画像処理装
置、6…コンピュータ、7…モニタ、11,23…光
源、12…凸レンズ、13…照射レンズ、22…結像レ
ンズ、25…第2の照明光学系、30…干渉照明光学
系。
1 ... Stage, 2, 20 ... First illumination optical system, 3 ... First
TV camera, 4 ... Second TV camera, 5 ... Image processing device, 6 ... Computer, 7 ... Monitor, 11, 23 ... Light source, 12 ... Convex lens, 13 ... Irradiation lens, 22 ... Imaging lens, 25 ... 2 illumination optical system, 30 ... Interference illumination optical system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // G06T 7/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location // G06T 7/00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方向に連続する複数の直線
が形成された被検体表面に照明光を照射して当該被検体
の欠陥を検出する欠陥検出装置において、 被検体表面に対して斜めの位置から被検体表面の所定の
照明範囲に前記直線と直交する方向の照明光を照射し、
被検体表面で発生した回折光を所定位置に収束させる照
明光学系と、 前記照明光をけらない程度に前記被検体表面から離れた
位置であり、かつ前記回折光の収束位置及び又は回折光
の収束点以外の位置から前記照明範囲を撮影する画像入
力手段と、 前記画像入力手段から出力される照明範囲の画像を可視
化する表示手段とを具備したことを特徴とする欠陥検出
装置。
1. A defect detection device for illuminating an object surface on which a plurality of straight lines continuous in at least one direction are formed to detect a defect of the object, the position being oblique to the object surface. From a predetermined illumination range on the surface of the subject from which the illumination light in the direction orthogonal to the straight line is irradiated,
An illumination optical system that converges the diffracted light generated on the subject surface to a predetermined position, and is a position that is far from the subject surface to the extent that the illumination light is not offset, and the convergent position of the diffracted light and / or the diffracted light. A defect detecting apparatus comprising: an image input unit that captures the illumination range from a position other than a convergence point; and a display unit that visualizes an image of the illumination range output from the image input unit.
【請求項2】 前記照明光学系は、光源と、この光源か
ら発した光を収束光に変換して前記照明範囲に照射する
凸レンズとを備えていることを特徴とする請求項1記載
の欠陥検出装置。
2. The defect according to claim 1, wherein the illumination optical system includes a light source and a convex lens that converts the light emitted from the light source into convergent light and irradiates the converged light to the illumination range. Detection device.
【請求項3】 前記照明光学系を、光源と、この光源か
ら発した光をアフォーカルな平行光束に変換して前記照
明範囲に照射する照射レンズとを備えた構成とし、 前記画像入力手段と前記被検体表面との間であって前記
照明光をけらない程度に被検体表面から離れた位置に前
記照明範囲に対応した径を有し照明範囲から入射する平
行光束を前記画像入力手段の受光部に収束させる結像レ
ンズを配置したことを特徴とする請求項1記載の欠陥検
出装置。
3. The illumination optical system comprises: a light source; and an illumination lens for converting light emitted from the light source into an afocal parallel light flux and irradiating the illumination range with the image input means. A parallel light flux having a diameter corresponding to the illumination range and incident from the illumination range at a position apart from the subject surface and far from the subject surface so as not to block the illumination light is received by the image input means. The defect detecting apparatus according to claim 1, further comprising an image forming lens for converging the light on said portion.
【請求項4】 前記画像入力手段は、回折光の収束位置
に配置された第1の撮像手段と、前記回折光の収束位置
近傍に配置された第2の撮像手段とを備えたことを特徴
とする請求項1記載の欠陥検出装置。
4. The image input means includes a first image pickup means arranged at a convergent position of the diffracted light and a second image pickup means arranged near the convergent position of the diffracted light. The defect detection device according to claim 1.
【請求項5】 少なくとも一方向に連続する複数の直線
が形成された被検体表面に照明光を照射して当該被検体
の欠陥を検出する欠陥検出装置において、 光源と、この光源から発した光を収束光する凸レンズと
を備え、被検体表面に対して斜めの位置から被検体表面
の所定の照明範囲に前記直線と直交する方向の第1の照
明光を照射する第1の照明光学系と、 被検体表面に対して斜めの位置から前記照明範囲に前記
直線と斜交する第2の照明光を照射する第2の照明光学
系と、 前記収束光学系による回折光の収束位置及び又は回折光
の収束位置以外の位置から前記照明範囲を撮影する画像
入力手段と、 前記画像入力手段から出力される照明範囲の画像を可視
化する表示手段とを具備したことを特徴とする欠陥検出
装置。
5. A defect detection apparatus for illuminating a surface of a subject, on which a plurality of straight lines continuous in at least one direction are formed, to detect a defect in the subject, comprising: a light source; and light emitted from the light source. A first illuminating optical system for irradiating first illumination light in a direction orthogonal to the straight line to a predetermined illumination range on the subject surface from a position oblique to the subject surface, A second illumination optical system for irradiating the illumination range with a second illumination light obliquely intersecting the straight line from a position oblique to the surface of the subject; and a convergent position and / or diffraction of the diffracted light by the converging optical system. A defect detecting apparatus comprising: an image input unit that captures the illumination range from a position other than a light convergence position; and a display unit that visualizes an image of the illumination range output from the image input unit.
【請求項6】 少なくとも一方向に連続する複数の直線
が形成された被検体表面に照明光を照射して当該被検体
の欠陥を検出する欠陥検出装置において、 被検体表面に対して斜めの位置から被検体表面の所定の
照明範囲に前記直線と直交する方向の第1の照明光を照
射する第1の照明光学系と、 被検体表面に対して斜めの位置から前記照明範囲に前記
直線と斜交する第2の照明光を照射する第2の照明光学
系と、 前記第1,第2の照明光をけらない程度に前記被検体表
面から離れた位置に配置され、前記第1の照明光により
被検体表面で発生した回折光を収束させる収束光学系
と、 前記収束光学系による回折光の収束位置及び又は回折光
の収束位置以外の位置から前記照明範囲を撮影する画像
入力手段と、 前記画像入力手段から出力される照明範囲の画像を可視
化する表示手段とを具備したことを特徴とする欠陥検出
装置。
6. A defect detection apparatus for illuminating an object surface on which a plurality of straight lines continuous in at least one direction are formed to detect a defect of the object, the position being oblique to the object surface. A first illumination optical system for irradiating a predetermined illumination range on the surface of the subject with a first illumination light in a direction orthogonal to the straight line; and a straight line for the illumination range from a position oblique to the surface of the subject. A second illumination optical system that emits obliquely intersecting second illumination light; and a first illumination that is arranged at a position far from the subject surface to the extent that the first and second illumination lights are not obstructed. Converging optical system for converging the diffracted light generated on the subject surface by light, image input means for photographing the illumination range from a position other than the converging position of the diffracted light by the converging optical system and the converging position of the diffracted light, Output from the image input means An image of the bright range defect detection apparatus characterized by comprising a display means for visualizing.
【請求項7】 前記第1の照明光学系を、光源と、この
光源から発した光をアフォーカルな平行光束に変換して
前記照明範囲に照射する照射レンズとを備えた構成と
し、 前記収束光学系を、前記画像入力手段と前記被検体表面
との間であって前記第1,第2の照明光をけらない程度
に被検体表面から離れた位置に配置され、前記照明範囲
に対応した口径を有し照明範囲から入射する平行光束を
前記画像入力手段の受光部に収束させる結像レンズを備
えた構成としたことを特徴とする請求項6記載の欠陥検
出装置。
7. The first illumination optical system comprises a light source and an irradiation lens for converting light emitted from the light source into an afocal parallel light flux and irradiating the light to the illumination range. An optical system is arranged between the image input means and the surface of the subject and at a position far from the subject surface to the extent that the first and second illumination lights are not blocked, and corresponds to the illumination range. 7. The defect detecting apparatus according to claim 6, further comprising an image forming lens having a diameter and converging a parallel light flux incident from an illumination range to a light receiving portion of the image input unit.
【請求項8】 標本表面の前記照明範囲を干渉照明する
干渉照明光学系を備えたことを特徴とする請求項3又は
請求項7のいずれかに記載の欠陥検出装置。
8. The defect detection apparatus according to claim 3, further comprising an interference illumination optical system for performing interference illumination on the illumination range on the sample surface.
【請求項9】 前記干渉照明光学系は、画像入力手段の
受光部と標本表面との間に設けられたハーフミラーと、
このハーフミラーで折り曲げた光軸上における前記結像
レンズの焦点位置に設けられ前記結像レンズの開口数を
満たす拡散光源とを備えて構成されることを特徴とする
請求項8記載の欠陥検出装置。
9. The interference illumination optical system includes a half mirror provided between a light receiving section of an image input unit and a sample surface,
9. The defect detection according to claim 8, further comprising a diffused light source provided at a focal position of the imaging lens on an optical axis bent by the half mirror and satisfying a numerical aperture of the imaging lens. apparatus.
JP20888694A 1994-09-01 1994-09-01 Defect detection device Expired - Fee Related JP3483948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20888694A JP3483948B2 (en) 1994-09-01 1994-09-01 Defect detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20888694A JP3483948B2 (en) 1994-09-01 1994-09-01 Defect detection device

Publications (2)

Publication Number Publication Date
JPH0875661A true JPH0875661A (en) 1996-03-22
JP3483948B2 JP3483948B2 (en) 2004-01-06

Family

ID=16563755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20888694A Expired - Fee Related JP3483948B2 (en) 1994-09-01 1994-09-01 Defect detection device

Country Status (1)

Country Link
JP (1) JP3483948B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729343A (en) * 1995-11-16 1998-03-17 Nikon Precision Inc. Film thickness measurement apparatus with tilting stage and method of operation
US5777729A (en) * 1996-05-07 1998-07-07 Nikon Corporation Wafer inspection method and apparatus using diffracted light
JP2001236493A (en) * 2000-02-23 2001-08-31 Nikon Corp Visual inspection apparatus
JP2001519021A (en) * 1997-03-31 2001-10-16 マイクロサーム・エルエルシー Optical inspection module and method for detecting particles and defects on a substrate in an integrated process tool
US6399957B1 (en) 1998-11-30 2002-06-04 Nikon Corporation Method and apparatus for inspecting appearance of objects by irradiating illumination light on the objects
US6512578B1 (en) 1997-07-10 2003-01-28 Nikon Corporation Method and apparatus for surface inspection
US6512579B2 (en) 2000-02-15 2003-01-28 Nikon Corporation Defect inspection apparatus
US6563577B2 (en) 2000-04-21 2003-05-13 Nikon Corporation Defect testing apparatus and defect testing method
US6646735B2 (en) 2000-09-13 2003-11-11 Nikon Corporation Surface inspection apparatus and surface inspection method
US6654113B2 (en) 2000-09-13 2003-11-25 Nikon Corporation Surface inspection apparatus
KR101295463B1 (en) * 2010-12-01 2013-08-16 가부시키가이샤 히다치 하이테크놀로지즈 Method of evaluating substrate quality and apparatus thereof
KR101302881B1 (en) * 2010-10-05 2013-09-10 가부시키가이샤 히다치 하이테크놀로지즈 Testing method and apparatus of polycrystalline silicon thin film
WO2014089377A1 (en) * 2012-12-06 2014-06-12 Seagate Technology Llc Reflective surfaces for surface features of an article
US9036142B2 (en) 2012-05-09 2015-05-19 Seagate Technology Llc Surface features mapping
US9201019B2 (en) 2013-05-30 2015-12-01 Seagate Technology Llc Article edge inspection
US9212900B2 (en) 2012-08-11 2015-12-15 Seagate Technology Llc Surface features characterization
US9217715B2 (en) 2013-05-30 2015-12-22 Seagate Technology Llc Apparatuses and methods for magnetic features of articles
US9274064B2 (en) 2013-05-30 2016-03-01 Seagate Technology Llc Surface feature manager
US9297751B2 (en) 2012-10-05 2016-03-29 Seagate Technology Llc Chemical characterization of surface features
US9297759B2 (en) 2012-10-05 2016-03-29 Seagate Technology Llc Classification of surface features using fluorescence
US9377394B2 (en) 2012-10-16 2016-06-28 Seagate Technology Llc Distinguishing foreign surface features from native surface features
US9513215B2 (en) 2013-05-30 2016-12-06 Seagate Technology Llc Surface features by azimuthal angle
CN111273466A (en) * 2020-01-20 2020-06-12 凌云光技术集团有限责任公司 Display screen surface defect detecting system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729343A (en) * 1995-11-16 1998-03-17 Nikon Precision Inc. Film thickness measurement apparatus with tilting stage and method of operation
US5777729A (en) * 1996-05-07 1998-07-07 Nikon Corporation Wafer inspection method and apparatus using diffracted light
JP2001519021A (en) * 1997-03-31 2001-10-16 マイクロサーム・エルエルシー Optical inspection module and method for detecting particles and defects on a substrate in an integrated process tool
US6512578B1 (en) 1997-07-10 2003-01-28 Nikon Corporation Method and apparatus for surface inspection
US6399957B1 (en) 1998-11-30 2002-06-04 Nikon Corporation Method and apparatus for inspecting appearance of objects by irradiating illumination light on the objects
US6512579B2 (en) 2000-02-15 2003-01-28 Nikon Corporation Defect inspection apparatus
JP2001236493A (en) * 2000-02-23 2001-08-31 Nikon Corp Visual inspection apparatus
US6563577B2 (en) 2000-04-21 2003-05-13 Nikon Corporation Defect testing apparatus and defect testing method
US6646735B2 (en) 2000-09-13 2003-11-11 Nikon Corporation Surface inspection apparatus and surface inspection method
US6654113B2 (en) 2000-09-13 2003-11-25 Nikon Corporation Surface inspection apparatus
KR101302881B1 (en) * 2010-10-05 2013-09-10 가부시키가이샤 히다치 하이테크놀로지즈 Testing method and apparatus of polycrystalline silicon thin film
KR101295463B1 (en) * 2010-12-01 2013-08-16 가부시키가이샤 히다치 하이테크놀로지즈 Method of evaluating substrate quality and apparatus thereof
US9036142B2 (en) 2012-05-09 2015-05-19 Seagate Technology Llc Surface features mapping
US9488593B2 (en) 2012-05-09 2016-11-08 Seagate Technology Llc Surface features mapping
US9212900B2 (en) 2012-08-11 2015-12-15 Seagate Technology Llc Surface features characterization
US9810633B2 (en) 2012-10-05 2017-11-07 Seagate Technology Llc Classification of surface features using fluoresence
US9766179B2 (en) 2012-10-05 2017-09-19 Seagate Technology Llc Chemical characterization of surface features
US9297751B2 (en) 2012-10-05 2016-03-29 Seagate Technology Llc Chemical characterization of surface features
US9297759B2 (en) 2012-10-05 2016-03-29 Seagate Technology Llc Classification of surface features using fluorescence
US9377394B2 (en) 2012-10-16 2016-06-28 Seagate Technology Llc Distinguishing foreign surface features from native surface features
US9217714B2 (en) 2012-12-06 2015-12-22 Seagate Technology Llc Reflective surfaces for surface features of an article
WO2014089377A1 (en) * 2012-12-06 2014-06-12 Seagate Technology Llc Reflective surfaces for surface features of an article
US9274064B2 (en) 2013-05-30 2016-03-01 Seagate Technology Llc Surface feature manager
US9488594B2 (en) 2013-05-30 2016-11-08 Seagate Technology, Llc Surface feature manager
US9217715B2 (en) 2013-05-30 2015-12-22 Seagate Technology Llc Apparatuses and methods for magnetic features of articles
US9513215B2 (en) 2013-05-30 2016-12-06 Seagate Technology Llc Surface features by azimuthal angle
US9201019B2 (en) 2013-05-30 2015-12-01 Seagate Technology Llc Article edge inspection
CN111273466A (en) * 2020-01-20 2020-06-12 凌云光技术集团有限责任公司 Display screen surface defect detecting system
CN111273466B (en) * 2020-01-20 2022-06-17 凌云光技术股份有限公司 Display screen surface defect detecting system

Also Published As

Publication number Publication date
JP3483948B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
JP3483948B2 (en) Defect detection device
JP3458139B2 (en) Equipment for optical inspection of patterned substrates
JP2796316B2 (en) Defect or foreign matter inspection method and apparatus
JP3379805B2 (en) Surface defect inspection equipment
JP3744966B2 (en) Manufacturing method of semiconductor substrate
JP2001013085A (en) Flow inspection apparatus
JPH0961365A (en) Surface defect inspecting device
JP3936959B2 (en) Pattern defect inspection method and apparatus
KR20120092181A (en) Defect inspection method and device thereof
JP2008058248A (en) Diffracted light detector and inspection system
EP0079439B1 (en) Optical system for oblique viewing
JP3519813B2 (en) Defect detection method and defect detection device
JP2000046532A (en) Pattern inspecting device
JP2007003376A (en) Irregularity inspection device of cyclic pattern and cyclic pattern imaging method
JP2004144764A (en) Method and apparatus for inspecting defects
JP3659952B2 (en) Surface defect inspection equipment
JP3780292B2 (en) Surface defect inspection equipment
JP2653853B2 (en) Inspection method of periodic pattern
JPS6313446Y2 (en)
CN110261387A (en) Optical system, lighting module and automated optical inspection system
JPS61122648A (en) Defect detector
JPH11118668A (en) Method and apparatus for inspecting defect of object
JP3583772B2 (en) Surface defect inspection equipment
JP3659954B2 (en) Substrate defect inspection system
JP2006208281A (en) Periodic pattern irregularity inspection device, and periodic pattern imaging method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees