JPH0875303A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0875303A
JPH0875303A JP6221479A JP22147994A JPH0875303A JP H0875303 A JPH0875303 A JP H0875303A JP 6221479 A JP6221479 A JP 6221479A JP 22147994 A JP22147994 A JP 22147994A JP H0875303 A JPH0875303 A JP H0875303A
Authority
JP
Japan
Prior art keywords
heat exchange
heat
supply chamber
medium supply
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6221479A
Other languages
Japanese (ja)
Other versions
JP3460865B2 (en
Inventor
Tadao Totsuka
忠男 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22147994A priority Critical patent/JP3460865B2/en
Publication of JPH0875303A publication Critical patent/JPH0875303A/en
Application granted granted Critical
Publication of JP3460865B2 publication Critical patent/JP3460865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

PURPOSE: To improve the heat exchange effect and prevent an electronic heat exchanging element from being broken down due to thermal deformation by a method wherein the cooling water is turned into a turbulent flow to lessen the differential temperature between an inlet and an outlet. CONSTITUTION: A cooling member 2 and a heat releasing member 3 are respectively attached firmly on cooling and heat releasing faces of an electronic cooling element 1 using a Peltier element. A base member 4 is attached on the heat releasing member 3 and a heat exchange medium chamber 11 is formed between the two members. The heat exchange medium chamber 11 is square, and the current of cooling water supplied along the inner walls of the heat exchange medium chamber 11 is turned in different directions by corner parts that make up a turbulent flow generator, so that the cooling water is turned into a turbulent flow and discharged from a medium outlet 13 provided in the middle of the heat exchange medium chamber 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器に関する。FIELD OF THE INVENTION The present invention relates to heat exchangers.

【0002】[0002]

【従来の技術】従来、熱交換装置としては種々のタイプ
のものが知られているが、その一つとして、ペルチェ効
果を利用した電子冷却素子により冷却する電子冷却装置
が知られている。
2. Description of the Related Art Conventionally, various types of heat exchange devices are known, and as one of them, an electronic cooling device for cooling with an electronic cooling element utilizing the Peltier effect is known.

【0003】この種の電子冷却装置は、図14に示すよ
うに異種の導体、またはn型,p型の半導体を接合して
構成した熱電変換素子を電子冷却素子Cとして用い、そ
の接合部A,Bに直流を流すと、一方の接合面Aで吸熱
し、他方の接合面Bで放熱する吸・放熱現象(ペルチェ
効果)を利用したもので、その熱量は接合部の温度
(T)と電流(I)に比例し、電子冷却素子Cの吸熱面
に伝熱的に接合固定した冷却体の温度を下げるものであ
る。電子冷却素子に流れる電流の向きを逆にした場合
は、接合面Aが発熱面に、接合面Bが吸熱面を形成す
る。このような電子冷却装置としては従来から実開平4
−70122号公報、実開平1−65632号公報等に
見られるように種々提案されている。
In this type of electronic cooling device, as shown in FIG. 14, a thermoelectric conversion element formed by joining different kinds of conductors or n-type and p-type semiconductors is used as an electronic cooling element C, and its joint portion A is used. , B, a heat absorption and heat dissipation phenomenon (Peltier effect) of absorbing heat at one joint surface A and radiating heat at the other joint surface B is used. The amount of heat is equal to the temperature (T) of the joint portion. It is intended to lower the temperature of the cooling body which is heat transfer-bonded to the heat absorbing surface of the electronic cooling element C in proportion to the electric current (I). When the direction of the current flowing through the electronic cooling element is reversed, the joint surface A forms the heat generating surface and the joint surface B forms the heat absorbing surface. As such an electronic cooling device, conventionally, an actual flatbed 4
Various proposals have been made as seen in, for example, Japanese Unexamined Patent Publication No. -70122 and Japanese Utility Model Laid-Open No. 1-65632.

【0004】上記した従来の電子冷却装置によって冷却
する場合、放熱面と冷却面の温度は、例えば+30°
C、−30°Cにも達するためその温度差が大きく、電
子冷却素子、冷却体および放熱体の熱変形によりこれら
の接合面に大きな応力が生じ、電子冷却素子さらには冷
却体、放熱体が破損するという問題があった。
In the case of cooling by the above-mentioned conventional electronic cooling device, the temperature of the heat radiation surface and the cooling surface is, for example, + 30 °.
Since the temperature difference reaches as high as C and -30 ° C, a large stress is generated in the joint surface between the electronic cooling element, the cooling body, and the heat radiating body due to thermal deformation of the electronic cooling element, the cooling body, and the heat radiating body. There was a problem of damage.

【0005】そこで、このような問題を解決する方法と
して、従来は電子冷却素子の放熱面側に冷却水を導いて
冷却する方法を採っていた。
Therefore, as a method of solving such a problem, conventionally, a method of guiding cooling water to the heat radiation surface side of the electronic cooling element to cool it has been adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の電子冷却装置においては電子冷却素子の放熱
面側に設けたベース部材に溝を蛇行させて形成し、この
溝に冷却水を導いているため、溝の入口側では冷却水の
温度が低く、高い熱交換率を保持し得るが、出口側では
熱交換によって冷却水の温度が上がるため熱交換効率が
悪く、放熱面全体を均一かつ効果的に冷却することがで
きないという問題があった。そのためにペルチェ素子の
ある部分、すなわち冷却水の入口に接する部分は低温、
出口側に接する部分は高温となり、電子冷却素子の破壊
事故を完全には防止することができなかった。
However, in such a conventional electronic cooling device, a groove is meandered in a base member provided on the heat dissipation surface side of the electronic cooling element, and cooling water is introduced into the groove. Therefore, the temperature of the cooling water is low on the inlet side of the groove and a high heat exchange rate can be maintained, but on the outlet side, the temperature of the cooling water rises due to the heat exchange, so the heat exchange efficiency is poor and the entire heat dissipation surface is uniform. There is a problem that it cannot be cooled effectively. Therefore, the part with the Peltier element, that is, the part in contact with the inlet of the cooling water is low temperature,
The part in contact with the outlet side became hot, and it was not possible to completely prevent the accidental destruction of the electronic cooling element.

【0007】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、放熱もしくは冷却を効果的に行うことができ、ま
た入口側と出口側における温度差が小さく、高い熱交換
効率を得ることができるようにした熱交換装置を提供す
ることにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and the purpose thereof is to enable effective heat dissipation or cooling, and to make the entrance side and the exit side An object of the present invention is to provide a heat exchange device having a small temperature difference and capable of obtaining high heat exchange efficiency.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は、一面が熱交換部に接して
配置されるベース部材を備え、このベース部材は、前記
熱交換部に近接する部分に形成されかつ第1の乱流形成
部を有する多角形状の熱交換媒体供給室と、この熱交換
媒体供給室内に熱交換媒体を導くためにこの熱交換媒体
供給室の中心から離れた位置に形成された媒体入口と、
前記熱交換媒体供給室の中央付近に形成された媒体出口
とを有することを特徴とする。請求項2に記載の発明
は、請求項1に記載の発明において、前記熱交換部は、
対向した冷却面と放熱面とからなる2つの伝熱面を半導
体素子を介して備えるペルチェ効果を利用した電子熱交
換素子を含み、前記熱交換部は、前記伝熱面のいずれか
一つであることを特徴とする。請求項3に記載の発明
は、請求項2に記載の発明において、前記ベース部材と
前記熱交換素子との間には、冷却体あるいは放熱体とな
る中間部材が配置されていることを特徴とする。請求項
4に記載の発明は、請求項1〜3のうちのいずれか一つ
に記載の発明において、前記媒体入口は、前記熱交換媒
体供給室の内壁に沿って媒体を導く方向に開口している
ことを特徴とする。請求項5に記載の発明は、請求項1
〜4のうちのいずれか一つに記載の熱交換装置におい
て、前記媒体出口は、断面逆台形状のくぼみを有するこ
とを特徴とする。請求項6に記載の発明は、一面が熱交
換部に接して配置されるベース部材とを備え、このベー
ス部材は、前記熱交換部に近接する部分に形成されかつ
第1の乱流形成部を有する多角形状の熱交換媒体供給室
と、この熱交換媒体供給室内に熱交換媒体を導くために
この熱交換媒体供給室の中心から離れた位置に形成され
た媒体入口と、前記熱交換媒体供給室の中央付近に形成
されかつ熱交換媒体をさらに乱流化させる第2の乱流形
成部となる形状を持った媒体出口とを有することを特徴
とする。請求項7に記載の発明は、請求項6記載の発明
において、前記熱交換部は、対向した冷却面と放熱面と
からなる2つの伝熱面を半導体素子を介して備えるペル
チェ効果を利用した電子熱交換素子を含み、前記熱交換
部は、前記伝熱面のいずれか一つであることを特徴とす
る。請求項8に記載の発明は、請求項6に記載の発明に
おいて、前記第2の乱流形成部は、前記熱交換媒体供給
室の中心から偏心した位置に形成された円形孔であるこ
とを特徴とする。請求項9に記載の発明は、請求項6に
記載の発明において、前記第2の乱流形成部は、前記熱
交換媒体供給室の中心から偏心した位置に形成された多
角形状孔であることを特徴とする。請求項10に記載の
発明は、請求項6記載の発明において、前記第2の乱流
形成部は、前記熱交換媒体供給室の略中心に形成された
多角形状の孔であることを特徴とする。請求項11に記
載の発明は、請求項10に記載の記載の発明において、
前記熱交換媒体供給室の略中心に形成された多角形状の
孔は、点対称でない多角形状であることを特徴とする。
請求項12に記載の発明は、請求項6〜10のうちのい
ずれか一つに記載の発明において、前記媒体出口は、断
面逆台形状のくぼみを有することを特徴とする。請求項
13に記載の発明は、請求項6〜10のうちのいずれか
一つに記載の発明において、前記媒体入口は、前記熱交
換媒体供給室の内壁に沿って媒体を導く方向に開口して
いることを特徴とする。
In order to achieve the above object, the invention as set forth in claim 1 includes a base member, one surface of which is disposed in contact with the heat exchange section, and the base member is the heat exchange section. From the center of the heat exchange medium supply chamber for guiding the heat exchange medium into the heat exchange medium supply chamber, which is formed in a portion close to A medium inlet formed at a remote position,
It has a medium outlet formed near the center of the heat exchange medium supply chamber. The invention according to claim 2 is the invention according to claim 1, wherein the heat exchange part is
An electronic heat exchange element utilizing a Peltier effect is provided, which has two heat transfer surfaces including a cooling surface and a heat dissipation surface that face each other via a semiconductor element, and the heat exchange unit includes one of the heat transfer surfaces. It is characterized by being. The invention according to claim 3 is the invention according to claim 2, characterized in that an intermediate member serving as a cooling body or a radiator is arranged between the base member and the heat exchange element. To do. According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the medium inlet is opened in a direction in which the medium is guided along an inner wall of the heat exchange medium supply chamber. It is characterized by The invention described in claim 5 is claim 1
The heat exchange device according to any one of claims 1 to 4, wherein the medium outlet has a recess having an inverted trapezoidal cross section. According to a sixth aspect of the present invention, there is provided a base member, one surface of which is disposed in contact with the heat exchange portion, the base member being formed in a portion near the heat exchange portion and having a first turbulent flow forming portion. A polygonal heat exchange medium supply chamber, a medium inlet formed at a position away from the center of the heat exchange medium supply chamber for guiding the heat exchange medium into the heat exchange medium supply chamber, and the heat exchange medium It is characterized by having a medium outlet which is formed in the vicinity of the center of the supply chamber and has a shape which serves as a second turbulent flow forming portion for making the heat exchange medium more turbulent. According to a seventh aspect of the invention, in the sixth aspect of the invention, the heat exchange section uses the Peltier effect in which two heat transfer surfaces including a cooling surface and a heat radiation surface facing each other are provided via a semiconductor element. An electronic heat exchange element is included, and the heat exchange unit is one of the heat transfer surfaces. In the invention according to claim 8, in the invention according to claim 6, the second turbulent flow forming portion is a circular hole formed at a position eccentric from the center of the heat exchange medium supply chamber. Characterize. In the invention according to claim 9, in the invention according to claim 6, the second turbulent flow forming portion is a polygonal hole formed at a position eccentric from the center of the heat exchange medium supply chamber. Is characterized by. According to a tenth aspect of the invention, in the sixth aspect of the invention, the second turbulent flow forming portion is a polygonal hole formed substantially in the center of the heat exchange medium supply chamber. To do. The invention described in claim 11 is the same as the invention described in claim 10,
The polygonal hole formed substantially in the center of the heat exchange medium supply chamber has a polygonal shape that is not point symmetrical.
According to a twelfth aspect of the present invention, in the invention according to any one of the sixth to tenth aspects, the medium outlet has a recess having an inverted trapezoidal cross section. According to a thirteenth aspect of the present invention, in the invention according to any one of the sixth to tenth aspects, the medium inlet is opened in a direction of guiding the medium along an inner wall of the heat exchange medium supply chamber. It is characterized by

【0009】[0009]

【作用】本発明において、熱交換媒体は、熱交換媒体供
給室に供給されて電子熱交換素子との間で直接もしくは
放熱体または冷却体からなる中間部材を介して熱交換を
行う。そして、この熱交換媒体は熱交換媒体供給室の内
壁に沿って進み第1の乱流形成部に当たることにより乱
流化して供給室の中心に集まり、媒体出口から外部に排
出される。熱交換媒体供給室は多角形で、その隅角部が
第1の乱流形成部を形成し、冷却媒体を乱流化して供給
室の中央に導く。冷却媒体は乱流化されることで、入口
側と出口側との温度差が少ない。媒体出口は熱交換媒体
供給室の中心から偏心した円形または円錐孔とされるこ
とにより第2の乱流形成部を形成し、熱交換媒体を非定
常流化(乱流化)する。このため、媒体出口の中心部に
空気柱が発生しない。媒体出口は多角形の窪みとされる
ことにより第2の乱流形成部を形成し、熱交換媒体を非
定常流化(乱流化)する。このため、媒体出口の中心部
に空気柱が発生しない。媒体出口が点対称な多角形の孔
で、熱交換媒体供給室の中心からずらして設けると、熱
交換媒体が定常化せず、乱流形成効果が大きい。点対称
でない多角形状の媒体出口は、熱交換媒体が定常化せ
ず、乱流形成効果が大きい。
In the present invention, the heat exchange medium is supplied to the heat exchange medium supply chamber and exchanges heat with the electronic heat exchange element directly or through an intermediate member composed of a radiator or a cooling body. Then, the heat exchange medium travels along the inner wall of the heat exchange medium supply chamber, hits the first turbulence forming portion, becomes turbulent, gathers at the center of the supply chamber, and is discharged to the outside from the medium outlet. The heat exchange medium supply chamber has a polygonal shape, and a corner portion thereof forms a first turbulent flow forming portion, and the cooling medium is turbulently guided to the center of the supply chamber. By making the cooling medium turbulent, the temperature difference between the inlet side and the outlet side is small. The medium outlet has a circular or conical hole that is eccentric from the center of the heat exchange medium supply chamber to form a second turbulent flow forming portion, and makes the heat exchange medium an unsteady flow (turbulent flow). Therefore, no air column is generated at the center of the medium outlet. The medium outlet forms a second turbulent flow forming portion by forming a polygonal depression, and makes the heat exchange medium unsteady (turbulent). Therefore, no air column is generated at the center of the medium outlet. When the medium outlet is a point-symmetrical polygonal hole and is provided so as to be displaced from the center of the heat exchange medium supply chamber, the heat exchange medium does not become steady and the turbulent flow forming effect is large. At the polygonal medium outlet that is not point-symmetric, the heat exchange medium does not become steady, and the turbulent flow formation effect is large.

【0010】[0010]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は本発明を電子冷却装置に適用し
た場合の第1実施例を示す電子冷却素子ユニットの正面
図、図2は同ユニットの平面図、図3はベース部材の平
面図、図4は図2のIV−IV線断面図、図5は図2の
V−V線断面図である。これらの図において、本実施例
はペルチェ効果を利用した電子冷却素子(電子熱交換素
子)1と、電子冷却素子1の冷却面と放熱面にそれぞれ
接合された中間部材としての冷却体2および放熱体3
と、放熱体3の冷却体2とは反対側の面に接合されたベ
ース部材4とで電子冷却素子ユニット10を構成し、こ
の電子冷却素子ユニット10を電子冷却装置のケーシン
グ内に、例えば前記冷却体2をケーシング内に臨ませ、
放熱体3を外部に臨ませて配設したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. 1 is a front view of an electronic cooling element unit showing a first embodiment when the present invention is applied to an electronic cooling device, FIG. 2 is a plan view of the same, FIG. 3 is a plan view of a base member, and FIG. 2 is a sectional view taken along line IV-IV of FIG. 2, and FIG. 5 is a sectional view taken along line VV of FIG. In these drawings, in this embodiment, an electronic cooling element (electron heat exchange element) 1 utilizing the Peltier effect, a cooling body 2 as an intermediate member joined to the cooling surface and a heat radiation surface of the electronic cooling element 1, and a heat radiation Body 3
And the base member 4 joined to the surface of the radiator 3 opposite to the cooling body 2, constitute the electronic cooling element unit 10, and the electronic cooling element unit 10 is placed in the casing of the electronic cooling device, for example, as described above. Face the cooling body 2 into the casing,
The radiator 3 is arranged so as to face the outside.

【0011】電子冷却素子1は、図14に示したように
異種のn型,p型の半導体を接合してペルチェ素子と
し、その両面にセラミックス等の基板を接合して形成さ
れている。このようなペルチェ素子は通常基板に数十個
接合されるため、温度分布が著しく不均一であると、熱
変形によりこれらの接合面に大きな応力が生じるため、
電子冷却素子自体さらには冷却体2、放熱体3が破損す
る虞れがある。なお、本実施例においては、このような
電子冷却素子1を同一平面上に例えば左右、上下2つず
つ合計4つ所定の間隔をおいて配置し、これらの電子冷
却素子1を電気的に接続する共に、その両面に前記冷却
体2と放熱体3を共通に接合した例を示す。また冷却体
2、放熱体3およびベース部材4は不図示の取付ねじに
よって一体的に結合される。なお、18はOリングであ
る。
As shown in FIG. 14, the electronic cooling element 1 is formed by joining different types of n-type and p-type semiconductors to each other to form a Peltier element, and a substrate such as ceramics is joined to both surfaces thereof. Since several tens of such Peltier elements are usually bonded to the substrate, if the temperature distribution is extremely uneven, thermal deformation causes large stress on these bonding surfaces.
The electronic cooling element itself, as well as the cooling body 2 and the radiator 3, may be damaged. In the present embodiment, such electronic cooling elements 1 are arranged on the same plane, for example, left and right, upper and lower two at a total of four predetermined intervals, and these electronic cooling elements 1 are electrically connected. In addition, an example in which the cooling body 2 and the radiator 3 are commonly joined to both surfaces thereof will be shown. Further, the cooling body 2, the heat radiating body 3 and the base member 4 are integrally coupled by a mounting screw (not shown). In addition, 18 is an O-ring.

【0012】前記冷却体2は、アルミニウム合金、セラ
ミック等によって一体に形成され、多数のフィン2aを
有している。前記放熱体3は熱伝導率の高い金属、樹脂
等によって平板状に形成されている。
The cooling body 2 is integrally formed of aluminum alloy, ceramic or the like and has a large number of fins 2a. The radiator 3 is formed in a flat plate shape by a metal, a resin or the like having a high thermal conductivity.

【0013】前記ベース部材4は、同じく熱伝導率の高
い金属、樹脂等によってブロック状に形成され、放熱体
3との接合面中央に適宜深さの凹部11が凹設されてお
り、この凹部11は前記放熱体3によって密閉されるこ
とにより熱交換媒体供給室を形成している。熱交換媒体
供給室11は、4つの電子冷却素子1を並べた大きさと
略同じ大きさの方形凹部からなり、媒体入口12と媒体
出口13を有し、各隅角部15a〜15dが乱流形成部
を形成している。
The base member 4 is made of metal, resin, or the like having a high thermal conductivity in a block shape, and a concave portion 11 having an appropriate depth is formed at the center of the joint surface with the heat radiating body 3. Reference numeral 11 forms a heat exchange medium supply chamber by being sealed by the radiator 3. The heat exchange medium supply chamber 11 is composed of a rectangular recess having substantially the same size as the size of the four electronic cooling elements 1 arranged, has a medium inlet 12 and a medium outlet 13, and each of the corner portions 15a to 15d is turbulent. The forming part is formed.

【0014】前記媒体入口12は、熱交換媒体供給室1
1の内壁に沿って熱交換媒体としての冷却水14を導く
もので、熱交換媒体供給室11の乱流形成部を構成する
4つの隅角部15(15a〜15d)のうちの任意の1
つ、例えば15dに、その軸線を当該隅角部を形成する
互いに直交した2つの内壁面16a,16dのうちの一
方(16a)に沿って形成され、ベース部材4の外側面
に形成された媒体導入口23に通路24を介して接続さ
れている。通路24は、媒体入口12から熱交換媒体供
給室11内に導かれる熱交換媒体としての冷却水14が
熱交換媒体供給室11の深さ方向全体に行きわたるよう
斜めに形成されている。このため、媒体入口12は、内
壁面16aに沿った長円形の孔とされる。なお、本実施
例においては通路24を斜めに形成したが、熱交換媒体
供給室11が浅い場合または通路24の径が大きい場合
は、必ずしも傾斜させる必要がない。
The medium inlet 12 is a heat exchange medium supply chamber 1
1, which guides the cooling water 14 as the heat exchange medium along the inner wall of 1, and which is one of the four corners 15 (15a to 15d) forming the turbulent flow forming portion of the heat exchange medium supply chamber 11.
A medium formed on the outer surface of the base member 4, for example, on the outer surface of the base member 4, for example, on 15d, the axis of which is formed along one (16a) of two mutually orthogonal inner wall surfaces 16a and 16d forming the corner portion. It is connected to the inlet port 23 via a passage 24. The passage 24 is formed obliquely so that the cooling water 14 as a heat exchange medium, which is guided from the medium inlet 12 into the heat exchange medium supply chamber 11, spreads over the entire depth direction of the heat exchange medium supply chamber 11. Therefore, the medium inlet 12 is an elliptical hole along the inner wall surface 16a. Although the passage 24 is formed obliquely in this embodiment, it is not always necessary to incline it when the heat exchange medium supply chamber 11 is shallow or when the diameter of the passage 24 is large.

【0015】前記媒体出口21は、熱交換媒体供給室1
1の底面中央に形成された円錐形の窪みからなり、その
底部においてベース部材4の肉厚内に形成された通路2
6の一端が接続され、この通路26の他端はベース部材
4の外側面に形成された媒体導出口27に連通されてい
る。
The medium outlet 21 is the heat exchange medium supply chamber 1
1 is a conical recess formed in the center of the bottom surface of the base 1 and has a passage 2 formed at the bottom thereof within the thickness of the base member 4.
6, one end of which is connected, and the other end of the passage 26 communicates with a medium outlet port 27 formed on the outer surface of the base member 4.

【0016】このような構成において、媒体入口12か
ら熱交換媒体供給室11に供給される冷却水14は、媒
体入口12と平行な熱交換媒体供給室11の一内壁面1
6aに沿って進み、隅角部15aに到達すると、90°
方向転換されて内壁面16bに沿って進み、さらに隅角
部15bに当たると90°方向転換されて内壁面16c
に沿って進み、さらに隅角部15cに当たると、90°
方向転換されて内壁面16dに沿って進む。ここで、冷
却水14は、隅角部15a〜15dに当たって方向転換
されると、流れが乱されるため、図3に示すように渦巻
乱流、すなわち渦を巻くような流れとなって熱交換媒体
供給室11の中央に集まり、媒体出口13−通路26−
媒体導出口27を通って外部に排出される。したがっ
て、冷却水14の流れが円滑で、熱交換媒体供給室11
内に滞留することがなく、放熱体3を良好に冷却するこ
とができ、冷却効果を向上させることができる。特に本
発明においては、冷却水14を熱交換媒体供給室11に
形成した乱流形成部、すなわち隅角部15a〜15dに
よって乱流化させているので、入口側と出口側における
温度差が小さく、高い熱交換率を得ることができる。し
たがって、熱変形によりペルチェ素子の接合面に大きな
応力が生じず、電子冷却素子1自体さらには冷却体2、
放熱体3の破損を確実に防止することができる。また、
媒体出口13は、窪みからなり、冷却水14の排出を円
滑にする。
In such a structure, the cooling water 14 supplied from the medium inlet 12 to the heat exchange medium supply chamber 11 has the inner wall surface 1 parallel to the medium inlet 12 of the heat exchange medium supply chamber 11.
6a, 90 ° when you reach the corner 15a
The direction is changed to proceed along the inner wall surface 16b, and when it hits the corner 15b, the direction is changed by 90 ° and the inner wall surface 16c is changed.
Follow along and further hit the corner 15c, 90 °
The direction is changed to proceed along the inner wall surface 16d. Here, when the cooling water 14 hits the corner portions 15a to 15d and is redirected, the flow is disturbed, so that it becomes a turbulent turbulent flow, that is, a swirling flow as shown in FIG. Collected in the center of the medium supply chamber 11, the medium outlet 13-the passage 26-
It is discharged to the outside through the medium outlet 27. Therefore, the flow of the cooling water 14 is smooth, and the heat exchange medium supply chamber 11
The radiator 3 can be satisfactorily cooled without staying inside, and the cooling effect can be improved. Particularly in the present invention, since the cooling water 14 is turbulently formed by the turbulent flow forming portion formed in the heat exchange medium supply chamber 11, that is, the corner portions 15a to 15d, the temperature difference between the inlet side and the outlet side is small. , High heat exchange rate can be obtained. Therefore, no large stress is generated on the joint surface of the Peltier element due to thermal deformation, and the electronic cooling element 1 itself and further the cooling body 2,
It is possible to reliably prevent damage to the radiator 3. Also,
The medium outlet 13 is formed of a recess and facilitates the discharge of the cooling water 14.

【0017】図6は本発明の第2実施例を示す平面図で
ある。この実施例はベース部材4を電子冷却素子1の一
方の面、すなわち放熱面に直接接合固定し、放熱体を省
略した例を示す。なお、1Aはペルチェ素子、1Bはセ
ラミックからなるベルチェ基板で、これらによって電子
冷却素子1を構成している。その他の構成は上記実施例
と同様である。
FIG. 6 is a plan view showing a second embodiment of the present invention. In this embodiment, the base member 4 is directly bonded and fixed to one surface of the electronic cooling element 1, that is, the heat radiation surface, and the heat radiator is omitted. Note that 1A is a Peltier element, and 1B is a Peltier substrate made of ceramics, and these constitute the electronic cooling element 1. Other configurations are the same as those in the above embodiment.

【0018】このような構成においても熱交換媒体供給
室11内に供給される冷却水14は渦巻乱流となるた
め、上記実施例と同様、電子冷却素子1の放熱面を効果
的に冷却することができる。また、本実施例において
は、冷却水14が電子冷却素子1の一方のペルチェ基板
1Bに直接接触しているので、冷却効率を向上させるこ
とができる。
Even in such a structure, the cooling water 14 supplied into the heat exchange medium supply chamber 11 becomes a turbulent turbulent flow, so that the heat radiating surface of the electronic cooling element 1 is effectively cooled as in the above embodiment. be able to. Further, in the present embodiment, the cooling water 14 is in direct contact with the one Peltier substrate 1B of the electronic cooling element 1, so that the cooling efficiency can be improved.

【0019】図7は本発明の第3実施例を示す電子冷却
素子ユニットの正面図、図8は同ユニットの冷却体を取
り除いた平面図、図9はベース部材の平面図、図10は
図8のIX−IX線断面図、図11は図8のX−X線断
面図である。なお、図中図1〜6と同一構成部材のもの
に対しては同一符号をもって示す。これらの図におい
て、本実施例は電子冷却素子1を同一平面上に縦6列、
横3列、合計18個所定の間隔をおいて配置し、これら
の電子冷却素子1を電気的に接続する共に、その両面に
前記冷却体2と放熱体3を共通に接合し、ベース部材4
の前記放熱体3との接合面中央に適宜深さを有する左右
2つの凹部からなる熱交換媒体供給室11,11を形成
したものである。各熱交換媒体供給室11は、同一の大
きさで、9個の電子冷却素子1を縦横3つずつ並べた大
きさと略同じ大きさの矩形凹部からなり、それぞれ媒体
入口12と媒体出口13を有している。各熱交換媒体供
給室11の隅角部15a〜15dは第1の乱流形成部を
形成している。
FIG. 7 is a front view of an electronic cooling element unit showing a third embodiment of the present invention, FIG. 8 is a plan view with the cooling body of the unit removed, FIG. 9 is a plan view of a base member, and FIG. 8 is a sectional view taken along line IX-IX of FIG. 8, and FIG. 11 is a sectional view taken along line XX of FIG. In the figure, the same components as those in FIGS. 1 to 6 are designated by the same reference numerals. In these drawings, in this embodiment, the thermoelectric cooling elements 1 are arranged in 6 rows in the same plane.
A total of 18 rows, three rows in total, are arranged at a predetermined interval, and these electronic cooling elements 1 are electrically connected, and at the same time, the cooling body 2 and the heat radiating body 3 are jointed together to form a base member 4.
The heat exchange medium supply chambers 11 and 11 are formed at the center of the joint surface with the heat radiator 3 and each of which has two recesses on the left and right, which have an appropriate depth. Each heat exchange medium supply chamber 11 has the same size and is composed of a rectangular recess having substantially the same size as the size in which three thermoelectric cooling elements 1 are arranged in rows and columns, and each of them has a medium inlet 12 and a medium outlet 13. Have The corner portions 15a to 15d of each heat exchange medium supply chamber 11 form a first turbulent flow forming portion.

【0020】前記媒体入口12は、左右の熱交換媒体供
給室11,11を仕切っている仕切壁30に沿った長円
形の孔とされる。
The medium inlet 12 is an elliptical hole along a partition wall 30 that partitions the left and right heat exchange medium supply chambers 11, 11.

【0021】前記媒体出口13は、熱交換媒体供給室1
1の底面中央に形成された逆台形状の窪みとされること
により、第2の乱流形成部を形成しており、その1つの
斜面にベース部材4の肉厚内に形成された通路26の一
端が開口し、他端はベース部材4の外側面に形成された
媒体導出口27に連通されている。
The medium outlet 13 is the heat exchange medium supply chamber 1
A second turbulent flow forming portion is formed by forming an inverted trapezoidal recess formed in the center of the bottom surface of No. 1, and a passage 26 formed in the wall thickness of the base member 4 on one slope thereof. Has one end open and the other end communicates with a medium outlet 27 formed on the outer surface of the base member 4.

【0022】このような構成において、媒体入口12か
ら熱交換媒体供給室11に供給される冷却水14は、仕
切壁30に沿って進み、隅角部15a,15b,15
c,15dに順次当たって方向転換されることにより、
流れが乱されるため、図9に示すように渦巻乱流となっ
て熱交換媒体供給室11の中央に集まり、媒体出口13
−通路26を通って媒体導出口27から外部に排出され
る。
In such a structure, the cooling water 14 supplied from the medium inlet 12 to the heat exchange medium supply chamber 11 advances along the partition wall 30 and the corner portions 15a, 15b, 15 are formed.
By sequentially hitting c and 15d to change direction,
Since the flow is disturbed, it becomes a swirl turbulent flow as shown in FIG. 9 and gathers in the center of the heat exchange medium supply chamber 11, and the medium outlet 13
-It is discharged to the outside from the medium outlet 27 through the passage 26.

【0023】ここで、図3および図4に示したように、
円錐形の窪みによって媒体出口13を構成した第1実施
例においては、冷却水14が媒体出口13の斜面に沿っ
て流れ込む際、定常流となって流れ込むため、媒体出口
13の中心部に図4に示すように空気柱32が形成さ
れ、これが断熱層となり、放熱体3の中央部の冷却効果
を低下させるという問題があったが、本実施例において
はこのような空気柱32の発生を効果的に防止すること
ができる。これは、媒体出口13を逆台形状に形成して
おくと、冷却水14が媒体出口13内にその斜面に沿っ
て流れ込む際に定常流であっても、その隅角部によって
方向転換され、互いにぶつかり合うことで非定常流、す
なわち乱流化されて媒体出口13の内部全体にゆきわた
ることから、空気柱の発生余地がなくなることによるも
のと思われる。この結果、入口側と出口側における温度
差がより小さく、高い熱交換率を得ることができ、冷却
効果を向上させることができる。したがって、熱変形に
よりペルチェ素子の接合面に大きな応力が生じず、電子
冷却素子1自体さらには冷却体2、放熱体3等の破損を
確実に防止することができる。
Here, as shown in FIG. 3 and FIG.
In the first embodiment in which the medium outlet 13 is formed by the conical recess, when the cooling water 14 flows along the slope of the medium outlet 13, it becomes a steady flow, and therefore flows into the center portion of the medium outlet 13 as shown in FIG. There is a problem that the air column 32 is formed as shown in FIG. 3, and this serves as a heat insulating layer, which lowers the cooling effect of the central portion of the radiator 3, but in the present embodiment, the generation of such an air column 32 is effective. Can be prevented. This is because, if the medium outlet 13 is formed in an inverted trapezoidal shape, even if the cooling water 14 flows into the medium outlet 13 along its slope, even if it is a steady flow, the direction is changed by the corner portion, It is considered that the unsteady flows, that is, the turbulent flows caused by the collisions with each other, are spread to the entire inside of the medium outlet 13, so that there is no room for generation of air columns. As a result, the temperature difference between the inlet side and the outlet side is smaller, a high heat exchange rate can be obtained, and the cooling effect can be improved. Therefore, a large stress is not generated on the joint surface of the Peltier element due to thermal deformation, and it is possible to reliably prevent damage to the electronic cooling element 1 itself, the cooling body 2, the radiator 3, and the like.

【0024】媒体出口13の形状としては、種々の形状
とすることが可能であり、また形状によっては、乱流化
機能を高めるため熱交換媒体供給室11の中心から偏心
させて形成することも可能である。形状としては正三角
形、正四角形、正五角形等の正多角形でもよく、また長
方形や異形の多角形であってもよい。この場合、乱流を
形成するための孔としては、正多角形のものより、長方
形または異形の多角形の方が乱流を形成し易い。正多角
形の場合は、その中心を熱交換媒体供給室11の中心か
ら偏心させて形成すると、前記中心から点対称でなくな
るため、実質的に異形の多角形となり、乱流化機能を増
大させることができる。また、円形孔、円錐孔の場合も
偏心させて設けると、同様に乱流形成部として機能させ
ることが可能である。
The medium outlet 13 may have various shapes. Depending on the shape, the medium outlet 13 may be formed eccentrically from the center of the heat exchange medium supply chamber 11 in order to enhance the turbulent flow function. It is possible. The shape may be a regular polygon such as a regular triangle, a regular quadrangle or a regular pentagon, or may be a rectangle or an irregular polygon. In this case, as the holes for forming the turbulent flow, the rectangular or irregular polygon is more likely to form the turbulent flow than the regular polygonal holes. In the case of a regular polygon, if the center is formed eccentrically from the center of the heat exchange medium supply chamber 11, it is not point-symmetrical with respect to the center, so that it becomes a substantially irregular polygon and the turbulent flow function is increased. be able to. Also, in the case of a circular hole or a conical hole, if they are provided eccentrically, it is possible to function similarly as a turbulent flow forming portion.

【0025】図12は本発明の第4実施例を示す断面図
である。この実施例は電子熱交換素子を用いない熱交換
器に適用した場合を示し、熱交換媒体供給室11を有す
るベース部材4と熱交換室40を有する伝熱部材41と
を接合し、熱交換媒体供給室11に供給される冷却水1
4と熱交換室40に供給される媒体(水、空気等)42
との間で熱交換を行うようにしたものである。ベース部
材4は、上記第3実施例で示したベース部材4と同様に
形成されている。伝熱部材41の熱交換室40は、熱交
換媒体供給室11と略同一の大きさを有し、その対向す
る側面に媒体導入口43と媒体導出口44が形成されて
いる。このような構成においても、上記第3実施例と同
様、入口側と出口側における温度差がより小さく、高い
熱交換率を得ることができる。
FIG. 12 is a sectional view showing a fourth embodiment of the present invention. This embodiment shows a case of applying to a heat exchanger not using an electronic heat exchange element, in which the base member 4 having the heat exchange medium supply chamber 11 and the heat transfer member 41 having the heat exchange chamber 40 are joined to each other to perform heat exchange. Cooling water 1 supplied to the medium supply chamber 11
4 and the medium (water, air, etc.) 42 supplied to the heat exchange chamber 40
It is designed to exchange heat with and. The base member 4 is formed similarly to the base member 4 shown in the third embodiment. The heat exchange chamber 40 of the heat transfer member 41 has substantially the same size as the heat exchange medium supply chamber 11, and the medium introduction port 43 and the medium extraction port 44 are formed on the opposite side surfaces thereof. Even in such a configuration, as in the third embodiment, the temperature difference between the inlet side and the outlet side is smaller and a high heat exchange rate can be obtained.

【0026】図13は本発明の第5実施例を示す断面図
である。この実施例は上記第4実施例と同様に電子熱交
換素子を用いない熱交換器に適用したもので、多数のフ
ィン45aを有する伝熱部材45をベース部材4の冷却
面に接合固定し、ファン47によって媒体42を伝熱部
材45内に導くようにしたものである。その他の構成は
上記実施例と同様である。このような構成においても、
上記第4実施例と同様、入口側と出口側における温度差
がより小さく、高い熱交換率を得ることができる。
FIG. 13 is a sectional view showing a fifth embodiment of the present invention. Similar to the fourth embodiment, this embodiment is applied to a heat exchanger that does not use an electronic heat exchange element, and a heat transfer member 45 having a large number of fins 45a is joined and fixed to the cooling surface of the base member 4, The medium 42 is guided into the heat transfer member 45 by the fan 47. Other configurations are the same as those in the above embodiment. Even in such a configuration,
Similar to the fourth embodiment, the temperature difference between the inlet side and the outlet side is smaller and a high heat exchange rate can be obtained.

【0027】なお、上記実施例においては何れも熱交換
媒体として冷却水を用いた場合について説明したが、本
発明はこれに何等特定されるものではなく、フロン等の
気体を使用することも可能である。また、第1、第2実
施例においては電子冷却素子1に流す電流の向きを切り
換えると、電子冷却素子を電子熱交換素子として使用す
ることができる。また、本発明は種々の変形、変更が可
能であり、例えば熱交換媒体供給室11を四角以外の多
角形にしてもよいことは勿論である。さらにまた、図1
に示した実施例においてはベース部材4側に熱交換媒体
供給室11を形成した場合を示したが、放熱体3側に設
けてもよい。
In each of the above embodiments, the case where the cooling water is used as the heat exchange medium has been described, but the present invention is not limited to this, and a gas such as CFC can be used. Is. Further, in the first and second embodiments, the electronic cooling element can be used as an electronic heat exchange element by switching the direction of the current flowing through the electronic cooling element 1. In addition, the present invention can be variously modified and changed, and it goes without saying that the heat exchange medium supply chamber 11 may have a polygonal shape other than a square. Furthermore, FIG.
Although the case where the heat exchange medium supply chamber 11 is formed on the side of the base member 4 is shown in the embodiment shown in, the heat exchange medium supply chamber 11 may be provided on the side of the radiator 3.

【0028】[0028]

【発明の効果】以上説明したように本発明に係る熱交換
装置によれば、一面が熱交換部に接して配置されるベー
ス部材を備え、このベース部材は、前記熱交換部に近接
する部分に形成されかつ第1の乱流形成部を有する多角
形状の熱交換媒体供給室と、この熱交換媒体供給室内に
熱交換媒体を導くためにこの熱交換媒体供給室の中心か
ら離れた位置に形成された媒体入口と、前記熱交換媒体
供給室の中央付近に形成された媒体出口とを有している
ので、熱交換媒体供給室の面積が広くても媒体入口から
供給された冷却媒体を第1の乱流形成部により乱流化し
て媒体出口に円滑かつ確実に導くことができる。また、
本発明においては、冷却水を乱流化させているので、入
口側と出口側における温度差が小さく、高い熱交換率を
得ることができる。したがって、熱変形によりペルチェ
素子の接合面に大きな応力が生じず、電子冷却素子自体
さらには冷却体や放熱体などの中間部材の破損を確実に
防止することができる。また、構造が簡単でベース部材
の製作も容易である。また、本発明においては、媒体出
口を偏心した円形または円錐孔あるいは多角形の窪みと
することにより第2の乱流形成部としているので、乱流
形成効果が大きく、中心部に空気柱が発生するのを防止
し、入口側と出口側の温度差をより一層小さくすること
ができる。さらに、媒体出口が多角形の場合、その形状
によっては熱交換媒体供給室の中心からずらして設ける
と、乱流形成効果を大きくすることができる。
As described above, according to the heat exchanging device of the present invention, the heat exchanging device is provided with the base member whose one surface is in contact with the heat exchanging portion, and the base member is a portion close to the heat exchanging portion. And a polygonal heat exchange medium supply chamber having a first turbulent flow forming portion, and a position away from the center of the heat exchange medium supply chamber for guiding the heat exchange medium into the heat exchange medium supply chamber. Since it has a formed medium inlet and a medium outlet formed near the center of the heat exchange medium supply chamber, the cooling medium supplied from the medium inlet can be removed even if the area of the heat exchange medium supply chamber is large. The first turbulent flow forming section can make the flow turbulent and guide it smoothly and surely to the medium outlet. Also,
In the present invention, since the cooling water is turbulent, the temperature difference between the inlet side and the outlet side is small and a high heat exchange rate can be obtained. Therefore, a large stress does not occur on the joint surface of the Peltier element due to thermal deformation, and it is possible to reliably prevent damage to the electronic cooling element itself and also to the intermediate members such as the cooling body and the radiator. Further, the structure is simple and the base member can be easily manufactured. Further, in the present invention, since the medium outlet is formed as an eccentric circular or conical hole or a polygonal depression to form the second turbulent flow forming portion, the turbulent flow forming effect is large and an air column is generated in the central portion. Can be prevented, and the temperature difference between the inlet side and the outlet side can be further reduced. Further, when the medium outlet has a polygonal shape, depending on the shape, if the medium outlet is provided so as to be displaced from the center of the heat exchange medium supply chamber, the turbulent flow forming effect can be enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を電子冷却装置に適用した場合の第1
実施例を示す電子冷却素子ユニットの正面図である。
FIG. 1 is a first example in which the present invention is applied to an electronic cooling device.
It is a front view of the electronic cooling element unit which shows an Example.

【図2】 同ユニットの平面図である。FIG. 2 is a plan view of the unit.

【図3】 ベース部材の平面図である。FIG. 3 is a plan view of a base member.

【図4】 図2のIV−IV線断面図である。4 is a sectional view taken along line IV-IV of FIG.

【図5】 図2のV−V線断面図である。5 is a sectional view taken along line VV of FIG.

【図6】 本発明の第2実施例を示す断面図である。FIG. 6 is a sectional view showing a second embodiment of the present invention.

【図7】 本発明の第3実施例を示す電子冷却素子ユニ
ットの正面図である。
FIG. 7 is a front view of an electronic cooling element unit showing a third embodiment of the present invention.

【図8】 同ユニットの冷却体を取り除いた平面図であ
る。
FIG. 8 is a plan view of the same unit with a cooling body removed.

【図9】 ベース部材の平面図である。FIG. 9 is a plan view of a base member.

【図10】 図8のX−X線断面図である。10 is a cross-sectional view taken along line XX of FIG.

【図11】 図8のXI−XI線断面図である。11 is a sectional view taken along line XI-XI of FIG.

【図12】 本発明の第4実施例を示す断面図である。FIG. 12 is a sectional view showing a fourth embodiment of the present invention.

【図13】 本発明の第5実施例を示す断面図である。FIG. 13 is a sectional view showing a fifth embodiment of the present invention.

【図14】 ペルチェ効果を説明するための図である。FIG. 14 is a diagram for explaining the Peltier effect.

【符号の説明】[Explanation of symbols]

1…電子冷却素子(電子熱交換素子)、1A…ペルチェ
素子、1B…ペルチェ基板、2…冷却体、3…放熱体、
4…ベース部材、10…電子冷却素子ユニット、11…
熱交換媒体供給室、12…媒体入口、13…媒体出口、
14…冷却水、15a〜15d…乱流形成部。
DESCRIPTION OF SYMBOLS 1 ... Electron cooling element (electron heat exchange element), 1A ... Peltier element, 1B ... Peltier substrate, 2 ... Cooling body, 3 ... Radiating body,
4 ... Base member, 10 ... Electronic cooling element unit, 11 ...
Heat exchange medium supply chamber, 12 ... Medium inlet, 13 ... Medium outlet,
14 ... Cooling water, 15a-15d ... Turbulent flow forming part.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 一面が熱交換部に接して配置されるベー
ス部材を備え、このベース部材は、前記熱交換部に近接
する部分に形成されかつ第1の乱流形成部を有する多角
形状の熱交換媒体供給室と、この熱交換媒体供給室内に
熱交換媒体を導くためにこの熱交換媒体供給室の中心か
ら離れた位置に形成された媒体入口と、前記熱交換媒体
供給室の中央付近に形成された媒体出口とを有すること
を特徴とする熱交換装置。
1. A polygonal shape having a first turbulent flow forming portion, the base member having one surface disposed in contact with the heat exchange portion, the base member being formed in a portion close to the heat exchange portion. A heat exchange medium supply chamber, a medium inlet formed at a position away from the center of the heat exchange medium supply chamber for guiding the heat exchange medium into the heat exchange medium supply chamber, and near the center of the heat exchange medium supply chamber And a medium outlet formed in the heat exchanger.
【請求項2】 請求項1記載の熱交換装置において、前
記熱交換部は、対向した冷却面と放熱面とからなる2つ
の伝熱面を半導体素子を介して備えるペルチェ効果を利
用した電子熱交換素子を含み、前記熱交換部は、前記伝
熱面のいずれか一つであることを特徴とする熱交換装
置。
2. The heat exchanging device according to claim 1, wherein the heat exchanging section has two heat transfer surfaces, which are a cooling surface and a heat radiating surface facing each other, with a semiconductor element interposed therebetween. A heat exchange device comprising an exchange element, wherein the heat exchange part is one of the heat transfer surfaces.
【請求項3】 請求項2記載の熱交換装置において、前
記ベース部材と前記熱交換素子との間には、冷却体ある
いは放熱体となる中間部材が配置されていることを特徴
とする熱交換装置。
3. The heat exchange device according to claim 2, wherein an intermediate member serving as a cooling body or a heat radiating body is arranged between the base member and the heat exchange element. apparatus.
【請求項4】 請求項1〜3のうちのいずれか一つに記
載の熱交換装置において、前記媒体入口は、前記熱交換
媒体供給室の内壁に沿って媒体を導く方向に開口してい
ることを特徴とする熱交換装置。
4. The heat exchange device according to claim 1, wherein the medium inlet is opened in a direction in which the medium is guided along an inner wall of the heat exchange medium supply chamber. A heat exchange device characterized by the above.
【請求項5】 請求項1〜4のうちのいずれか一つに記
載の熱交換装置において、前記媒体出口は、断面逆台形
状のくぼみを有することを特徴とする熱交換装置。
5. The heat exchange device according to claim 1, wherein the medium outlet has a recess having an inverted trapezoidal cross section.
【請求項6】 一面が熱交換部に接して配置されるベー
ス部材とを備え、このベース部材は、前記熱交換部に近
接する部分に形成されかつ第1の乱流形成部を有する多
角形状の熱交換媒体供給室と、この熱交換媒体供給室内
に熱交換媒体を導くためにこの熱交換媒体供給室の中心
から離れた位置に形成された媒体入口と、前記熱交換媒
体供給室の中央付近に形成されかつ熱交換媒体をさらに
乱流化させる第2の乱流形成部となる形状を持った媒体
出口とを有することを特徴とする熱交換装置。
6. A polygonal shape, comprising: a base member having one surface disposed in contact with the heat exchange section, the base member being formed in a portion adjacent to the heat exchange section and having a first turbulent flow forming section. Heat exchange medium supply chamber, a medium inlet formed at a position away from the center of the heat exchange medium supply chamber for guiding the heat exchange medium into the heat exchange medium supply chamber, and the center of the heat exchange medium supply chamber A heat exchange device having a medium outlet which is formed in the vicinity and has a shape which becomes a second turbulent flow forming portion for making the heat exchange medium more turbulent.
【請求項7】 請求項6記載の熱交換装置において、前
記熱交換部は、対向した冷却面と放熱面とからなる2つ
の伝熱面を半導体素子を介して備えるペルチェ効果を利
用した電子熱交換素子を含み、前記熱交換部は、前記伝
熱面のいずれか一つであることを特徴とする熱交換装
置。
7. The heat exchanging device according to claim 6, wherein the heat exchanging portion has two heat transfer surfaces, which are a cooling surface and a heat radiating surface facing each other, with a Peltier effect therebetween. A heat exchange device comprising an exchange element, wherein the heat exchange part is one of the heat transfer surfaces.
【請求項8】 請求項6記載の熱交換装置において、前
記第2の乱流形成部は、前記熱交換媒体供給室の中心か
ら偏心した位置に形成された円形孔であることを特徴と
する熱交換装置。
8. The heat exchange device according to claim 6, wherein the second turbulent flow forming portion is a circular hole formed at a position eccentric from the center of the heat exchange medium supply chamber. Heat exchange equipment.
【請求項9】 請求項6記載の熱交換装置において、前
記第2の乱流形成部は、前記熱交換媒体供給室の中心か
ら偏心した位置に形成された多角形状孔であることを特
徴とする熱交換装置。
9. The heat exchange device according to claim 6, wherein the second turbulent flow forming portion is a polygonal hole formed at a position eccentric from the center of the heat exchange medium supply chamber. Heat exchange device.
【請求項10】 請求項6記載の熱交換装置において、
前記第2の乱流形成部は、前記熱交換媒体供給室の略中
心に形成された多角形状の孔であることを特徴とする熱
交換装置。
10. The heat exchange device according to claim 6,
The heat exchanging device, wherein the second turbulent flow forming portion is a polygonal hole formed substantially in the center of the heat exchange medium supply chamber.
【請求項11】 請求項10記載の熱交換装置におい
て、前記熱交換媒体供給室の略中心に形成された多角形
状の孔は、点対称でない多角形状であることを特徴とす
る熱交換装置。
11. The heat exchange device according to claim 10, wherein the polygonal hole formed substantially in the center of the heat exchange medium supply chamber has a polygonal shape that is not point symmetrical.
【請求項12】 請求項6〜10のうちのいずれか一つ
に記載の熱交換装置において、前記媒体出口は、断面逆
台形状のくぼみを有することを特徴とする熱交換装置。
12. The heat exchange device according to claim 6, wherein the medium outlet has a recess having an inverted trapezoidal cross section.
【請求項13】 請求項6〜10のうちのいずれか一つ
に記載の熱交換装置において、前記媒体入口は、前記熱
交換媒体供給室の内壁に沿って媒体を導く方向に開口し
ていることを特徴とする熱交換装置。
13. The heat exchange device according to claim 6, wherein the medium inlet is opened in a direction in which the medium is guided along an inner wall of the heat exchange medium supply chamber. A heat exchange device characterized by the above.
JP22147994A 1994-07-05 1994-09-16 Heat exchange equipment Expired - Fee Related JP3460865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22147994A JP3460865B2 (en) 1994-07-05 1994-09-16 Heat exchange equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15363594 1994-07-05
JP6-153635 1994-07-05
JP22147994A JP3460865B2 (en) 1994-07-05 1994-09-16 Heat exchange equipment

Publications (2)

Publication Number Publication Date
JPH0875303A true JPH0875303A (en) 1996-03-19
JP3460865B2 JP3460865B2 (en) 2003-10-27

Family

ID=26482196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22147994A Expired - Fee Related JP3460865B2 (en) 1994-07-05 1994-09-16 Heat exchange equipment

Country Status (1)

Country Link
JP (1) JP3460865B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246531A (en) * 1997-03-03 1998-09-14 Eco Touenteii One:Kk Thermoelectric conversion device
JP2010514225A (en) * 2006-12-18 2010-04-30 アメリカン パワー コンバージョン コーポレイション Thermoelectric controlled refrigerator compartment assembly
EP2813786A2 (en) * 2011-04-05 2014-12-17 Koolkwic Limited Cooling apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246531A (en) * 1997-03-03 1998-09-14 Eco Touenteii One:Kk Thermoelectric conversion device
JP2010514225A (en) * 2006-12-18 2010-04-30 アメリカン パワー コンバージョン コーポレイション Thermoelectric controlled refrigerator compartment assembly
EP2813786A2 (en) * 2011-04-05 2014-12-17 Koolkwic Limited Cooling apparatus
EP2813786A3 (en) * 2011-04-05 2015-01-07 Koolkwic Limited Cooling apparatus

Also Published As

Publication number Publication date
JP3460865B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
US7017655B2 (en) Forced fluid heat sink
US6257320B1 (en) Heat sink device for power semiconductors
EP0447835A2 (en) Heat removal apparatus for liquid cooled semiconductor modules
JPH1084139A (en) Thermoelectric conversion device
JP2004523127A (en) Semiconductor device heat sink for liquid cooling power
KR102296543B1 (en) Liquid-cooled heat sink
JP4303679B2 (en) Heat exchanger
CN100461995C (en) Array jetting micro heat exchanger
US20230065557A1 (en) Two-phase cold plate
JPH05118725A (en) Cooler for wine and the like
JP4619387B2 (en) Semiconductor device cooling device
JP4041437B2 (en) Semiconductor device cooling device
JP2008091700A (en) Semiconductor device
CN111026253A (en) Liquid-cooled chip radiator with low-resistance flow channel enhanced heat exchange upper cover
JP3460865B2 (en) Heat exchange equipment
CN212810289U (en) Micro-channel heat sink with special rib structure
TWM609021U (en) Liquid cooling heat dissipation device and liquid cooling heat dissipation system with the same
Hilbert et al. High performance air cooled heat sinks for integrated circuits
JP2022541814A (en) thermoelectric heat exchange module
JPH06120387A (en) Heat sink
RU134358U1 (en) FRACTAL RADIATOR FOR COOLING SEMICONDUCTOR AND MICROELECTRONIC COMPONENTS
JP4956787B2 (en) Cooling system
JPH08125366A (en) Device for cooling electronic part
JPH08241943A (en) Liquid-cooled heat sink for power semiconductor element
JP3077903U (en) Micro thin plate type water cooling device usable for computer CPU

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees