JPH034268A - Developing device - Google Patents
Developing deviceInfo
- Publication number
- JPH034268A JPH034268A JP13895889A JP13895889A JPH034268A JP H034268 A JPH034268 A JP H034268A JP 13895889 A JP13895889 A JP 13895889A JP 13895889 A JP13895889 A JP 13895889A JP H034268 A JPH034268 A JP H034268A
- Authority
- JP
- Japan
- Prior art keywords
- developing
- magnetic
- sleeve
- developer
- magnetic pole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006249 magnetic particle Substances 0.000 claims abstract description 28
- 239000002245 particle Substances 0.000 claims description 33
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 230000005684 electric field Effects 0.000 claims description 4
- 230000004907 flux Effects 0.000 abstract description 15
- 238000007788 roughening Methods 0.000 abstract 2
- 230000032258 transport Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010415 tidying Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- -1 alkylbenzene sulfonate Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Brush Developing In Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は現像装置、特に電子写真複写機、静電記録機、
磁気記録機等の画像形成装置に適用する現像装置に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a developing device, particularly an electrophotographic copying machine, an electrostatic recording machine,
The present invention relates to a developing device applied to an image forming apparatus such as a magnetic recording machine.
電子写真複写機、静電記録機、磁気記録機等の画像形成
装置として、非磁性トナーと磁性粒子(キャリア)を有
する2成分現像剤を使用する磁気ブラシ現像装置が広く
用いられている。2. Description of the Related Art Magnetic brush developing devices that use a two-component developer containing non-magnetic toner and magnetic particles (carrier) are widely used as image forming devices such as electrophotographic copying machines, electrostatic recording machines, and magnetic recording machines.
この磁気ブラシ現像装置の1つとして現像容器に回転自
在に取付けた現像剤支持手段としての非磁性同筒(以下
スリーブと称す)と、
このスリーブ内にあって固定された複数の磁極を配置し
た磁石ローラとを具備し、スリーブの回転により現像剤
を搬送するもので、像担持体と略対向した現像位置に磁
石(以下現像磁極と称す)を配設したものが知られてい
る。また、画質向上の目的で、前記スリーブと像担持体
の対向する現像位置に交番電界を形成することにより、
画像の掃き寄せを防止し、中間調画像の再現性を向上さ
せたものが知られている。さらに、近来、高画質画像の
要求が高まっていることからトナーを小粒径にすること
により高解像・高精細画像を得ようとしたものがあるが
、ただ単にトナーを小粒径化しただけでは、トナーの供
給能力が低下するのでキャリアを小粒径化したものが知
られている。One of the magnetic brush developing devices includes a non-magnetic cylinder (hereinafter referred to as a sleeve) as a developer support means rotatably attached to a developer container, and a plurality of magnetic poles fixed within this sleeve. It is known that the image forming apparatus includes a magnetic roller and conveys the developer by rotating the sleeve, and a magnet (hereinafter referred to as a developing magnetic pole) is disposed at a developing position substantially facing the image carrier. Further, for the purpose of improving image quality, by forming an alternating electric field at the developing position where the sleeve and the image carrier face each other,
There are known devices that prevent images from being swept together and improve the reproducibility of halftone images. Furthermore, as the demand for high-quality images has increased in recent years, some attempts have been made to obtain high-resolution and high-definition images by reducing the particle size of toner; Since the toner supply capacity decreases if the carrier is used alone, carriers with smaller particle diameters are known.
しかしながら、上記従来例ではキャリアを小粒径化した
ため、キャリアが像担持体に付着し、それにより画像の
欠陥を生じる場合があった。However, in the conventional example described above, since the particle size of the carrier is reduced, the carrier may adhere to the image bearing member, thereby causing image defects.
また画像の緻密さが、特にハーフトーンにおいて不十分
で「ガサツキ」のある貧弱な画像となる場合があった。In addition, the density of the image was insufficient, especially in halftones, resulting in a poor image with "ruggedness".
本発明によれば、重量平均粒径30〜80μmの磁性粒
子と体積平均粒径が10μm以下の非磁性トナーを有す
る2成分現像剤を用い、像担持体に対向して相対移動し
、前記現像剤を支持して現像位置へ搬送する現像剤担持
体と、該現像剤担持体内部にあって固定された複数の磁
極とを具備し、前記現像位置に交番電界を形成する現像
装置において、現像磁極800ガウス以上(好ましくは
1000ガウス以上)とし、該現像磁極の位置を前記像
担持体との最近接位置より3度から10度(より好まし
くは3度から5度)離した位置とするとともに、前記磁
性粒子の重量平均粒径をD[μm]とし、像担持体に対
する現像剤担持体の周速比
をAとするとき、
とすることにより「キャリア付着」、「画像のガサツキ
」および「現像剤の飛散」を防止するものである。According to the present invention, a two-component developer having magnetic particles with a weight average particle size of 30 to 80 μm and a non-magnetic toner with a volume average particle size of 10 μm or less is used, and the developer is moved relative to the image carrier, and A developing device that includes a developer carrier that supports and transports a developer to a developing position, and a plurality of magnetic poles fixed inside the developer carrier, and that forms an alternating electric field at the developing position. The magnetic pole is 800 gauss or more (preferably 1000 gauss or more), and the developing magnetic pole is located 3 degrees to 10 degrees (more preferably 3 degrees to 5 degrees) away from the closest position to the image carrier, and , when the weight average particle diameter of the magnetic particles is D [μm], and the circumferential speed ratio of the developer carrier to the image carrier is A, then "carrier adhesion", "image roughness" and " This prevents the developer from scattering.
以下に本発明の一実施例を添付図面に基づいて説明する
。An embodiment of the present invention will be described below based on the accompanying drawings.
第1図は本発明をドラム型電子写真感光体を使用する複
写機に適用した第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment in which the present invention is applied to a copying machine using a drum-type electrophotographic photoreceptor.
図には省略したが、感光ドラム6の周囲には周知の電子
写真プロセス手段である帯電機構、画像露光機構、転写
機構、クリーニング機構、除電機構等が配設されている
。Although not shown in the figure, well-known electrophotographic process means such as a charging mechanism, an image exposure mechanism, a transfer mechanism, a cleaning mechanism, and a static elimination mechanism are arranged around the photosensitive drum 6.
当該現像装置は例えば、感光体、誘電体等の潜像担持体
l上に電子写真法、静電記録法等によって形成された潜
像を現像するものであって、これは現像容器2、現像剤
担持体としての現像スリーブ3、現像剤層規制部材とし
てのブレード4等を含んで構成される。即ち、現像容器
2の潜像担持体lに近接する位置には開口部、が形成さ
れており、この開口部に前記現像スリーブ3が回転可能
に設けられており、該現像スリーブ3の上方に前記ブレ
ード4が所定隙間を設けて取り付けられている。The developing device develops a latent image formed on a latent image carrier l such as a photoreceptor or dielectric by electrophotography, electrostatic recording, etc. It is configured to include a developing sleeve 3 as a developer carrier, a blade 4 as a developer layer regulating member, and the like. That is, an opening is formed in the developing container 2 at a position close to the latent image carrier l, and the developing sleeve 3 is rotatably provided in this opening. The blade 4 is attached with a predetermined gap.
尚、上記現像スリーブ3は非磁性材料で構成され、現像
動作時には図示矢印方向に回転し、その内部には磁界発
生手段である磁石13が固定されており、磁石13は感
光ドラム1にスリーブ3から現像剤を付与する現像位置
に磁界を形成し、磁気ブラシをこの位置に形成する現像
磁極S、と後述の現像剤8を搬送する磁極N I *
N 2+ S 2+ N 3とを有する31は現像ロ
ーラであり、上記現像スリーブ3と磁石13とから構成
される装置
Lは現像スリーブ3の中心と像担持体lの中心を結んだ
一点鎖線であり、現像スリーブ3と像担持体1の対向中
心を示すものであり、この部分で現像スリーブ3と像担
持体lは最近接位置となっており、現像領域(現像位置
)の中央位置でもある。The developing sleeve 3 is made of a non-magnetic material and rotates in the direction of the arrow in the figure during the developing operation, and has a magnet 13 fixed therein as a magnetic field generating means. A developing magnetic pole S that forms a magnetic field at a developing position to which a developer is applied and forms a magnetic brush at this position, and a magnetic pole N I * that conveys a developer 8, which will be described later.
31 having N 2+ S 2+ N 3 is a developing roller, and the device L composed of the developing sleeve 3 and the magnet 13 is indicated by a chain line connecting the center of the developing sleeve 3 and the center of the image carrier l. , which indicates the center of the opposing relationship between the developing sleeve 3 and the image carrier 1, where the developing sleeve 3 and the image carrier 1 are closest to each other, and is also the central position of the developing area (developing position).
θは現像スリーブ3の中心に対する現像磁極と一点鎖線
りとの角度であり、現像磁極が現像スリーブの移動方向
に対して一点鎖線りよりも上流にある場合を十として下
流にある場合を−とする。θ is the angle between the developing magnetic pole and the dashed-dotted line with respect to the center of the developing sleeve 3; when the developing magnetic pole is upstream of the dashed-dotted line with respect to the moving direction of the developing sleeve, it is 0, and when it is downstream, it is −. do.
即ち現像磁極の極位置はθにより示すことができる。又
、前記ブレード4はアルミニウム(AI!。That is, the pole position of the developing magnetic pole can be indicated by θ. Further, the blade 4 is made of aluminum (AI!).
5US316)等の非磁性材料にて構成され、これは前
述の如く現像スリーブ3の表面との間に所定の隙間を設
けて取り付けられ、この隙間は現像スリーブ3上を現像
部へと搬送される現像剤8の量、具体的には現像スリー
ブ3上の現像剤8の厚さを規制する。従って、本実施例
においては、ブレード4の先端部と現像スリーブ3の表
面との間を非磁性トナーと磁性粒子の双方が通過して現
像部へ送られる。5US316), etc., and as mentioned above, it is attached with a predetermined gap between it and the surface of the developing sleeve 3, and the developing sleeve 3 is transported over this gap to the developing section. The amount of developer 8, specifically, the thickness of developer 8 on developing sleeve 3 is regulated. Therefore, in this embodiment, both non-magnetic toner and magnetic particles pass between the tip of the blade 4 and the surface of the developing sleeve 3 and are sent to the developing section.
現像剤8は、非磁性トナー81と磁性粒子(キャリア)
82とからなる2成分現像剤である。The developer 8 includes a non-magnetic toner 81 and magnetic particles (carrier).
It is a two-component developer consisting of 82.
非磁性トナー81は、10μm以下の体積平均粒径を有
するものを使用した。体積平均粒径は100μmのアパ
ーチャーを使用しコールタ−カウンタTA−IIを使用
して測定した。The non-magnetic toner 81 used had a volume average particle diameter of 10 μm or less. The volume average particle size was measured using a Coulter Counter TA-II using a 100 μm aperture.
即ち、測定装置としてコールタ−カウンターTAn型(
コールタ−社製)を用い、個数平均分布、体積平均分布
を出力するインターフェイス(日科機製)及びCX−1
パーソナルコンピユータ(キャノン製)を接続し電解液
は1級塩化ナトリウムを用いて1%NaCj!水溶液を
調製する。That is, a Coulter counter TAn type (
CX-1 and an interface (manufactured by Nikkaki) that outputs the number average distribution and volume average distribution using
A personal computer (manufactured by Canon) is connected, and the electrolyte is 1% NaCj using primary sodium chloride! Prepare an aqueous solution.
測定法としては前記電解水溶液100〜150m!!中
に分散剤として界面活性剤、好ましくはアルキルベンゼ
ンスルホン酸塩を0.1〜5ml加え、さらに測定試料
を0.5〜50 m g加える。The measurement method is 100 to 150 m of the electrolytic aqueous solution! ! 0.1 to 5 ml of a surfactant, preferably an alkylbenzene sulfonate, as a dispersant is added therein, and 0.5 to 50 mg of a measurement sample is added thereto.
試料を懸濁した電解液は超音波分散器で約l〜3分間分
散処理を行い、前記コールタ−カウンターTA−If型
により、アパチャーとして100μmアパチャーを用い
て2〜40μmの粒子の粒度分布を測定して体積平均分
布を求める。The electrolytic solution in which the sample was suspended was dispersed for about 1 to 3 minutes using an ultrasonic disperser, and the particle size distribution of particles of 2 to 40 μm was measured using a 100 μm aperture using the Coulter counter TA-If type. to find the volume average distribution.
これら求めた体積平均分布より、体積平均粒径を得る。The volume average particle diameter is obtained from the volume average distribution thus determined.
82は磁性粒子であり重量平均粒径が30〜80μm1
好ましくは40〜70μmで抵抗値が10’Ω以上、好
ましくは10”ΩCm以上にフェライト粒子(最大磁化
60emu/g)へ樹脂コーティングしたものが用いら
れ得る。82 is a magnetic particle with a weight average particle size of 30 to 80 μm1
Ferrite particles (maximum magnetization 60 emu/g) coated with a resin preferably have a resistance value of 10'Ω or more, preferably 10''ΩCm or more with a diameter of 40 to 70 μm.
なお、磁性粒子の抵抗値の測定は測定電極面積4crr
f、電極間間隙0.4cmのサイドイツチタイブのセル
を用い、片方の電極に1Kg重量の加圧下で、両電極間
の印加電圧E(V/Cm)を印加して、回路に流れた電
流から磁性粒子の抵抗値を得るという方法をとっている
。The resistance value of the magnetic particles is measured using a measuring electrode area of 4 crr.
f. Using a side-Germany type cell with an electrode gap of 0.4 cm, the voltage E (V/Cm) between both electrodes was applied under a pressure of 1 kg to one electrode, and the current flowing through the circuit was measured. The method used is to obtain the resistance value of the magnetic particles from
この現像剤8は現像部へ搬送され、スリーブ3に保持さ
れたまま搬送磁極N、へと搬送される。This developer 8 is transported to the developing section, and is transported to the transport magnetic pole N while being held by the sleeve 3.
12は現像剤の飛散防止と、上流側への引き戻しを防止
するための整穂部材であり、その一端は自由端で他端は
現像容器2に固設されており、その自由端側の一部は、
搬送磁極N、または、その上流で現像剤と接触している
。Reference numeral 12 denotes a tidying member for preventing the developer from scattering and being pulled back to the upstream side.One end of the tidying member is a free end, and the other end is fixed to the developer container 2. The department is
It is in contact with the developer at or upstream of the transport magnetic pole N.
上記現像部へ送られた現像剤8はスリーブ3に保持され
たまま、搬送磁極N、へと搬送されるが、搬送磁極N、
で穂立ちした時の飛散を防止し、現像磁極S1方向への
引き戻され防止するものである。The developer 8 sent to the developing section is transported to the transport magnetic pole N while being held in the sleeve 3.
This prevents the particles from scattering when they stand up, and prevents them from being pulled back toward the developing magnetic pole S1.
搬送磁極N、と磁極N2は同極であり両者の間には反発
磁界が発生している。従ってスリーブ3に保持されたま
ま、搬送磁極N、へと搬送された現像剤は、この反発磁
界の作用により、スリーブ3から取り除かれ、後述する
第1搬送手段9により、撹拌混合され磁極N2近傍で、
新に現像剤を供給される。The transport magnetic pole N and the magnetic pole N2 have the same polarity, and a repulsive magnetic field is generated between them. Therefore, the developer held in the sleeve 3 and transported to the transport magnetic pole N is removed from the sleeve 3 by the action of this repulsive magnetic field, and is stirred and mixed by the first transport means 9, which will be described later, to the vicinity of the magnetic pole N2. in,
New developer is supplied.
即ち、スリーブ3上の現像履歴を受けた現像剤は剥離除
去され、十分に混合された新たな現像剤がスリーブ3へ
常に供給されるので安定して良好な画像が得られる。That is, the developer that has undergone the development history on the sleeve 3 is peeled off and new developer that has been sufficiently mixed is constantly supplied to the sleeve 3, so that stable and good images can be obtained.
ところで、上記現像容器2の内部は第1図の紙面垂直方
向に延在する隔壁5によって現像室(第1室)S−+と
撹拌室(第2室)S−2とに区画され、撹拌室S−2の
上方には隔壁6を隔ててトナー収容室S=aが形成され
、該トナー収容室S−3内には補給用トナー(非磁性ト
ナー)81が収容されている。尚、隔壁6には補給口6
aが開口しており、該補給口6aを経て消費されたトナ
ー量に見合った足の補給用トナー81が撹拌室S−2内
に落下補給される。又、上記現像室S−+及び撹拌室S
−2内には現像剤8が収容されている。尚、現像容器2
の第1図における手前側と奥側の端部においては前記隔
壁5が形成されておらず、この両端部においては現像室
S−+と撹拌室S−zとを相連通せしめる開口部(図示
せず)が形成されている。By the way, the inside of the developing container 2 is divided into a developing chamber (first chamber) S-+ and a stirring chamber (second chamber) S-2 by a partition wall 5 extending perpendicularly to the plane of the paper in FIG. A toner storage chamber S=a is formed above the chamber S-2 with a partition wall 6 in between, and replenishment toner (non-magnetic toner) 81 is stored in the toner storage chamber S-3. In addition, there is a supply port 6 in the bulkhead 6.
A is open, and an amount of replenishing toner 81 commensurate with the amount of consumed toner is dropped and replenished into the stirring chamber S-2 through the replenishing port 6a. Moreover, the above-mentioned developing chamber S-+ and stirring chamber S
-2 contains developer 8. In addition, developer container 2
The partition wall 5 is not formed at the front and back ends of FIG. (not shown) is formed.
而して、現像室S−+内には現像スリーブ3近傍の現像
容器2内底部に有って図示矢印方向(反時計方向)に回
転し、現像剤8を第1図の奥側から手前側に搬送する第
1搬送手段9と、該第1搬送手段9の上方に有って図示
矢印方向(反時計方向)に回転し、現像剤8を第1図の
手前側から奥側に搬送する第2搬送手段10とが設けら
れている。又、撹拌室S−Z内には上記第1搬送手段9
と略同−水平位置に有って図示矢印方向(時計方向)に
回転し、現像剤8を第1図の手前側から奥側に搬送する
第3搬送手段11が設けられている。尚、以上の第11
第2、第3搬送手段9. 10. 11は具体的にはス
パイラル形状を成すスクリューで構成されている。The developing chamber S-+ is located at the inner bottom of the developing container 2 near the developing sleeve 3, and rotates in the direction of the arrow shown (counterclockwise) to move the developer 8 from the back side to the front side in FIG. A first conveyance means 9 is provided above the first conveyance means 9 and rotates in the direction of the arrow shown (counterclockwise) to convey the developer 8 from the front side to the back side in FIG. A second conveying means 10 is provided. Further, the first conveying means 9 is provided in the stirring chamber S-Z.
A third conveyance means 11 is provided at approximately the same horizontal position and rotates in the direction of the arrow shown (clockwise) to convey the developer 8 from the front side to the rear side in FIG. In addition, the above 11th
Second and third conveyance means9. 10. Specifically, the reference numeral 11 is constituted by a screw having a spiral shape.
次に本発明における磁束密度の測定法を説明する。Next, a method for measuring magnetic flux density in the present invention will be explained.
第2図はスリーブ3上の垂直方向の磁束密度Bγの測定
法を説明するための図であり、ベル社のガウスメータモ
デル640を用い測定した。図中、スリーブ3は水平に
固定され、スリーブ3内の磁石ローラ13は回転自在に
取り付けられている。FIG. 2 is a diagram for explaining a method for measuring the magnetic flux density Bγ in the vertical direction on the sleeve 3, and the measurement was performed using a Gauss meter model 640 manufactured by Bell. In the figure, the sleeve 3 is fixed horizontally, and the magnet roller 13 inside the sleeve 3 is rotatably attached.
17はアキシャルプローブであり、スリーブ3との若干
の間隔を保って、スリーブ3の中心とプローブ17の中
心が略同−水平面になるよう固設され、ガウスメータ1
6と接続しており、スリーブ上の垂直方向の磁束密度を
測定するものであるスリーブ3と磁石ローラ13は略同
心円であり、スリーブ3と磁石ローラ13の間隔はどこ
でも等しいと考えてよい。Reference numeral 17 denotes an axial probe, which is fixed with a slight distance from the sleeve 3 so that the center of the sleeve 3 and the center of the probe 17 are approximately in the same horizontal plane.
The sleeve 3 and the magnet roller 13, which are connected to the sleeve 6 and measure the magnetic flux density in the vertical direction on the sleeve, are substantially concentric circles, and the spacing between the sleeve 3 and the magnet roller 13 can be considered to be equal everywhere.
従って、磁石ローラ13を回転することにより、スリー
ブ3上の垂直方向の磁束密度Bγを周方自余てに対して
測定することができる。Therefore, by rotating the magnet roller 13, the vertical magnetic flux density Bγ on the sleeve 3 can be measured with respect to the circumferential surplus.
なお、本実施例においては暗電位を一650V、明電位
を一200Vとし現像スリーブ3に交番電圧、(周波数
2000Hz1ピーク・トウ・ピーク電圧2000Vの
交流電圧に、直流電圧−350■を重畳した)を印加し
、現像位置に交番電界を形成し、現像剤を振動させて潜
像を現像した。像担持体としての感光ドラム1の外径は
φ80 m m 、現像スリーブ3の外径はφ32mm
、現像スリーブ3との規制ブレード4との間隔を500
μ、現像スリーブ3と感光ドラム1との間隔を800μ
、感光ドラムlの周速を160 m m / sとした
。現像剤層の厚みは現像位置でスリーブ、ドラム間最小
間隙より大で、現像剤層はドラムに接触して現像する。In this example, the dark potential is -650V and the bright potential is -200V, and the developing sleeve 3 is provided with an alternating voltage (a DC voltage of -350V is superimposed on an AC voltage with a frequency of 2000Hz and a peak-to-peak voltage of 2000V). was applied to form an alternating electric field at the development position, and the developer was vibrated to develop the latent image. The outer diameter of the photosensitive drum 1 as an image carrier is φ80 mm, and the outer diameter of the developing sleeve 3 is φ32 mm.
, the distance between the developing sleeve 3 and the regulating blade 4 is set to 500 mm.
μ, the distance between the developing sleeve 3 and the photosensitive drum 1 is 800μ
, the circumferential speed of the photosensitive drum l was 160 mm/s. The thickness of the developer layer is greater than the minimum gap between the sleeve and the drum at the development position, and the developer layer contacts the drum for development.
さらに、非磁性トナー81の粒径は、前述のように10
μm以下のものを使用した。Furthermore, the particle size of the non-magnetic toner 81 is 10 as described above.
A size smaller than μm was used.
なお、現像スリーブの周速を変化させることにより、
現像スリーブに感光ドラムに対する周速比Aを種々の条
件で検討した。さらに、現像磁極の磁束密度、現像磁極
の位置、磁性粒子の粒径等についても種々の条件で検討
した。By changing the circumferential speed of the developing sleeve, the circumferential speed ratio A of the developing sleeve to the photosensitive drum was investigated under various conditions. Furthermore, the magnetic flux density of the developing magnetic pole, the position of the developing magnetic pole, the particle size of the magnetic particles, etc. were also investigated under various conditions.
(実施例1)
具体的に説明すると、前述の条件にて現像磁極の磁束密
度を1000ガウス、現像磁極と一点鎖線りとの角度θ
を+5°に固定し磁性粒子82の粒径D[μm]および
周速比A[%]を種々の条件で実験した。(Example 1) Specifically, under the conditions described above, the magnetic flux density of the developing magnetic pole was 1000 Gauss, and the angle θ between the developing magnetic pole and the dashed line was
was fixed at +5°, and experiments were conducted under various conditions with the particle diameter D [μm] and circumferential speed ratio A [%] of the magnetic particles 82.
第3図はこれらの結果を説明するための図であり、横軸
は周速比A[%]、縦軸は磁性粒子の粒径D[μm]で
ある。FIG. 3 is a diagram for explaining these results, in which the horizontal axis is the circumferential speed ratio A [%], and the vertical axis is the particle diameter D [μm] of the magnetic particles.
磁性粒子の重量平均粒径りが80μmを越えると、即ち
第3図の直線り、の上側において画像上刃ブリを生じた
。磁性粒子の粒径が大きくなると磁性粒子表面積が相対
的に小さくなるため、即ち非磁性トナー81との摩擦帯
電を行なうための有効表面積が小さくなるため、トリボ
帯電の十分なトナーを生じ、これがカブリ画像になるも
のと考えられる。When the weight average particle size of the magnetic particles exceeded 80 μm, ie, edge blurring occurred on the image above the straight line in FIG. As the particle size of the magnetic particles increases, the surface area of the magnetic particles becomes relatively smaller, that is, the effective surface area for frictional charging with the non-magnetic toner 81 becomes smaller, resulting in toner with sufficient triboelectric charging, which causes fogging. It is thought that it will become an image.
このとき、カブリを防止するためにトナー濃度を小さく
すると、画像濃度が低下し、好ましくなかった。At this time, if the toner density was reduced in order to prevent fogging, the image density would decrease, which was not desirable.
逆に磁性粒子の重量平均粒径りが30μmよりも小さい
場合は、即ち直線L2の下側部分において、磁性粒子8
2自体が感光ドラムlに現像され、いわゆる「キャリア
付着」を生じる。Conversely, if the weight average particle diameter of the magnetic particles is smaller than 30 μm, that is, in the lower part of the straight line L2, the magnetic particles 8
2 itself is developed on the photosensitive drum 1, causing so-called "carrier adhesion."
その結果ベタ画像に斑点を生じるという欠点を有す。さ
らに感光ドラムlをクリーニングするときに感光ドラム
表面を磁性粒子で摺するため感光ドラム表面を傷つけ易
くなる傾向がある。As a result, it has the disadvantage of causing spots in the solid image. Furthermore, when cleaning the photosensitive drum 1, the surface of the photosensitive drum is rubbed with magnetic particles, which tends to easily damage the surface of the photosensitive drum.
現像剤8中の非磁性トナー81を体積平均粒径を10μ
m以下にすることにより、解像力の高い高精細な画像を
得ることができたが高画質画像を得るためには、磁性粒
子の重量平均粒径が重要であり30μmから80μmの
範囲が良好であった。The volume average particle size of the non-magnetic toner 81 in the developer 8 is 10μ.
It was possible to obtain a high-resolution, high-definition image by reducing the particle size to less than m. However, in order to obtain a high-quality image, the weight average particle size of the magnetic particles is important, and a range of 30 μm to 80 μm is good. Ta.
次に周速比Aについて説明すると、周速比Aが小さい場
合「ガサツキ」のある画像となり、逆に周速比Aを太き
(すると「トナー飛散」を生じる。Next, the circumferential speed ratio A will be explained. If the circumferential speed ratio A is small, the image will be rough, and conversely, if the circumferential speed ratio A is increased, it will cause "toner scattering."
このことは周速比Aだけでなく磁性粒子の粒径とも関係
している。This is related not only to the peripheral speed ratio A but also to the particle size of the magnetic particles.
磁性粒子の重量平均粒径りが30μmから80μmの範
囲において、周速比Aを変化させ検討したところ、下記
に示すような関係のあることがわかった。When the weight average particle size of the magnetic particles was in the range of 30 μm to 80 μm, the circumferential speed ratio A was varied and studied, and it was found that there was a relationship as shown below.
線L3の左側において「ガサツキ」のある画像とち直線
L4の右側において「トナー飛散」を生じる。A "rugged" image occurs on the left side of the line L3, and "toner scattering" occurs on the right side of the straight line L4.
即ち磁性粒子の重量平均粒径りが30μmから80であ
る。That is, the weight average particle diameter of the magnetic particles is 30 μm to 80 μm.
(実施例2)
実施例1と同様の構成にて現像磁極を直線りよりも5°
上流(θ=+5°)、磁性粒子の重量平均粒径を55
μm (D=55)、周速比Aを1.75に固定し、各
種現像ローラを用い現像磁極の磁束密度とキャリア付着
について得られた結果を表−1に示す。(Example 2) With the same configuration as Example 1, the developing magnetic pole was set at 5° from the straight line.
Upstream (θ = +5°), the weight average particle size of the magnetic particles is 55
Table 1 shows the results obtained regarding the magnetic flux density of the developing magnetic pole and carrier adhesion using various developing rollers, with the circumferential speed ratio A fixed at 1.75.
表−1
(実施例3)
実施例1と同様の構成にて現像磁極の磁束密度を100
0ガウス、磁性粒子の重量平均粒径を55μm(D=5
5)、周速比Aを1.75に固定し、現像磁極の位置を
θ=−15〜+15°に変化させ、「キャリア付着」に
つい−で得られた実験データを表−2に示す。Table 1 (Example 3) With the same configuration as Example 1, the magnetic flux density of the developing magnetic pole was set to 100.
0 Gauss, and the weight average particle diameter of the magnetic particles was 55 μm (D=5
5) The peripheral speed ratio A was fixed at 1.75, the position of the developing magnetic pole was varied from θ=-15 to +15°, and experimental data obtained regarding "carrier adhesion" is shown in Table 2.
表−2
×:キャリア付着多 不良
△:キャリア付着少 良好(許容)
○:キャリア付着微少 良好
◎:キャリア付着極少 極めて良好
現像磁極の磁束密度が80ガウス以上では、「キャリア
付着」は問題とならないレベルであり、特に1000ガ
ウス以上では極めて良好であったが、750ガウスでは
ベタ画像に斑点を生じ不可であった。Table-2 ×: Too much carrier adhesion Poor △: Little carrier adhesion Good (acceptable) ○: Very little carrier adhesion Good ◎: Very little carrier adhesion Very good When the magnetic flux density of the developing magnetic pole is 80 Gauss or more, "carrier adhesion" is not a problem. In particular, at 1000 gauss or higher, it was extremely good, but at 750 gauss, spots appeared on the solid image and were not acceptable.
現像磁極の極位置がθ=±3°〜10°の場合は、キャ
リア付着は良好であり、特にθ=±3°〜5°が極めて
良好であったがθ=0°およびθ=±15゜では不良で
あった。なお現像磁極の極位置を上流側にθ=+3°〜
10’ とした場合、ペタ画像が緻密となる傾向がや
やあった。When the pole position of the developing magnetic pole was θ=±3° to 10°, carrier adhesion was good, especially when θ=±3° to 5°, it was very good, but when θ=0° and θ=±15 It was bad at ゜. In addition, the pole position of the developing magnetic pole is set to the upstream side by θ = +3°~
When it was set to 10', there was a slight tendency for the peta image to become dense.
また、現像磁極の極位置を下流側にθ=−3a〜10’
とした場合、画像がやや鮮明となる傾向があった。Also, change the pole position of the developing magnetic pole to the downstream side θ=-3a to 10'
In this case, the image tended to be slightly clearer.
(実施例4)
実施例1と同様の構成にて磁性粒子の重量平均粒径を5
5 μm (D=55)、周速比Aを1.75、現像磁
極の磁束密度を100OG、極位置をθ=+5°に固定
し、現像磁極の磁束密度の半値中を35°〜45°に変
化させ、画質の評価を行ない、得られた実験結果を表−
3に示す。(Example 4) The weight average particle diameter of the magnetic particles was 5 in the same configuration as in Example 1.
5 μm (D=55), circumferential speed ratio A of 1.75, magnetic flux density of the developing magnetic pole is fixed at 100OG, pole position is fixed at θ=+5°, and the half value of the magnetic flux density of the developing magnetic pole is 35° to 45°. The image quality was evaluated and the experimental results obtained are shown in the table.
Shown in 3.
表−3
現像磁極の半値巾が40°以内の場合は、画像が鮮明で
画質が良好であり、特に半値巾が35°のときは、極め
て良好であったが、半値中が45°の場合は不良であっ
た。Table 3 When the half-width of the developing magnetic pole was within 40°, the image was clear and the image quality was good, especially when the half-width was 35°, it was extremely good, but when the half-width was 45° was defective.
以上のように、本発明によれば像担持体へのキャリア付
着、画像のがサツキ、現像剤の飛散を防止する効果を有
する。As described above, the present invention has the effect of preventing carrier adhesion to an image bearing member, image blurring, and developer scattering.
第1図は本発明をドラム型感光体を使用する複写装置に
適用した一実施例の断面図、第2図は垂直方向の磁束密
度Bγの測定方法を説明するための図、第3図は本発明
の実施形態を説明するための図である。
l・・・ 像担持体
2・・・ 現像容器
3・・・ 現像スリーブ
13・・・ 磁石
8・・・ 現像剤
81・・・ 非磁性トナー
82・・・
Sl・・・
L・・・
θ・・・
A・・・
磁性粒子
現像磁極
現像スリーブ中心と像担持体中心との直線現像磁極と像
担持体対向中心(直線L)との角度(スリーブ移動方向
に対して上流側を正、下流側を負)
現像スリーブの像担持体に対する周速比ヤ2因
M″ILでハ〔悴〕FIG. 1 is a sectional view of an embodiment of the present invention applied to a copying apparatus using a drum-type photoreceptor, FIG. 2 is a diagram for explaining a method for measuring the magnetic flux density Bγ in the vertical direction, and FIG. FIG. 1 is a diagram for explaining an embodiment of the present invention. l... Image carrier 2... Developer container 3... Developing sleeve 13... Magnet 8... Developer 81... Non-magnetic toner 82... Sl... L... θ ... A... Magnetic particle development magnetic pole The linear angle between the development sleeve center and the image carrier center and the image carrier opposing center (straight line L) (upstream side is positive with respect to the sleeve movement direction, downstream side is (negative side) The peripheral speed ratio of the developing sleeve to the image carrier is 2 factors M″IL.
Claims (4)
均粒径が10μm以下の非磁性トナーを有する2成分現
像剤を用い、像担持体に対向して相対移動し、前記現像
剤を支持して現像位置へ搬送する現像剤担持体と、該現
像剤担持体内部にあって固定された複数の磁極とを具備
し、前記現像位置に交番電界を形成する現像装置におい
て、現像磁極を800ガウス以上とし、該現像磁極の位
置を前記像担持体と現像剤担持体との最近接位置より3
度から10度離した位置とするとともに、前記磁性粒子
の重量平均粒径をD[μm]とし、像担持体に対する現
像剤担持体の周速比(現像剤担持体の移動速度/像担持
体の移動速度×100[%])をAとするとき、 (D+295)/250≦A≦(D+595)/250
であることを特徴とする現像装置。(1) A two-component developer having magnetic particles with a weight average particle size of 30 to 80 μm and a non-magnetic toner with a volume average particle size of 10 μm or less is used, and the developer is supported by moving relative to the image carrier. In a developing device, the developing device includes a developer carrier that is conveyed to a developing position, and a plurality of magnetic poles fixed inside the developer carrier, and that forms an alternating electric field at the developing position. Gauss or higher, and the position of the developing magnetic pole is 3 points from the closest position between the image carrier and the developer carrier.
The weight average particle diameter of the magnetic particles is D [μm], and the circumferential speed ratio of the developer carrier to the image carrier (moving speed of the developer carrier/image carrier When A is the moving speed of
A developing device characterized by:
像磁極の位置が前記現像剤担持体と像担持体との最近接
位置より現像剤担持体移動方向上流側に3度から10度
離れた位置であることを特徴とする現像装置。(2) In the developing device according to claim 1, the position of the developing magnetic pole is 3 degrees to 10 degrees upstream in the direction of movement of the developer carrier from the closest position between the developer carrier and the image carrier. A developing device characterized by being located at a remote location.
像磁極の位置が前記現像剤担持体と像担持体との最近接
位置より現像剤担持体移動方向下流側に3度から10度
離れた位置であることを特徴とする現像装置。(3) In the developing device according to claim 1, the position of the developing magnetic pole is 3 degrees to 10 degrees downstream in the direction of movement of the developer carrier from the closest position between the developer carrier and the image carrier. A developing device characterized by being located at a remote location.
において、前記現像磁極の半値巾が40度以下であるこ
とを特徴とする現像装置。(4) The developing device according to claim 1, 2, or 3, wherein the half width of the developing magnetic pole is 40 degrees or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13895889A JPH034268A (en) | 1989-05-31 | 1989-05-31 | Developing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13895889A JPH034268A (en) | 1989-05-31 | 1989-05-31 | Developing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH034268A true JPH034268A (en) | 1991-01-10 |
Family
ID=15234146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13895889A Pending JPH034268A (en) | 1989-05-31 | 1989-05-31 | Developing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH034268A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5864062A (en) * | 1996-11-18 | 1999-01-26 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor acceleration sensor |
US6094984A (en) * | 1993-11-09 | 2000-08-01 | Murata Manufacturing Co., Ltd. | Acceleration sensor with a circuit board separated from a base plate by a space |
JP2008134167A (en) * | 2006-11-29 | 2008-06-12 | Kurashiki Kako Co Ltd | Acceleration sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63128380A (en) * | 1986-11-18 | 1988-05-31 | Kanegafuchi Chem Ind Co Ltd | Magnet roll |
JPS6468777A (en) * | 1987-09-08 | 1989-03-14 | Minolta Camera Kk | Developing device |
JPH01102588A (en) * | 1987-10-16 | 1989-04-20 | Hitachi Metals Ltd | Developing device |
-
1989
- 1989-05-31 JP JP13895889A patent/JPH034268A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63128380A (en) * | 1986-11-18 | 1988-05-31 | Kanegafuchi Chem Ind Co Ltd | Magnet roll |
JPS6468777A (en) * | 1987-09-08 | 1989-03-14 | Minolta Camera Kk | Developing device |
JPH01102588A (en) * | 1987-10-16 | 1989-04-20 | Hitachi Metals Ltd | Developing device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6094984A (en) * | 1993-11-09 | 2000-08-01 | Murata Manufacturing Co., Ltd. | Acceleration sensor with a circuit board separated from a base plate by a space |
US5864062A (en) * | 1996-11-18 | 1999-01-26 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor acceleration sensor |
JP2008134167A (en) * | 2006-11-29 | 2008-06-12 | Kurashiki Kako Co Ltd | Acceleration sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2948238B2 (en) | Developing device | |
JP2703992B2 (en) | Developing device | |
JP2000347488A (en) | Developing device and process cartridge and image forming device provided with the developing device | |
US20060045575A1 (en) | Developing device and electrostatic recording device | |
JPH034268A (en) | Developing device | |
JPH08137245A (en) | Developing device, image forming device using the same and process cartridge | |
JP2001100531A (en) | Developing device for electrophotography | |
JPH0815975A (en) | Image forming device and process cartridge | |
JPH11133728A (en) | Developer carrier and developing device | |
JP3492156B2 (en) | Developing device | |
JP3177090B2 (en) | Developing device | |
JP2768071B2 (en) | Developing device | |
JPH07261540A (en) | Image forming method | |
JP2005004110A (en) | Developing device and image forming apparatus | |
JP2004212560A (en) | Image forming apparatus | |
JP2006099029A (en) | Developing device, and process cartridge and image forming apparatus using the same | |
JP2800053B2 (en) | Magnetic brush developing device | |
JP4080594B2 (en) | Development device | |
JP2703992C (en) | ||
JPH07120103B2 (en) | Development device | |
JPH034263A (en) | Magnetic brush developing device | |
JPH11212346A (en) | Developing device | |
JPH11237784A (en) | Developing device | |
JP2001083784A (en) | Image forming device | |
JP2001242714A (en) | Developing device |