JPH087498B2 - Development device - Google Patents

Development device

Info

Publication number
JPH087498B2
JPH087498B2 JP62260962A JP26096287A JPH087498B2 JP H087498 B2 JPH087498 B2 JP H087498B2 JP 62260962 A JP62260962 A JP 62260962A JP 26096287 A JP26096287 A JP 26096287A JP H087498 B2 JPH087498 B2 JP H087498B2
Authority
JP
Japan
Prior art keywords
magnetic
carrier
developing
sleeve
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62260962A
Other languages
Japanese (ja)
Other versions
JPH01102588A (en
Inventor
恵太郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62260962A priority Critical patent/JPH087498B2/en
Publication of JPH01102588A publication Critical patent/JPH01102588A/en
Publication of JPH087498B2 publication Critical patent/JPH087498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は担持体表面に形成された静電潜像を磁性キャ
リアとトナーを含む現像剤を用いて顕像化する現像装置
に関する。
The present invention relates to a developing device that visualizes an electrostatic latent image formed on the surface of a carrier with a developer containing a magnetic carrier and a toner.

〔従来の技術〕[Conventional technology]

電子写真装置あるいは静電印刷装置等の画像形成装置
は、光導電体層又は誘電体層を表面に形成した担持体の
周囲に少なくとも帯電装置、露光装置および現像装置を
配設し、更に転写工程を含む場合は現像画像を転写シー
ト上に転移させる転写装置と転写後の担持体表面に残留
するトナーを除去するクリーニング装置とを配設し、そ
して最終画像を得る定着装置を備えている。
In an image forming apparatus such as an electrophotographic apparatus or an electrostatic printing apparatus, at least a charging device, an exposing device and a developing device are arranged around a carrier having a photoconductor layer or a dielectric layer formed on the surface, and a transfer process is further performed. In the case of including the above, a transfer device for transferring the developed image onto the transfer sheet, a cleaning device for removing the toner remaining on the surface of the carrier after the transfer are provided, and a fixing device for obtaining the final image is provided.

上記の現像装置としては、例えば、磁性キャリアとト
ナーとを含む2成分系現像剤を使用し、内部に永久磁石
部材を有する非磁性スリーブ上に磁気ブラシを形成し、
この磁気ブラシで担持体表面を摺擦せしめることにより
担持体表面にトナー像を形成するように構成したものが
用いられている。この現像装置によれば、磁性キャリア
とトナーとを攪拌混合することによりトナーを所定の磁
性に帯電せしめ、キャリアに静電的に付着したトナーが
クーロンカにより静電潜像に転移して現像が行なわれ
る。
As the developing device, for example, a two-component developer containing a magnetic carrier and a toner is used, and a magnetic brush is formed on a non-magnetic sleeve having a permanent magnet member inside.
The magnetic brush is used to form a toner image on the surface of the carrier by rubbing the surface of the carrier. According to this developing device, the magnetic carrier and the toner are agitated and mixed so that the toner is charged to a predetermined magnetism, and the toner electrostatically attached to the carrier is transferred to the electrostatic latent image by the coulomber to perform the development. Be done.

従来から、上記磁性キャリアとしては、鉄粉キャリア
(特公昭47-19398号,同48-8138号等)が使用されてお
り、寿命の向上および摩擦帯電特性の安定化のために、
通常は表面に酸化処理が施されている。しかるにこの鉄
粉キャリアには次のような問題がある。すなわち長期間
の使用に伴い、キャリア粒子表面にトナーの被膜が形成
されたり、キャリア粒子表面の酸化物が欠落するため、
キャリア粒子の抵抗が大幅に変化して摩擦帯電特性が変
るという問題がある。その結果画像濃度が低下したり、
カブリが増大するという不具合が生ずる。
Iron powder carriers (Japanese Patent Publication Nos. 47-19398 and 48-8138, etc.) have been used as the magnetic carrier, and in order to improve the life and stabilize the triboelectrification characteristics,
Usually, the surface is oxidized. However, this iron powder carrier has the following problems. That is, with long-term use, a toner film is formed on the surface of carrier particles, or oxides on the surface of carrier particles are lost,
There is a problem that the resistance of the carrier particles changes significantly and the triboelectric charging characteristics change. As a result, the image density decreases,
The problem of increased fog occurs.

そこで鉄粉キャリアの代りに、軟磁性を示す金属酸化
物粒子からなるフェライトキャリア(特公昭56-5203
号、特開昭58-202456号等)を用いることが提案され、
実用に供されている。フェライトキャリアは鉄粉キャリ
アに比べて化学的に安定で、使用中の抵抗変化が少な
く、又見掛密度も低いので、軽くて搬送時のトルクが小
さくて済む等の利点がある。また飽和磁化も鉄粉キャリ
アより小さいので、流動性、攪拌性にすぐれており、し
かたがって軟い磁気ブラシが形成されることから、中間
調の再現性が良いという利点も有する。
Therefore, instead of the iron powder carrier, a ferrite carrier composed of metal oxide particles exhibiting soft magnetism (Japanese Patent Publication No. 56-5203).
, JP-A-58-202456, etc.),
It is put to practical use. The ferrite carrier is chemically more stable than the iron powder carrier, has less resistance change during use, and has a low apparent density, so that it has advantages such as being light and requiring less torque during transportation. Further, since the saturation magnetization is smaller than that of the iron powder carrier, it has excellent fluidity and agitation property, and accordingly, a soft magnetic brush is formed, so that there is also an advantage that the halftone reproducibility is good.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記のフェライトキャリアは上述したような多くの利
点を有するが、鉄粉キャリアとは磁気的および電気的特
性が異なるので、鉄粉キャリアを用いる場合と同様の現
像条件および現像装置の構造では画質の低下、キャリア
の飛散、キャリア付着等の問題が生ずる。
Although the above ferrite carrier has many advantages as described above, since it has different magnetic and electrical characteristics from the iron powder carrier, the image quality is improved under the same developing conditions and developing device structure as when using the iron powder carrier. Problems such as deterioration, carrier scattering, and carrier adhesion occur.

これの対策として、現像磁極の強さを300〜700Gの範
囲とする(特開昭58-179853号)、現像ギャップを0.6〜
2mmの範囲とする(特開昭60-76756号)、搬送磁極の磁
束密度を現像磁極の磁束密度の50〜85%とする(特開昭
61-36774号)、現像ギャップとドクターギャップの差を
一定の範囲とする(特開昭61-128260号)、現像領域に
おいて感光体ドラム及びスリーブの移動方向を同一方向
としかつ両者の周速の比を一定の範囲とする(特開昭61
-128261号)こと等が提案されている。
As a countermeasure against this, the strength of the developing magnetic pole is set in the range of 300 to 700 G (JP-A-58-179853) and the developing gap is set to 0.6 to
In the range of 2 mm (Japanese Patent Laid-Open No. 60-76756), the magnetic flux density of the carrier magnetic pole is 50 to 85% of the magnetic flux density of the developing magnetic pole (Japanese Patent Laid-Open No. Sho 60-76756).
61-36774), the difference between the developing gap and the doctor gap is set within a certain range (Japanese Patent Laid-Open No. 61-128260), the moving directions of the photosensitive drum and the sleeve are the same in the developing area, and the peripheral speeds of the two are the same. The ratio is within a certain range (Japanese Patent Laid-Open No. 61
-128261) has been proposed.

しかしながら、従来は現像の良否に関係する総べての
因子について検討がなされているわけではなかった。す
なわち従来の現像装置によれば、フェライトキャリアを
用いることによる現像性の低下、画像の後端欠け、キャ
リアの飛散、キャリア付着等の問題を総べて解消するこ
とはできなかった。
However, conventionally, not all the factors related to the quality of development have been examined. That is, according to the conventional developing device, it is not possible to solve all the problems such as the deterioration of the developability, the trailing edge of the image, the scattering of the carrier, and the adhesion of the carrier due to the use of the ferrite carrier.

したがって本発明の目的は、上述した従来装置の欠点
を解消した現像装置を提供することである。
Therefore, it is an object of the present invention to provide a developing device which eliminates the above-mentioned drawbacks of the conventional device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の現像装置は、飽和磁化が45〜100emu/g、保磁
力が1〜30 Oe、電気抵抗が106〜1010Ω・cmの範囲にあ
りかつ平均粒度が50〜200μmの範囲にあるフェライト
系キャリアとトナーとを含む現像剤を収容する現像槽
と、静電潜像担持体と対向しそれとの間に現像領域を形
成しかつ現像槽内に回転自在に設けられた非磁性スリー
ブと、スリーブ内に固設された複数個の磁極を有する永
久磁石部材と、現像槽内に回転自在に設けられた現像剤
攪拌部材とを有する現像装置であって、スリーブは担持
体との対向部において0.3〜1.0mmの間隙を形成すると共
にこの対向部において担持体の表面移動速度の1.5〜3
倍の表面移動速度で担持体と同方向に移動し、前記磁極
のうち担持体と対向する現像磁極はスリーブ上において
700〜1000Gの範囲の磁束密度を有すると共に、現像磁極
の中心とこの磁極より下流側に隣接し、この磁極とは磁
性の異なる搬送磁極の中心とのなす角度をθ(度)、非
磁性スリーブの外径をD(mm)としたとき、下記式800
<D・θ<1800を満足するような磁極配列がなされてお
り、現像剤攪拌部材は非磁性スリーブと同方向に回転
し、現像領式の下流側における現像槽の開口内壁と現像
剤表層間の間隙および/又は現像槽の開口先端と担持体
との間隙を1mm以下とした構成を有するものである。
The developing device of the present invention has a saturation magnetization of 45 to 100 emu / g, a coercive force of 1 to 30 Oe, an electric resistance of 10 6 to 10 10 Ω · cm, and an average particle size of 50 to 200 μm. A developing tank containing a developer containing a ferrite carrier and a toner, and a non-magnetic sleeve facing the electrostatic latent image carrier and forming a developing region between the non-magnetic sleeve and the developing tank. A developing device having a permanent magnet member having a plurality of magnetic poles fixed in a sleeve and a developer stirring member rotatably provided in a developing tank, wherein the sleeve is a portion facing a carrier. A gap of 0.3-1.0 mm is formed at the same time, and the surface moving speed of the carrier is 1.5-3 at this facing portion.
The developing magnetic pole, which moves in the same direction as the carrier at a double surface moving speed and faces the carrier, is on the sleeve.
It has a magnetic flux density in the range of 700 to 1000G, and the angle between the center of the developing magnetic pole and the center of the carrier magnetic pole which is adjacent to the downstream side of this magnetic pole and has different magnetism from this magnetic pole is θ (degree), and a non-magnetic sleeve. When the outer diameter of is D (mm), the following formula 800
The magnetic poles are arranged so as to satisfy <D · θ <1800, the developer stirring member rotates in the same direction as the non-magnetic sleeve, and the inner wall of the opening of the developing tank and the developer surface layer on the downstream side of the developing formula are. And / or the gap between the tip of the opening of the developing tank and the carrier is 1 mm or less.

〔実施例〕〔Example〕

以下本発明の詳細を図面により説明する。 Hereinafter, details of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例に係る現像装置の断面図で
ある。第1図において、1は表面に静電潜像(図示せ
ず)を保持した感光体ドラムであり、矢印z方向に回転
される。現像装置2は感光体ドラム1の周囲に設置され
る。
FIG. 1 is a sectional view of a developing device according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a photosensitive drum having an electrostatic latent image (not shown) on its surface, which is rotated in the arrow z direction. The developing device 2 is installed around the photosensitive drum 1.

現像装置2は、フェライトキャリアとトナーとを含む
現像剤3を収容する現像槽4を有する。現像槽4の内部
には、矢印x方向に回転する非磁性スリーブ5が設けら
れている。非磁性スリーブ5は感光体ドラム1に対向配
置されており、それとの最近位置およびその近傍に現像
領域12を形成する。非磁性スリーブ5の内部には、表面
に複数個の磁極を有する永久磁石部材6が固定配置され
ている。これらの磁極の内N1極は、現像領域12に対向
して設けられた現像磁極である。また現像槽4の内部に
は、矢印y方向に回転し、現像剤3を攪拌混合するため
の攪拌ローラ7が設けられている。この攪拌ローラは例
えば回転軸の周囲に複数個の斜円板を取着した構造を有
し、現像剤の回転方向への搬送と共に、軸方向の混合の
機能を有する。現像槽4には、非磁性スリーブ上に吸着
された現像剤の厚みを規制するためのドクター部材8が
設けられている。更に現像槽3の上部には、補充用トナ
ー11を収容するトナー槽9が設けられている。トナー槽
9は下部に開口を有し、この開口にはトナー補給ローラ
10が回転自在に設けられている。
The developing device 2 has a developing tank 4 that contains a developer 3 containing a ferrite carrier and toner. Inside the developing tank 4, a non-magnetic sleeve 5 that rotates in the arrow x direction is provided. The non-magnetic sleeve 5 is arranged so as to face the photoconductor drum 1, and forms a developing region 12 at the closest position to the photoconductor drum 1 and in the vicinity thereof. Inside the non-magnetic sleeve 5, a permanent magnet member 6 having a plurality of magnetic poles on its surface is fixedly arranged. Of these magnetic poles, the N 1 pole is a developing magnetic pole provided so as to face the developing area 12. Inside the developing tank 4, a stirring roller 7 that rotates in the direction of the arrow y and stirs and mixes the developer 3 is provided. This agitating roller has a structure in which a plurality of swash disks are attached around the rotating shaft, and has a function of conveying the developer in the rotating direction and a function of mixing in the axial direction. The developing tank 4 is provided with a doctor member 8 for controlling the thickness of the developer adsorbed on the non-magnetic sleeve. Further, a toner tank 9 for containing replenishment toner 11 is provided above the developing tank 3. The toner tank 9 has an opening at the bottom, and a toner supply roller is provided at this opening.
10 is rotatably provided.

このような構成により、非磁性スリーブ5を矢印x方
向に回転させるとスリーブ上に吸着された現像剤はそれ
と同方向に搬送され、ドクター部材8によりその厚みを
規制されて現像領域12で形成された磁気ブラシて感光体
ドラム1の表面を摺擦して静電潜像が可視像化される。
現像領域12を通過後の現像剤は、現像槽4内に回収さ
れ、攪拌ローラ7により、トナー補給ローラ10により供
給されたトナー11と共に攪拌された後、再び非磁性スリ
ーブ5上に吸着される。
With such a configuration, when the non-magnetic sleeve 5 is rotated in the direction of arrow x, the developer adsorbed on the sleeve is conveyed in the same direction, and the thickness thereof is regulated by the doctor member 8 to be formed in the developing region 12. The surface of the photosensitive drum 1 is rubbed with a magnetic brush to visualize the electrostatic latent image.
The developer that has passed through the developing area 12 is collected in the developing tank 4, stirred by the stirring roller 7 together with the toner 11 supplied by the toner replenishing roller 10, and then adsorbed on the non-magnetic sleeve 5 again. .

本発明に使用されるフェライトキャリアは、具体的に
は適当な金属酸化物金属酸化物との完全混合物であり、
結晶学的にはスピネル、ペロプスカイト、六方晶、ガー
ネットあるいはオルソフェライト構造を有する軟質磁性
材料である。すなわちこのフェライトキャリアは、Ni,Z
n,Mn,Mg,Cu,Li,Ba,V,Cr,Ca等の酸化物とFe2O3との焼結
体であり、例えばNi-Zn系フェライト、Mn-Zn系フェライ
ト、Mg-Zn系フェライト、Cu-Zn系フェライト、Li-Zn系
フェライトなどがよく知られている。
The ferrite carrier used in the present invention is specifically a complete mixture with a suitable metal oxide metal oxide,
Crystallographically, it is a soft magnetic material having a spinel, perovskite, hexagonal, garnet or orthoferrite structure. That is, this ferrite carrier is
n, Mn, Mg, Cu, Li, Ba, V, Cr, Ca is a sintered body of oxides and Fe 2 O 3 , for example, Ni-Zn ferrite, Mn-Zn ferrite, Mg-Zn Well-known are ferrites such as Cu-Zn ferrites and Li-Zn ferrites.

このようなフェライトキャリアは、組成や製造条件を
変えることにより広範囲の物性を有するものが知られる
が、本発明では画質を考慮して次のような物性を有する
ものを用いる。飽和磁化(Os)は、小さすぎるとキャリ
アがスリーブから離胱して感光体表面に付着し易くな
り、一方大きすぎると搬送性が強すぎてトナーが変形し
易くなり、又磁気ブラシの穂が硬くなり、中間調の再現
性が悪くなるので、45〜100emu/gの範囲がよい。保磁力
IHc)は、小さすぎると搬送性が低下し、大きすぎる
と永久磁石化され、種々の部材に付着してしまうので、
1〜30 Oeの範囲がよい。電気抵抗は、低すぎるとキャ
リア付着が生じ易くなり、高すぎると現像性が低下し、
又エッヂ効果が強すぎて均一なベタ黒画像が得られなく
なるので106〜1010Ω・cmの範囲がよい。粒度分布は50
〜200μmの範囲がよい。すなわち、粒径は小さい程比
表面積が大となり、最大トナー濃度を高くできかつ耐久
性が向上し、又きめの細い画像が得られるので、200μ
m以下とする。ただし50μm以下の粒子が多くなると、
現像性は向上するが、キャリア付着が生じ易くなるの
で、50μm以下の粒子は30重量%以下であることが望ま
しい。なお、上記の磁気特性は、振動試料型磁力計(東
英工業製VSM−3型)により測定した値とし、電気抵抗
は、特開昭61-191522号に記載の方法に従って測定した
値とする。
It is known that such a ferrite carrier has a wide range of physical properties by changing the composition and manufacturing conditions, but in the present invention, one having the following physical properties is used in consideration of image quality. If the saturation magnetization (Os) is too small, the carrier easily separates from the sleeve and adheres to the surface of the photoconductor. On the other hand, if it is too large, the transportability is too strong and the toner is easily deformed. Since it becomes hard and the reproducibility of halftone becomes poor, the range of 45 to 100 emu / g is preferable. If the coercive force ( I Hc) is too small, the transportability will decrease, and if it is too large, it will become a permanent magnet and adhere to various members.
A range of 1-30 Oe is preferred. If the electric resistance is too low, carrier adhesion is likely to occur, and if it is too high, the developability decreases,
Further, the edge effect is too strong to obtain a uniform solid black image, so that the range of 10 6 to 10 10 Ω · cm is preferable. Particle size distribution is 50
A range of up to 200 μm is preferable. In other words, the smaller the particle size, the larger the specific surface area, the higher the maximum toner concentration, the higher the durability, and the finer the image obtained.
m or less. However, if the number of particles of 50 μm or less increases,
Although the developability is improved, carrier adhesion is likely to occur, so it is desirable that the amount of particles of 50 μm or less is 30% by weight or less. The above magnetic properties are values measured by a vibrating sample magnetometer (VSM-3 manufactured by Toei Industry Co., Ltd.), and the electrical resistance is a value measured according to the method described in JP-A-61-191522. .

本発明においては、上記のフェライトキャリアを用い
て良好な現像を行なうために、第1図に示す現像装置を
次のような条件を満たす構造とする。
In the present invention, in order to perform good development using the above ferrite carrier, the developing device shown in FIG. 1 has a structure satisfying the following conditions.

現像に影響を与える因子としてまず挙げられるのは、
現像磁極(N1極)の磁束密度である。N1極の磁束度密
度が700G(スリーブ上での値、以下も同様)より小さい
と、上述したようにフェライトキャリアは鉄粉キャリア
よりも磁化が弱く、スリーブ上に吸着する力が弱くな
り、キャリア付着とそれに伴う転写ぬけを生じる。N1
極の磁束密度が1000Gより大きいと、磁気ブラシの穂が
硬くなり、画像にたてすじが発生すると共に、キャリア
が疲労してその寿命が低下する。したがって現像磁極の
磁束密度は700〜1000Gの範囲がよい。
The first factor that affects development is
It is the magnetic flux density of the developing magnetic pole (N 1 pole). When the magnetic flux density of the N 1 pole is smaller than 700 G (value on the sleeve, the same applies below), the ferrite carrier has weaker magnetization than the iron powder carrier, and the force of adsorption on the sleeve becomes weaker, as described above. Adhesion of the carrier and accompanying transfer bleeding occur. N 1
If the magnetic flux density of the poles is larger than 1000 G, the magnetic brush becomes hard and the streaks are generated on the image, and the carrier is fatigued and its life is shortened. Therefore, the magnetic flux density of the developing magnetic pole is preferably in the range of 700 to 1000G.

またN1極付近の磁束の流れを模式的に表わすと第2
図および第3図に示す状態となる。磁気ブラシは磁束線
に沿って形成される。現像領域12において磁気ブラシは
ある幅(以下接触幅といい、図中Wで示す)をもって感
光体ドラム1と接触している。この接触幅の終端(現像
剤と感光体表面との接触が終了する点)Pにおける磁力
線の向きに注目すると、第3図に示すように磁力線の向
きが感光体ドラムの接線方向よりも感光体ドラム側によ
り向いている場合には、現像を終えた現像剤による磁気
ブラシが再度感光体表面を摺擦するので、磁気ブラシの
クリーニング作用により画像の後端が欠ける(以下後端
欠けという)現象が生じやすくなり、この傾向は中間調
の画像において著しい。これに対して第2図に示すよう
に磁力線が感光体ドラムの接線方向、もしくはそれより
スリーブ側に向いているほど、上記のような不具合、す
なわち後端欠けを防止できる。このような磁力線の向き
を実現するためには、N1極の磁束密度が上記範囲を外
れない範囲でN1極の下流にあってそれと隣接するS1
をN1極に近づけることによって得られることが実験に
よって確認された。後端欠けの生じない磁力線の向き
は、感光体ドラムおよび永久磁石部材の外径によって異
なるので、N1極とS1極間のピッチはこれらに応じて定
める必要がある。スリーブ外径が20〜65mmのマグネット
ロールを用いての実験結果によると、上記最適な磁極配
列、すなわちN1とS1の角度θは、スリーブ外径をDと
したとき800<D・θ<1800の条件を満たすと、特に後
端欠けに大変効果あることがわかった。これはN11
のスリーブ上周長(ピッチ)が7〜16mmの範囲であるこ
とを示している。
In addition, the flow of magnetic flux near the N 1 pole is schematically shown as the second
The state shown in FIGS. The magnetic brush is formed along the magnetic flux lines. In the developing area 12, the magnetic brush is in contact with the photosensitive drum 1 with a certain width (hereinafter referred to as a contact width, indicated by W in the figure). Paying attention to the direction of the magnetic force lines at the end of this contact width (the point at which the contact between the developer and the surface of the photosensitive member ends) P, as shown in FIG. 3, the direction of the magnetic force lines is greater than the tangential direction of the photosensitive drum. When facing the drum side, the magnetic brush of the developer that has completed development again rubs the surface of the photoconductor, so that the trailing edge of the image is chipped by the cleaning action of the magnetic brush (hereinafter referred to as trailing edge chipping). Tends to occur, and this tendency is remarkable in a halftone image. On the other hand, as shown in FIG. 2, the more the magnetic force lines are directed toward the tangential line of the photosensitive drum or toward the sleeve side, the more the above-mentioned trouble, that is, the rear end chipping can be prevented. To realize the orientation of such magnetic field lines, obtained by bringing the S 1 pole magnetic flux density of the N 1 pole is adjacent to it be downstream of N 1 pole within a range not out of the range N 1 pole It was confirmed by the experiment that it was possible. Since the direction of the magnetic lines of force at which the trailing edge is not broken differs depending on the outer diameters of the photosensitive drum and the permanent magnet member, the pitch between the N 1 pole and the S 1 pole must be determined accordingly. According to the experimental result using the magnet roll having the sleeve outer diameter of 20 to 65 mm, the optimum magnetic pole arrangement, that is, the angle θ between N 1 and S 1 is 800 <D · θ <when the sleeve outer diameter is D. It was found that when the condition of 1800 was satisfied, it was particularly effective for trailing edge chipping. This indicates that the sleeve upper circumferential length (pitch) between N 1 and S 1 is in the range of 7 to 16 mm.

次に、フェライトキャリアは球状に近い形状を有しか
つ電気抵抗が比較的高いので、磁気ブラシの抵抗が高く
なり現像電極効果は弱い。したがって現像ギャップ(g
1)も鉄粉キャリアを用いる場合より狭くないと現像性
が低下し、画像濃度が低下してしまう。また現像ギャッ
プが狭すぎると、磁気ブラシの摺擦力が強すぎて感光体
表面を損傷する。したがって現像ギャップは0.3〜1.0mm
の範囲がよい。
Next, since the ferrite carrier has a shape close to a sphere and has a relatively high electric resistance, the resistance of the magnetic brush becomes high and the developing electrode effect is weak. Therefore, the development gap (g
Also in 1 ), unless it is narrower than the case where the iron powder carrier is used, the developability is lowered and the image density is lowered. On the other hand, if the developing gap is too narrow, the rubbing force of the magnetic brush is too strong and the surface of the photoreceptor is damaged. Therefore, the development gap is 0.3-1.0 mm
The range is good.

また、スリーブの回転方向およびその周速も現像の良
否に大きく関係する。現像領域12においてスリーブ5が
感光体ドラム1と同方向に回転させる方が、逆方向に回
転させるよりも、現像剤と感光体との接触が良くなり、
画像濃度が出やすく、かつ、中間調の再現性もよくな
る。スリーブの周速(vs)は感光体ドラムの周速
(vp)の1.5〜3.0倍になるようにスリーブの回転数を
定めるとよい。vs/vpが大きくなる程現像領域への現像
剤の供給能力が増大し、現像は向上するので、vs/vp
大きすぎるとトナーの飛散やキャリアの飛散が増すの
で、vs/vpは3.0以下とする。
Further, the rotation direction of the sleeve and the peripheral speed thereof are also greatly related to the quality of the development. In the developing area 12, when the sleeve 5 rotates in the same direction as the photosensitive drum 1, the contact between the developer and the photosensitive member becomes better than in the reverse direction,
The image density is easily obtained and the halftone reproducibility is improved. The rotational speed of the sleeve may be determined so that the peripheral speed (v s ) of the sleeve is 1.5 to 3.0 times the peripheral speed (v p ) of the photosensitive drum. As v s / v p increases, the developer supply capacity to the developing area increases and the development improves. Therefore, if v s / v p is too large, toner scattering and carrier scattering increase, so that v s / v p should be 3.0 or less.

更に、トナーの飛散に関しては、攪拌ローラの回転方
向と、現像領域の下流側の現像槽の開口部の構造も関係
する。第1図に示すように攪拌ローラ7がスリーブ5と
同方向に回転すると、現像終了後の現像剤が現像槽4内
に引き込まれ易くなり、現像槽4の開口14からのトナー
の吹き出しは少なくなる。また開口14付近において、現
像槽4を構成するケースの内壁と現像剤層の表面との間
隙g3の少なくとも一部分が狭い程、現像槽中からのト
ナーの吹出しが抑制される。さらにケースの先端と感光
体ドラム1との間隙g4が狭いと、空気抵抗が増大する
ので、トナーの下方への飛散を大幅に減少する。したが
ってg3および/又はg4は1.0mm以下がよく、好ましく
は0.3〜0.8mmの範囲がよい。
Further, regarding the toner scattering, the rotating direction of the stirring roller and the structure of the opening of the developing tank on the downstream side of the developing area are also related. As shown in FIG. 1, when the agitating roller 7 rotates in the same direction as the sleeve 5, the developer after the development is easily drawn into the developing tank 4, and the toner is hardly blown out from the opening 14 of the developing tank 4. Become. Further, in the vicinity of the opening 14, the narrower the gap g 3 between the inner wall of the case constituting the developing tank 4 and the surface of the developer layer, the more the toner is suppressed from being blown out from the inside of the developing tank. Further, if the gap g 4 between the tip of the case and the photosensitive drum 1 is narrow, the air resistance increases, so that the scattering of the toner downward is greatly reduced. Accordingly g 3 and / or g 4 may have 1.0mm or less, preferably in the range of 0.3 to 0.8 mm.

〔実験例〕[Experimental example]

以下の実験例により本発明を具体的に説明する。 The present invention will be specifically described by the following experimental examples.

実験例1 第1図に示す現像装置を用いて、以下の条件で実験を
行なった。
Experimental Example 1 Using the developing device shown in FIG. 1, an experiment was conducted under the following conditions.

感光体ドラム:外径80mmのSeドラム、 表面電位+720V 周速100mm/sec スリーブ:外径34mmのSUS304製スリーブ 周速200mm/sec(vs/vp 2.0) 永久磁石:外径31mmのBaフェライト磁石 N1極−S1極間角度45°(P点 における磁力線のベクトルは第2図 に示す方向に近くなった。) ギャップ:g1 0.6mm g2 1.0mm g3 0.7mm g4 0.8mm キャリア:Ba-Ni-Zn系フェライトキャリア (日立金属製KBN-100) Os 58emu/g iHc 24 Oe 電気抵抗 7×108Ω・cm 粒度分布 74〜149μm トナー:平均粒径 12μm トナー濃度:4重量% 以上の条件の下でN1極の磁束密度を変えて画像を作
成し、評価した。その結果を第1表に示す。
Photoconductor drum: Se drum with an outer diameter of 80 mm, surface potential +720 V, peripheral speed of 100 mm / sec Sleeve: SUS304 sleeve with an outer diameter of 34 mm, peripheral speed of 200 mm / sec (v s / v p 2.0) Permanent magnet: Ba ferrite with an outer diameter of 31 mm Angle between magnet N 1 pole-S 1 pole 45 ° (The vector of the magnetic field line at point P became closer to the direction shown in Fig. 2.) Gap: g 1 0.6mm g 2 1.0mm g 3 0.7mm g 4 0.8mm Carrier: Ba-Ni-Zn ferrite carrier (KBN-100 made by Hitachi Metals) Os 58emu / g i Hc 24 Oe Electric resistance 7 × 10 8 Ω ・ cm Particle size distribution 74 to 149 μm Toner: Average particle size 12 μm Toner concentration: 4 Under the condition of weight% or more, the magnetic flux density of the N 1 pole was changed to create an image and evaluated. The results are shown in Table 1.

第1表から、N1極の磁束密度が750〜1000Gでは良好
な現像が行なえるが、600Gではキャリア付着が多くな
り、1100Gではたてすじが発生することがわかる。
It can be seen from Table 1 that good development can be performed when the magnetic flux density of the N 1 pole is 750 to 1000 G, but carrier adhesion increases at 600 G and vertical streaks occur at 1100 G.

実験例2 N1極とS1極間の角度および磁力を第2.1表に示すよ
うに変えた以外は実験例1と同様の条件で実験を行なっ
た。その結果を第2.2表に示す。
Experimental Example 2 An experiment was conducted under the same conditions as in Experimental Example 1 except that the angle between the N 1 pole and the S 1 pole and the magnetic force were changed as shown in Table 2.1. The results are shown in Table 2.2.

上記から、磁力線の向きがスリーブに近い程後端欠け
が生じにくいことがわかる。しかしながら搬送磁極が現
像磁極に近過ぎると磁路が短かくなるため、実質上のス
リーブ表面磁束密度が低下しキャリア付着が増大するこ
とがわかる。またN1極とS1極間の角度θを変えて上記
と同様の実験を行なった結果、θが24°以上でかつ53°
未満の場合に良好な結果が得られることがわかった。更
にスリーブの外径D(mm)を変えて上記と略同様の実験
を行なった結果、800<θ・D<1800となるような磁極
配列により良好な現像が行なえることがわかった。
From the above, it can be seen that the rear end chipping is less likely to occur as the direction of the magnetic force lines is closer to the sleeve. However, it can be seen that when the transport magnetic pole is too close to the developing magnetic pole, the magnetic path becomes short, so that the magnetic flux density on the sleeve surface is substantially reduced and carrier adhesion increases. Further, as a result of conducting the same experiment as above with changing the angle θ between the N 1 pole and the S 1 pole, θ is 24 ° or more and 53 °
It has been found that good results are obtained with less than. Further, as a result of conducting an experiment similar to the above by changing the outer diameter D (mm) of the sleeve, it was found that good development can be performed by the magnetic pole arrangement such that 800 <θ · D <1800.

実験例3 N1極の磁束密度を800Gとし、g1を変えた以外は実験
例1と同様の条件(但しg1に応じてg2も若干変化させ
た)で実験を行なった。その結果を第4表に示す。
Experimental Example 3 An experiment was performed under the same conditions as in Experimental Example 1 except that the magnetic flux density of the N 1 pole was 800 G and g 1 was changed (however, g 2 was slightly changed according to g 1 ). Table 4 shows the results.

第3表から、g1が1.0mm以下の場合において高い画像
濃度が得られることがわかる。ただしg1が0.2mmの場合
は、連続15,000枚のコピーでドラム傷が生じた。
It can be seen from Table 3 that a high image density can be obtained when g 1 is 1.0 mm or less. However, when g 1 was 0.2 mm, drum scratches occurred after 15,000 continuous copies.

実験例4 N1極の磁束密度を800Gとし、スリーブの回転方向を
逆にした以外は実験例1と同様の条件(但しドクター部
材の位置を変更)で実験を行なった。その結果、中間調
の再現性が低下することがわかった。
Experimental Example 4 An experiment was performed under the same conditions as in Experimental Example 1 (however, the position of the doctor member was changed) except that the magnetic flux density of the N 1 pole was 800 G and the rotating direction of the sleeve was reversed. As a result, it was found that the reproducibility of halftones was reduced.

実験例5 N1極の磁束密度を800Gとし、スリーブの回転数を変
えた以外は実験例1と同様の条件で実験を行なった。そ
の結果を第3表に示す。
Experimental Example 5 An experiment was conducted under the same conditions as in Experimental Example 1 except that the magnetic flux density of the N 1 pole was 800 G and the rotation speed of the sleeve was changed. The results are shown in Table 3.

第4表から、vs/vpが1.0の時は画像濃度が不足し、
4.0の時はキャリア付着とトナーの飛散が多くなること
がわかる。
From Table 4, when v s / v p is 1.0, the image density is insufficient,
It can be seen that at 4.0, carrier adhesion and toner scattering increase.

実験例6 N1極の磁束密度を800Gとし、攪拌ローラの回転方向
を逆にした以外は実験例1と同様の条件で実験を行なっ
た。その結果は、現像槽4の開口14からのトナーの吹き
出しが多くなることがわかった。
Experimental Example 6 An experiment was performed under the same conditions as in Experimental Example 1 except that the magnetic flux density of the N 1 pole was 800 G and the rotating direction of the stirring roller was reversed. As a result, it was found that the amount of toner blown out from the opening 14 of the developing tank 4 increased.

実験例7 N1極の磁束密度を800Gとし、g3およびg4を0.8〜3.
0mmの範囲で変えた以外は実験例1と同様の条件で実験
を行なった。その結果、g3およびg4が1.0mmより大き
くなると、トナー飛散が多くなることがわかった。
Experimental Example 7 The magnetic flux density of the N 1 pole was 800 G, and g 3 and g 4 were 0.8 to 3.
An experiment was conducted under the same conditions as in Experimental Example 1 except that the range was changed to 0 mm. As a result, it was found that when g 3 and g 4 were larger than 1.0 mm, the toner scattering increased.

〔発明の効果〕〔The invention's effect〕

以上の通り、本発明の現像装置は、現像磁極の強さや
現像ギャップのみならず、スリーブの移動方向およびそ
の移動速度、現像領域における磁力線の向きおよび現像
領域下流側の現像槽開口部の構造についても特定の範囲
としているので、フェライトキャリアを使用した場合に
おける良好な現像を行なうことができる。
As described above, in the developing device of the present invention, not only the strength of the developing magnetic pole and the developing gap, but also the moving direction and moving speed of the sleeve, the direction of magnetic force lines in the developing area, and the structure of the developing tank opening on the downstream side of the developing area are described. Since it is within a specific range, good development can be performed when a ferrite carrier is used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る現像装置の断面図、第
2図は第1図の要部拡大図、第3図は従来の現像装置の
要部を示す断面図である。 1:感光体ドラム、2:現像装置、3:現像剤、4:現像槽、5:
非磁性スリーブ、6:永久磁石部材、7:攪拌ローラ。
FIG. 1 is a sectional view of a developing device according to an embodiment of the present invention, FIG. 2 is an enlarged view of a main part of FIG. 1, and FIG. 3 is a sectional view showing a main part of a conventional developing device. 1: photoconductor drum, 2: developing device, 3: developer, 4: developing tank, 5:
Non-magnetic sleeve, 6: permanent magnet member, 7: stirring roller.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】飽和磁化が45〜100emu/g、保磁力が1〜30
Oe、電気抵抗が106〜1010Ω・cmの範囲にありかつ平均
粒度が50〜200μmの範囲にあるフェライトキャリアと
トナーとを含む現像剤を収容する現像槽と、静電潜像担
持体と対向しそれとの間に現像領域を形成しかつ前記現
像槽内に回転自在に設けられた非磁性スリーブと、前記
非磁性スリーブ内に固設された複数個の磁極を有する永
久磁石部材と、前記現像槽内に回転自在に設けられた現
像剤攪拌部材とを有する現像装置において、前記非磁性
スリーブは前記担持体との対向部において0.3〜1.0mmの
間隙を形成すると共に前記担持体の表面移動速度の1.5
〜3倍の表面移動速度で前記担持体と同方向に回転し、
前記永久磁石部材の磁極のうち前記担持体と対向する現
像磁極はスリーブ上で700〜1000Gの範囲の磁束密度を有
すると共に、前記現像磁極の中心とこの磁極より下流側
に隣接し、この磁極とは極性の異なる搬送磁極の中心と
のなす角度をθ(度)、および前記非磁性スリーブの外
径をD(mm)としたとき、下記式800<D・θ<1800を
満足するような磁極配列がなされており、前記現像剤攪
拌部材は前記非磁性スリーブと同方向に回転し、そして
前記現像領域の下流側における前記現像槽の開口内壁と
現像剤層間との間隙および/又は前記現像槽の開口先端
と前記担持体との間隙を1mm以下としたことを特徴とす
る現像装置。
1. A saturation magnetization of 45 to 100 emu / g and a coercive force of 1 to 30.
Oe, a developing tank for storing a developer containing a ferrite carrier and toner having an electric resistance of 10 6 to 10 10 Ω · cm and an average particle size of 50 to 200 μm, and an electrostatic latent image carrier A non-magnetic sleeve which is opposed to and which forms a developing region between the non-magnetic sleeve and the developing tank, and the permanent magnet member having a plurality of magnetic poles fixedly mounted in the non-magnetic sleeve; In a developing device having a developer stirring member rotatably provided in the developing tank, the non-magnetic sleeve forms a gap of 0.3 to 1.0 mm at a portion facing the carrier and the surface of the carrier. Movement speed of 1.5
Rotate in the same direction as the carrier at a surface moving speed of ~ 3 times,
Of the magnetic poles of the permanent magnet member, the developing magnetic pole facing the carrier has a magnetic flux density in the range of 700 to 1000 G on the sleeve, and is adjacent to the center of the developing magnetic pole and the downstream side of the magnetic pole. Is a magnetic pole that satisfies the following formula 800 <D · θ <1800, where θ (degrees) is the angle formed by the centers of the carrier magnetic poles with different polarities and D (mm) is the outer diameter of the non-magnetic sleeve. The developer stirring member rotates in the same direction as the non-magnetic sleeve, and the gap between the inner wall of the opening of the developer tank and the developer layer on the downstream side of the developing area and / or the developer tank is arranged. The developing device is characterized in that the gap between the tip of the opening and the carrier is 1 mm or less.
JP62260962A 1987-10-16 1987-10-16 Development device Expired - Lifetime JPH087498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260962A JPH087498B2 (en) 1987-10-16 1987-10-16 Development device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260962A JPH087498B2 (en) 1987-10-16 1987-10-16 Development device

Publications (2)

Publication Number Publication Date
JPH01102588A JPH01102588A (en) 1989-04-20
JPH087498B2 true JPH087498B2 (en) 1996-01-29

Family

ID=17355179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260962A Expired - Lifetime JPH087498B2 (en) 1987-10-16 1987-10-16 Development device

Country Status (1)

Country Link
JP (1) JPH087498B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727298B2 (en) * 1989-04-28 1995-03-29 三田工業株式会社 Development method with excellent character reproducibility
JPH034268A (en) * 1989-05-31 1991-01-10 Canon Inc Developing device
JPH034263A (en) * 1989-05-31 1991-01-10 Canon Inc Magnetic brush developing device
JP2000172078A (en) * 1998-12-04 2000-06-23 Fuji Xerox Co Ltd Image forming method
WO2001007969A1 (en) 1999-07-23 2001-02-01 Fujitsu Limited Apparatus for image formation and developing machine
KR100583437B1 (en) * 2003-10-13 2006-05-26 삼성전자주식회사 Electro-photographic laser printer
JP2020076832A (en) 2018-11-06 2020-05-21 キヤノン株式会社 Image forming apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120173A (en) * 1984-11-16 1986-06-07 Konishiroku Photo Ind Co Ltd Formation of image
JPS62175766A (en) * 1986-01-29 1987-08-01 Hitachi Metals Ltd Method for developing electrostatic charging image

Also Published As

Publication number Publication date
JPH01102588A (en) 1989-04-20

Similar Documents

Publication Publication Date Title
US7412194B2 (en) Developing apparatus
US6898406B2 (en) Developing device having a developer forming a magnet brush
EP0148904A1 (en) Improved electrographic development method, apparatus and system
JPS59193474A (en) Developing device
JP2759527B2 (en) Electrophotographic development
JP2004029306A (en) Developer replenishing container, developing unit for replenishment, and image forming device
JPH087498B2 (en) Development device
JP3636535B2 (en) Development method
JPS59192262A (en) Electrophotographic magnetic developer
JPS6129856A (en) Electrostatic latent image developing method
JP4078172B2 (en) Replenishment developer, image forming method and image forming apparatus
JPS603675A (en) Electrostatic charge image developing device
JP3047074B2 (en) High density development method
JP2659091B2 (en) Electrostatic image development method
JP3009436B2 (en) Development method
JP3047073B2 (en) High density development method
JPH05150667A (en) Developing device
JPS62231276A (en) Developing device
JPH0410605Y2 (en)
JPS62294259A (en) Developer for electrostatic charge image
GB2121323A (en) Developing electrostatic latent images
JPH0279863A (en) Developing method
JP3009435B2 (en) Magnetic brush development method
JP2669962B2 (en) Developer
JPH07319288A (en) Developing method