JPH07261540A - Image forming method - Google Patents

Image forming method

Info

Publication number
JPH07261540A
JPH07261540A JP6052123A JP5212394A JPH07261540A JP H07261540 A JPH07261540 A JP H07261540A JP 6052123 A JP6052123 A JP 6052123A JP 5212394 A JP5212394 A JP 5212394A JP H07261540 A JPH07261540 A JP H07261540A
Authority
JP
Japan
Prior art keywords
carrier
developer
developing
magnetic
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6052123A
Other languages
Japanese (ja)
Inventor
Tomoyasu Umeno
智靖 梅野
Masanori Kouno
誠式 河野
Takeshi Omura
大村  健
Hiroyuki Kozuru
浩之 小鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP6052123A priority Critical patent/JPH07261540A/en
Publication of JPH07261540A publication Critical patent/JPH07261540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To prevent the sticking of a carrier, the rattling of an image, and the scattering of a toner and provide a high-quality, high-precision image excellent in the reproducibility of fine lines and an intermediate-tone image in a developing device using a two-constituent developer constituted of the toner and carrier having small grain sizes. CONSTITUTION:The magnetic flux density of a developing magnetic pole provided in a developer carrier is set to 800-1200 gauss, the tilt angle of the developing magnetic pole is set apart by 2-15 deg. from the most proximity position to an electrostatic charge image carrier and a developer carrier, the peripheral speed ratio (A) between the electrostatic charge image carrier and developer carrier is expressed by the equation: peripheral speed ratio (A): (moving speed of developer carrier)/(moving speed of electrostatic charge image carrier) X100(%), and this developing device satisfies the equation: (2D+540)/5<=A<=(2D+1340)/5, where Dmum is the weight average grain size of the magnetic carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子写真複写機、静電記
録機、静電印刷機などの画像形成方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming method for an electrophotographic copying machine, an electrostatic recording machine, an electrostatic printing machine and the like.

【0002】[0002]

【従来の技術】従来、電子写真複写機、静電記録機、静
電印刷機などの画像形成方法としては、非磁性トナーと
磁性キャリアとを混合した2成分現像剤を使用する磁気
ブラシ現像装置が広く用いられている。
2. Description of the Related Art Conventionally, as a method for forming an image in an electrophotographic copying machine, an electrostatic recording machine, an electrostatic printing machine or the like, a magnetic brush developing device using a two-component developer in which a non-magnetic toner and a magnetic carrier are mixed. Is widely used.

【0003】この磁気ブラシ現像装置の1つとしては、
回転可能に取り付けた現像剤担持手段としての非磁性ス
リーブと、該スリーブ内にあって固定された複数の磁極
を配置した磁石ローラとを具備し、スリーブの回転によ
り現像剤を搬送するもので、静電荷像担持体と対向した
現像位置に磁石を配設したものが知られている。また、
画質向上の目的で、前記スリーブと静電荷像担持体の対
向する現像位置に交番電界を形成することにより、画像
の掃き寄せを防止し、中間調画像の再現性を向上させた
ものが知られている。
As one of the magnetic brush developing devices,
A non-magnetic sleeve, which is rotatably attached as a developer carrying means, and a magnet roller in which a plurality of magnetic poles fixed in the sleeve are arranged, and conveys the developer by rotating the sleeve. It is known that a magnet is arranged at a developing position facing the electrostatic image carrier. Also,
For the purpose of improving the image quality, it is known that an alternating electric field is formed at a developing position where the sleeve and the electrostatic charge image bearing member face each other, thereby preventing image swept and improving reproducibility of a halftone image. ing.

【0004】さらに、高画質・高精細画像の要求が高ま
っていることから、トナー及びキャリアの双方を小粒径
化することにより、トナーの供給能力を安定化し高解像
層の画像を得ようとしたものが知られている。しかしこ
の場合には、キャリアを小粒径化したためにキャリアが
静電荷像担持体に付着し、それにより画像の欠陥を生じ
る場合があった。また、中間調画像の再現性が悪く、
「ガサツキ」のある貧弱な画像となる場合があった。
Further, since there is an increasing demand for high-quality and high-definition images, it is possible to stabilize the toner supply capacity and obtain an image with a high resolution layer by reducing the particle size of both toner and carrier. It is known that However, in this case, since the carrier has a small particle size, the carrier may adhere to the electrostatic image carrier, thereby causing an image defect. Also, the reproducibility of halftone images is poor,
There was a case where the image was poor and had a “sharpness”.

【0005】[0005]

【発明が解決しようとする課題】トナー及びキャリアの
双方を小径化した2成分現像剤を用いた現像装置におい
て、キャリア付着や画像のガサツキ、トナー飛散を防止
し、細線や中間調画像の再現性に優れた高画質・高精細
の画像を得ることを目的とする。
SUMMARY OF THE INVENTION In a developing device using a two-component developer in which both the toner and carrier have a small diameter, carrier adhesion, image rubbing and toner scattering are prevented, and reproducibility of fine lines and halftone images is improved. The objective is to obtain excellent high-quality and high-definition images.

【0006】[0006]

【課題を解決するための手段】本発明の課題を解決する
には、下記のごとき構成をとることにより達成される。
In order to solve the problems of the present invention, the following constitutions are achieved.

【0007】(1)重量平均粒径が20〜100μmの磁性キ
ャリアと体積平均粒径が5〜10μmの非磁性トナーを混
合した2成分現像剤を用い、静電荷像担持体に対向して
相対移動し、前記現像剤を支持して現像位置へ搬送する
現像剤担持体と、該現像剤担持体内部にあって固定され
た複数の磁極とを具備し、さらに前記現像位置に交番電
界を形成する現像装置において、該現像剤担持体内部に
具備された現像磁極の磁束密度を800〜1200ガウスと
し、さらに該現像磁極の傾き角度が、該静電荷像担持体
と現像剤担持体との中心点を結ぶ線に対し2〜15゜であ
る位置とするとともに、前記磁性キャリアの重量平均粒
径をD(μm)とし、静電荷像担持体と現像剤担持体の
周速比(A)を下記「式1」のごとく定めたとき、下記
「式2」を満足する現像装置を用いることを特徴とする
画像形成方法。
(1) Using a two-component developer in which a magnetic carrier having a weight average particle diameter of 20 to 100 μm and a non-magnetic toner having a volume average particle diameter of 5 to 10 μm are mixed and facing each other with respect to an electrostatic image carrier. A developer carrier that moves and supports the developer and conveys the developer to a developing position, and a plurality of magnetic poles that are fixed inside the developer carrier and that form an alternating electric field at the developing position. In the developing device, the magnetic flux density of the developing magnetic pole provided inside the developer carrying member is set to 800 to 1200 Gauss, and the inclination angle of the developing magnetic pole is the center of the electrostatic image carrier and the developer carrying member. The weight average particle diameter of the magnetic carrier is D (μm), and the peripheral speed ratio (A) between the electrostatic image carrier and the developer carrier is set at 2 to 15 ° with respect to the line connecting the points. Use a developing device that satisfies the following "Formula 2" when defined as shown in "Formula 1" below. An image forming method characterized by the following.

【0008】[0008]

【数2】 [Equation 2]

【0009】(2)静電荷像担持体と現像剤担持体の回
転移動方向が、双方の最近接部分で同方向(いわゆるつ
れ回り回転)であることを特徴とする(1)に記載の画
像形成方法。
(2) The image described in (1), characterized in that the rotational movement directions of the electrostatic charge image bearing member and the developer bearing member are the same direction (so-called swiveling rotation) at the closest portions of both. Forming method.

【0010】本発明によれば、微粒キャリア及びトナー
を用いる2成分現像において現像磁極の磁束密度を800
〜1200ガウスの範囲とし、さらに該現像磁極の傾き角度
を、該静電荷像担持体と現像剤担持体との中心点を結ぶ
線に対し2〜15゜である位置とするとともに、前記磁性
キャリアの重量平均粒径をD(μm)とし、静電荷像担
持体と現像剤担持体の周速比(A)を前記「式1」のよ
うに定めたとき、前記「式2」を満足する現像装置を用
いることを特徴とする画像形成方法を用いることで静電
荷像担持体へのキャリア付着を抑制し、画像のガサツキ
やトナー飛散がなく、中間調画像の再現性に優れた高画
質・高精細画像を得ることができる。
According to the present invention, the magnetic flux density of the developing magnetic pole is set to 800 in the two-component development using the fine particle carrier and the toner.
˜1200 gauss, the inclination angle of the developing magnetic pole is 2 to 15 ° with respect to the line connecting the central points of the electrostatic image carrier and the developer carrier, and the magnetic carrier When the weight average particle size of D is set to D (μm) and the peripheral speed ratio (A) between the electrostatic image carrier and the developer carrier is determined as in the above “formula 1”, the “formula 2” is satisfied. By using an image forming method that is characterized by using a developing device, carrier adhesion to the electrostatic image carrier is suppressed, and there is no image roughness or toner scattering, and high image quality with excellent reproducibility of halftone images. A high definition image can be obtained.

【0011】又、このとき、静電荷像担持体と現像剤担
持体の回転移動方向は、双方の最近接部分で同方向であ
ることが、スムーズな階調性をもつ高精細な画像を得ら
れることからより望ましい。
Further, at this time, the rotational movement directions of the electrostatic charge image bearing member and the developer bearing member are the same in the closest portions of both, so that a high-definition image having smooth gradation can be obtained. It is more desirable because it can be done.

【0012】[0012]

【作用】[Action]

a)現像装置 当該現像装置は、例えば感光体、誘電体等の静電荷像担
持体1上に電子写真法、静電記録法等によって形成され
た潜像を現像するものであって、これは現像器2、現像
剤担持体としての現像スリーブ3、現像剤穂立ち高さ規
制部材としてのブレード4等を含んで構成される。すな
わち、現像器2の静電荷像担持体1に近接する位置には
開口部が形成されており、この開口部に前記現像スリー
ブ3が回転可能に設置されており、該現像スリーブ3の
上方に前記ブレード4が所定隙間を設けて取り付けられ
ている。
a) Developing device The developing device develops a latent image formed on the electrostatic image carrier 1 such as a photoconductor or a dielectric by electrophotography, electrostatic recording, or the like. The developing device 2, a developing sleeve 3 as a developer carrying member, a blade 4 as a developer spike height controlling member, and the like are included. That is, an opening is formed at a position of the developing device 2 close to the electrostatic image carrier 1, the developing sleeve 3 is rotatably installed in the opening, and the developing sleeve 3 is provided above the developing sleeve 3. The blade 4 is attached with a predetermined gap.

【0013】なお、上記スリーブ3は、非磁性材料で構
成され、現像動作持には図示矢印方向に回転し、その内
部には磁界発生手段である磁石13が固定されており、磁
石13は静電荷像担持体1にスリーブ3から現像剤を付与
する現像位置に磁界を形成し、磁気ブラシをこの位置に
形成させる。
The sleeve 3 is made of a non-magnetic material, rotates in the direction of the arrow in the drawing for the development operation, and has a magnet 13 as a magnetic field generating means fixed therein. A magnetic field is formed at a developing position where the developer is applied to the charge image carrier 1 from the sleeve 3, and a magnetic brush is formed at this position.

【0014】また、現像ローラ31は、上記現像スリーブ
3と、現像磁極S1と後述の現像剤8を搬送する磁極
1,N2,S2,N3とを有する磁石13とから構成されて
いる。
The developing roller 31 comprises the developing sleeve 3 and a magnet 13 having a developing magnetic pole S 1 and magnetic poles N 1 , N 2 , S 2 and N 3 for carrying a developer 8 which will be described later. ing.

【0015】現像磁極S1の磁束密度の半値巾は40゜以
内であるのが好ましく、さらに半値巾が35゜以内である
のが特に好ましい。現像磁極の磁束密度の半値巾が40゜
以内の場合には、画像が鮮明となり細線再現性が良好と
なる。
The full width at half maximum of the magnetic flux density of the developing magnetic pole S 1 is preferably within 40 °, more preferably within 35 °. When the full width at half maximum of the magnetic flux density of the developing magnetic pole is within 40 °, the image becomes clear and fine line reproducibility becomes good.

【0016】Lは現像スリーブ3の中心と静電荷像担持
体1の中心を結んだ一点鎖線であり、現像スリーブ3と
静電荷像担持体1の対向中心を示すものであり、この部
分で現像スリーブ3と静電荷像担持体1は最近接位置と
なっており、現像領域(現像位置)の中央位置でもあ
る。
Reference numeral L is a one-dot chain line connecting the center of the developing sleeve 3 and the center of the electrostatic charge image carrier 1, and indicates the center of opposition between the developing sleeve 3 and the electrostatic charge image carrier 1, and the development is performed at this portion. The sleeve 3 and the electrostatic image carrier 1 are in the closest position, and are also the central positions of the developing area (developing position).

【0017】θは現像スリーブ3の中心に対する現像磁
極と一点鎖線Lとの角度であり、現像磁極の傾き角度を
表すものである。なお、現像磁極が現像スリーブの移動
方向に対して一点鎖線Lよりも上流にある場合を+と
し、また下流にある場合を−とする。
Θ is the angle between the developing magnetic pole and the alternate long and short dash line L with respect to the center of the developing sleeve 3, and represents the inclination angle of the developing magnetic pole. Incidentally, the case where the developing magnetic pole is upstream of the one-dot chain line L with respect to the moving direction of the developing sleeve is +, and the case where it is downstream is −.

【0018】θは、+2〜+15゜の範囲または−2〜−
15゜の範囲であるのが好ましい。この範囲にθを設定す
ることでキャリア付着の発生を防止することができる。
θを、この範囲外に設定するとキャリア付着を生じてし
まう。
Θ is in the range of +2 to + 15 ° or −2 to −
It is preferably in the range of 15 °. By setting θ in this range, it is possible to prevent carrier adhesion.
If θ is set outside this range, carrier adhesion will occur.

【0019】前記ブレード4はアルミニウム(Al,SUS3
16)等の非磁性材料にて構成され、これは前述の如く現
像スリーブ3の表面との間に所定の隙間を設けて取り付
けられ、この隙間によって現像スリーブ3上の現像剤8
の厚さを規制する。
The blade 4 is made of aluminum (Al, SUS3
16) or the like, which is made of a non-magnetic material and is attached with a predetermined gap between the surface of the developing sleeve 3 and the developer 8 on the developing sleeve 3 by this gap.
Regulate the thickness of.

【0020】前記スリーブ3上の垂直方向の磁束密度の
測定法は、ベル社のガウスメータモデル640を用いて行
った。すなわち、ガウスメータに接続したアキシャルプ
ローブをスリーブ3との若干の間隔を保って、スリーブ
3の中心とプローブの中心が同一平面になるように固設
し、磁石ローラ13を回転させることによりスリーブ3上
の垂直方向の磁束密度を周方向全てに対して測定するこ
とができる。
The measurement of the magnetic flux density in the vertical direction on the sleeve 3 was carried out by using a Gauss meter model 640 manufactured by Bell Company. That is, the axial probe connected to the Gauss meter is fixed so that the center of the sleeve 3 and the center of the probe are flush with each other while keeping a slight distance from the sleeve 3, and the magnet roller 13 is rotated to fix the axial probe on the sleeve 3. The magnetic flux density in the vertical direction can be measured in all circumferential directions.

【0021】図2はスリーブ3上の垂直方向の磁束密度
Bγの測定法を説明するための図であり、ベル社のガウ
スメータモデル640を用いて測定した。図中、スリーブ
3は水平に固定され、スリーブ3内の磁石ローラ13は回
転自在に取り付けられている。
FIG. 2 is a diagram for explaining a method of measuring the magnetic flux density Bγ in the vertical direction on the sleeve 3, which was measured using a Gauss meter model 640 manufactured by Bell Company. In the figure, the sleeve 3 is fixed horizontally, and the magnet roller 13 in the sleeve 3 is rotatably attached.

【0022】17はアキシャルプローブであり、スリーブ
3との若干の間隔を保って、スリーブ3の中心とプロー
ブ17の中心が略同一水平面になるよう固設され、ガウス
メータ16と接続しており、スリーブ3上の垂直方向の磁
束密度を測定するものであるスリーブ3と磁石ローラ13
は略同心円であり、スリーブ3と磁石ローラ13の間隔は
どこでも等しいと考えてよい。
Reference numeral 17 denotes an axial probe, which is fixed so that the center of the sleeve 3 and the center of the probe 17 are substantially in the same horizontal plane while maintaining a slight distance from the sleeve 3, and is connected to the Gauss meter 16. Sleeve 3 and magnet roller 13 for measuring the magnetic flux density in the vertical direction on 3
Are substantially concentric circles, and it may be considered that the distance between the sleeve 3 and the magnet roller 13 is equal everywhere.

【0023】現像磁極の磁速密度(Bγ)は、800〜120
0ガウスの範囲にあるのが好ましい。Bγが800ガウス未
満の場合には、キャリアを現像剤担持体上に充分に保持
できずにキャリアが飛散してしまい、その結果キャリア
付着を生じてしまう。また、Bγが1200ガウスより大き
い場合には、現像剤の穂立ち硬さが大きくなり過ぎてし
まい、その結果静電荷像担持体の擦過力が増大し、ガサ
ツキのある画像しか得られない。
The magnetic velocity density (Bγ) of the developing magnetic pole is 800 to 120.
It is preferably in the range of 0 gauss. If Bγ is less than 800 gauss, the carrier cannot be sufficiently held on the developer carrying member and the carrier scatters, resulting in carrier adhesion. On the other hand, when Bγ is larger than 1200 gauss, the spike hardness of the developer becomes too large, and as a result, the rubbing force of the electrostatic image bearing member increases, and only a rough image can be obtained.

【0024】また交番電界とは、現像スリーブと静電荷
像担持体との間に、静電潜像と同極性で静電潜像の最高
電位と最低電位との間の交流電圧を印加したときに形成
される交互電界のことをいう。さらに、交流電圧と共に
直流電圧を印加してもよい。ところで、上記現像器2の
内部は図1の紙面垂直方向に延在する隔壁5によって現
像室(第1室)S−1と撹拌室(第2室)S−2とに区
画され、撹拌室S−2の上方には隔壁6を隔ててトナー
収容室S−3が形成され、該トナー収容室S−3内には
補給用トナー(非磁性トナー)81が収容されている。な
お、隔壁6には補給口6aが開口しており、該補給口6
aを経て消費されたトナー量に見合った量の補給用トナ
ー81が撹拌室S−2内に落下補給される。また、上記現
像室S−1と撹拌室S−2内には現像剤8が収容されて
いる。
The alternating electric field means when an alternating voltage having the same polarity as the electrostatic latent image and between the highest potential and the lowest potential of the electrostatic latent image is applied between the developing sleeve and the electrostatic image carrier. It refers to the alternating electric field formed in. Furthermore, a DC voltage may be applied together with an AC voltage. By the way, the inside of the developing device 2 is divided into a developing chamber (first chamber) S-1 and a stirring chamber (second chamber) S-2 by a partition wall 5 extending in the direction perpendicular to the paper surface of FIG. A toner storage chamber S-3 is formed above S-2 with a partition wall 6 therebetween, and a replenishment toner (non-magnetic toner) 81 is stored in the toner storage chamber S-3. A supply port 6a is opened in the partition wall 6, and the supply port 6a
The replenishment toner 81 in an amount commensurate with the amount of toner consumed through a is dropped and replenished into the stirring chamber S-2. Further, the developer 8 is contained in the developing chamber S-1 and the stirring chamber S-2.

【0025】そして、現像室S−1内には現像スリーブ
3近傍の現像器2内底部に有って図示矢印方向(反時計
方向)に回転し、現像剤8を図1の奥側から手前側に搬
送する第1搬送手段9と、該第1搬送手段9の上方に有
って図示矢印方向(反時計方向)に回転し、現像剤8を
図1の手前側から奥側に搬送する第2搬送手段10とが設
けられている。また、撹拌室S−2内には上記第1搬送
手段9と略同一水平位置に有って図示矢印方向(時計方
向)に回転し、現像剤8を図1の手前側から奥側に搬送
する第3搬送手段11が設けられている。なお、以上の第
1、第2、第3搬送手段9,10,11は具体的にはスパイ
ラル形状を成すスクリューで構成されている。
Then, in the developing chamber S-1, it is located in the bottom of the developing device 2 near the developing sleeve 3 and rotates in the direction of the arrow (counterclockwise) to rotate the developer 8 from the back side of FIG. The first transporting means 9 that is transported to the side, and the developer 8 that is above the first transporting means 9 and rotates in the direction of the arrow (counterclockwise direction) to transport the developer 8 from the front side to the back side in FIG. A second transport means 10 is provided. Further, the developer 8 is conveyed in the stirring chamber S-2 in the substantially horizontal position as in the first conveyance means 9 and in the direction of the arrow (clockwise direction) in the figure, and conveys the developer 8 from the front side to the back side in FIG. The third transport means 11 is provided. The first, second, and third conveying means 9, 10, and 11 described above are specifically configured by spiral-shaped screws.

【0026】b)静電荷像担持体 静電荷像担持体としては特に限定されず、セレン感光体
やアモルファスシリコン感光体などの無機感光体や、通
常OPCと呼ばれている有機感光体やその他の誘電体な
どを用いることができる。静電荷像担持体の形状として
は、無機感光体ではドラム状で、有機感光体ではドラム
状もしくはシート状で用いることができる。また、ドラ
ム径は通常10〜200mmのものが用いられる。
B) Electrostatic Charge Image Bearing Member The electrostatic charge image bearing member is not particularly limited, and is an inorganic photosensitive member such as a selenium photosensitive member or an amorphous silicon photosensitive member, an organic photosensitive member usually called OPC, and other members. A dielectric or the like can be used. As the shape of the electrostatic charge image bearing member, a drum shape can be used for the inorganic photoreceptor and a drum shape or a sheet shape for the organic photoreceptor. A drum having a diameter of 10 to 200 mm is usually used.

【0027】c)現像剤 現像剤8は、非磁性トナー81および磁性キャリア82とか
らなる2成分現像剤である。
C) Developer The developer 8 is a two-component developer composed of a non-magnetic toner 81 and a magnetic carrier 82.

【0028】非磁性トナー81は、体積平均粒径が5〜10
μmのものを使用する。体積平均粒径の測定は、100μm
のアパーチャーを使用しコールターカウンタTA−II型
(コールター社製)により行った。
The non-magnetic toner 81 has a volume average particle diameter of 5-10.
Use the μm one. The volume average particle size is 100 μm
Coulter Counter TA-II type (manufactured by Coulter Co.) was used.

【0029】一方、82は磁性キャリアであり重量平均粒
径が20〜100μm好ましくは30〜80μmで、抵抗値が107
1015Ω・cmの範囲で、好ましくは108〜1014Ω・cmの範
囲であり、具体的には、フェライト粒子へ、スチレン樹
脂やアクリル樹脂並びにそれらの共重合体(スチレン-
アクリル樹脂)、フッ素樹脂、シリコーン樹脂などの樹
脂をコーティングしたものが用いられる。
On the other hand, 82 is a magnetic carrier having a weight average particle diameter of 20 to 100 μm, preferably 30 to 80 μm, and a resistance value of 10 7 to
In the range of 10 15 Ωcm, preferably in the range of 10 8 ~ 10 14 Ωcm, specifically, ferrite particles, styrene resin or acrylic resin and their copolymers (styrene-
An acrylic resin, a fluororesin, a silicone resin, or other resin coated is used.

【0030】なお、磁性キャリアの重量平均粒径の測定
は、メッシュ法で測定されるものをいい、これは、重量
基準メジアン径(D50)に相当するものである。
The weight average particle diameter of the magnetic carrier is measured by the mesh method, which corresponds to the weight-based median diameter (D50).

【0031】また、磁性キャリアの抵抗値の測定は、測
定電極面積4cm2、電極間間隙0.4cmのサンドイッチタイ
プのセルを用い、片方の電極に1kg重量の加圧下で、両
電極間の印加電圧E(V/cm)を印加して、回路に流れ
た電流から磁性キャリアの抵抗値を求めた。
The resistance value of the magnetic carrier was measured by using a sandwich type cell having a measuring electrode area of 4 cm 2 and a gap between the electrodes of 0.4 cm, and a voltage of 1 kg was applied to one electrode while applying a voltage between both electrodes. E (V / cm) was applied and the resistance value of the magnetic carrier was determined from the current flowing in the circuit.

【0032】又、従来この種の用途に使用されているト
ナーの樹脂としては具体的には、スチレン-アクリル系
樹脂、スチレン-ブタジエン系樹脂、エステル系樹脂、
エポキシ系樹脂、等が挙げられ、着色剤としては、特に
限定されずこの種に用いられるカーボンブラック、顔料
及び染料を用いることができる。又、必要に応じ荷電制
御剤、ワックス等が添加されていても良い。外添剤とし
て無機酸化物、例えば、シリカ、チタニア、アルミナ、
等が疎水化処理されて添加されていることが望ましい。
又は、有機微粒子が添加されていても良い。トナーの体
積平均粒径としては、3〜20μmの範囲が好ましく、更
に、5〜10μmの範囲が画質の点から好ましい。
Further, as the resin of the toner conventionally used for this kind of application, specifically, styrene-acrylic resin, styrene-butadiene resin, ester resin,
Examples thereof include epoxy resins, and the colorant is not particularly limited, and carbon black, pigments and dyes used in this type can be used. Further, a charge control agent, wax or the like may be added if necessary. Inorganic oxide as an external additive, for example, silica, titania, alumina,
Etc. are preferably added after being hydrophobized.
Alternatively, organic fine particles may be added. The volume average particle diameter of the toner is preferably in the range of 3 to 20 μm, more preferably 5 to 10 μm from the viewpoint of image quality.

【0033】d)キャリア重量平均粒径(D)と周速比
(A)の関係式(式2)について 静電荷像担持体と現像剤担持体の周速比Aは、キャリア
の重量平均粒径をD(μm)としたとき、(2D+540)
/5以上(2D+1340)/5以下であることが好まし
い。周速比Aが(2D+540)/5よりも小さい場合に
は、現像ニップ部への非磁性トナーの供給が十分となら
ないためにベタ画像がガサついてしまい、安定した良好
な画像が得られない。また、周速比Aが(2D+1340)
/5よりも大きい場合には、トナー飛散を生じてしま
い、同様に安定して良好な画像が得られない。
D) Regarding the relational expression (Equation 2) between the carrier weight average particle diameter (D) and the peripheral speed ratio (A): The peripheral speed ratio A of the electrostatic charge image carrier and the developer carrier is the weight average particle of the carrier. When the diameter is D (μm), (2D + 540)
It is preferably / 5 or more and (2D + 1340) / 5 or less. When the peripheral speed ratio A is smaller than (2D + 540) / 5, the non-magnetic toner is not sufficiently supplied to the developing nip portion, so that a solid image becomes rough and a stable and good image cannot be obtained. In addition, the peripheral speed ratio A is (2D + 1340)
When it is larger than / 5, toner scattering occurs, and similarly stable and good images cannot be obtained.

【0034】e)現像剤の現像装置内での流れ この現像剤8は現像部へ搬送され、現像スリーブ3に保
持されたまま搬送磁極N1へと搬送される。
E) Flow of developer in the developing device This developer 8 is conveyed to the developing section, and is conveyed to the conveying magnetic pole N 1 while being held by the developing sleeve 3.

【0035】12は、現像剤の飛散防止と上流側への引き
戻しを防止するための整穂部材であり、その一端は自由
端で他端は現像容器2に固設されており、その自由端の
一部は、搬送磁極N1またはその上流で現像剤と接触し
ている。
Reference numeral 12 is a panning member for preventing the scattering of the developer and the pulling back to the upstream side, one end of which is fixed to the free end and the other end of which is fixed to the developing container 2. Is in contact with the developer at the transport magnetic pole N 1 or upstream thereof.

【0036】前記整穂部材12は、現像スリーブ3に保持
されたまま搬送磁極N1へと搬送さた現像剤8が搬送磁
極N1で穂立ちした時の飛散を防止したり、現像磁極S1
方向への引き戻されを防止する。
The panning member 12 prevents the developer 8 carried to the carrying magnetic pole N 1 while being held by the developing sleeve 3 from scattering when the developer 8 stands on the carrying magnetic pole N 1 , and the developing magnetic pole S 1. 1
Prevents pullback in the direction.

【0037】搬送磁極N1と磁極N2は同極であり両者の
間には反発磁界が発生している。従って現像スリーブ3
から取り除かれ、後述する第1搬送手段9により、撹拌
混合され磁極N2近傍で、新たに現像剤を供給される。
The carrier magnetic pole N 1 and the magnetic pole N 2 have the same pole, and a repulsive magnetic field is generated between them. Therefore, the developing sleeve 3
Then, the developer is newly supplied in the vicinity of the magnetic pole N 2 after being agitated and mixed by the first transporting means 9 described later.

【0038】すなわち、現像スリーブ3上の現像履歴を
受けた現像剤は剥離除去され、十分に混合された新たな
現像剤が現像スリーブ3へ常に供給されるので、安定し
て良好な画像が得られる。
That is, the developer that has undergone the development history on the developing sleeve 3 is peeled and removed, and a sufficiently mixed new developer is constantly supplied to the developing sleeve 3, so that a stable and good image can be obtained. To be

【0039】[0039]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
るが、本発明の態様はこれに限定されない。
The present invention will be described in detail below with reference to examples, but the embodiments of the present invention are not limited thereto.

【0040】実施例1 静電荷像担持体としての感光ドラム1の外径が80mm、現
像剤担持体としての現像スリーブ3の外径が32mmであ
り、該スリーブ内部に半値巾が35゜である現像磁極と現
像剤を搬送する4つの磁極とを備え、感光ドラム1と現
像スリーブ3との間隔が800μm、現像スリーブ3とアル
ミニウム素材からなる穂立ち規制ブレードとの間隔が50
0μmであって、該感光ドラムの周速を160mm/secとし、
感光ドラムの帯電電位を−650V、露光電位を−200Vと
し、現像スリーブ3に交番電圧(周波数2kHz、ピーク
・トゥ・ピーク電圧2kVの交流電圧に、直流電圧−350
Vを重畳した)を引加して現像位置に交番電界を形成
し、現像剤を振動させて潜像を現像する現像装置を用い
た。また現像剤としては、スチレン-アクリル樹脂をコ
ートしたキャリアであって、樹脂のコーティング膜厚を
変化させて、抵抗値がそれぞれ2×109Ω・cm(キャリ
アA)、1×1010Ω・cm(キャリアB)、4×1013Ω・
cm(キャリアC)である磁性キャリアと体積平均粒径が
8.0μmの非磁性トナーとの混合物からなる2成分現像剤
を用いて、現像磁極の磁束密度(Bγ)、現像磁極と一
点鎖線Lとの角度θ、さらに磁性粒子82の重量平均粒径
D(μm)および周速比A(%)を種々変化させて実写
評価を行い、キャリア付着、トナー飛散、ベタ画像のガ
サツキについて評価した。
Example 1 The outer diameter of the photosensitive drum 1 as an electrostatic charge image carrier is 80 mm, the outer diameter of the developing sleeve 3 as a developer carrier is 32 mm, and the half width is 35 ° inside the sleeve. The developing magnetic pole and the four magnetic poles for conveying the developer are provided, and the distance between the photosensitive drum 1 and the developing sleeve 3 is 800 μm, and the distance between the developing sleeve 3 and the spike control blade made of an aluminum material is 50.
0 μm, the peripheral speed of the photosensitive drum is 160 mm / sec,
The charging potential of the photosensitive drum is -650V, the exposure potential is -200V, and alternating voltage (frequency 2kHz, peak-to-peak voltage 2kV AC voltage, DC voltage -350 is applied to the developing sleeve 3.
Was used to form an alternating electric field at the developing position by vibrating the developer to develop the latent image. The developer is a carrier coated with styrene-acrylic resin, and the resistance value is 2 × 10 9 Ω · cm (carrier A) and 1 × 10 10 Ω · by changing the coating film thickness of the resin. cm (Carrier B), 4 × 10 13 Ω ・
The magnetic carrier which is cm (carrier C) and the volume average particle size are
The magnetic flux density (Bγ) of the developing magnetic pole, the angle θ between the developing magnetic pole and the alternate long and short dash line L, and the weight average particle diameter D ( [mu] m) and the peripheral speed ratio A (%) were variously changed, and real-life evaluation was performed to evaluate carrier adhesion, toner scattering, and solid image roughness.

【0041】尚、キャリアA,B,C間で性能差は小さ
かったため本実施例は主にはキャリアBを用いた結果の
みを示したが、代表的なもののみキャリアA,Cを用い
た結果も示した。
Since the difference in performance among the carriers A, B, and C was small, this example mainly shows the results using the carrier B, but only the representative results using the carriers A and C. Also showed.

【0042】すなわち本発明内の実験No.A−1〜A−1
8まではキャリアBを用い、A−19はA−1のキャリア
をキャリアAに代えたもの、A−20は同じくA−1のキ
ャリアをキャリアCに代えたものである。一方、本発明
外の実験No.B−1〜B−9もキャリアBを用いた結果
であるが、B−10はB−5のキャリアをキャリアAに、
又、B−11はB−5のキャリアをキャリアCに代えて実
験を行った結果である。
That is, Experiment Nos. A-1 to A-1 in the present invention
Up to 8, carrier B is used, A-19 is the carrier of A-1 replaced by carrier A, and A-20 is the carrier of A-1 is replaced by carrier C. On the other hand, Experiment Nos. B-1 to B-9 outside the present invention are also the results of using the carrier B. In B-10, the carrier of B-5 is used as the carrier A,
Further, B-11 is the result of an experiment conducted by replacing the carrier of B-5 with the carrier C.

【0043】キャリア付着およびトナー飛散の評価方法
は、複写物上および複写機内を目視により判断したもの
で、記号○はトナー飛散やキャリア付着が全く無く良
好、記号×はトナー飛散およびキャリア付着が目視で確
認された不可を示す。また、ベタ画像のガサツキの評価
方法は、サクラデンシトメータ(コニカ(株)社製)を用
いて透過濃度のバラツキを測定することにより評価し
た。透過濃度のバラツキが0.30以下の場合を記号○で表
し、0.30より大きい場合を記号×で表した。
The evaluation method of carrier adhesion and toner scattering was carried out by visually observing on the copy and inside the copying machine. The symbol ◯ is good with no toner scattering or carrier adhesion, and the symbol X is visible with toner scattering or carrier adhesion. Indicates the failure confirmed in. Moreover, the evaluation method of the roughness of the solid image was evaluated by measuring the variation of the transmission density using a Sakuradensitometer (manufactured by Konica Corporation). When the variation of the transmission density is 0.30 or less, the symbol ◯ is shown, and when it is larger than 0.30, the symbol x is shown.

【0044】その結果を表1に示す。The results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】表1から明らかなように、実験No.A−1
〜A−18及びA−19,A−20では、キャリア付着やトナ
ー飛散、ベタ画像のガサツキなどのない良好な画像が得
られた。
As is clear from Table 1, Experiment No. A-1
In the cases of A-18, A-19, and A-20, good images were obtained without carrier adhesion, toner scattering, and solid image roughness.

【0047】これに対し、実験No.B−1,B−3で
は、周速比Aが(2D+540)/5より小さいためにガ
サツキのある画像しか得られなかった。
On the other hand, in Experiment Nos. B-1 and B-3, since the peripheral speed ratio A was smaller than (2D + 540) / 5, only a rough image was obtained.

【0048】一方実験No.B−2,B−4では、周速比
Aが(2D+1340)/5より大きいためにトナー飛散が
生じてしまった。
On the other hand, in Experiment Nos. B-2 and B-4, since the peripheral speed ratio A was larger than (2D + 1340) / 5, toner scattering occurred.

【0049】また、実験No.B−5では、現像磁極の磁
束密度Bγが1200ガウスよりも大きいために、現像剤の
穂立ち硬さが大きくなってしまい、その結果静電荷像担
持体の擦過力が増大し、ガサツキのある画像しか得られ
なかった。
Further, in Experiment No. B-5, since the magnetic flux density Bγ of the developing magnetic pole is larger than 1200 gauss, the spike hardness of the developer becomes large, and as a result, the electrostatic charge image carrier is rubbed. The force was increased, and only a rough image was obtained.

【0050】これに対してNo.B−6では、現像磁極の
磁束密度Bγが800ガウスよりも小さいために、キャリ
アを現像剤担持体上に充分に保持できずにキャリアが飛
散してしまい、その結果キャリア付着を生じてしまっ
た。
On the other hand, in No. B-6, since the magnetic flux density Bγ of the developing magnetic pole is smaller than 800 gauss, the carrier cannot be sufficiently held on the developer carrying member and the carrier scatters. As a result, carrier adhesion occurred.

【0051】さらに、実験No.B−7,B−9では、現
像磁極の傾き角度θが±15゜よりも大きいために、キャ
リア付着を生じてしまった。
Further, in Experiment Nos. B-7 and B-9, since the inclination angle θ of the developing magnetic pole was larger than ± 15 °, carrier adhesion occurred.

【0052】また、実験No.B−8では、現像磁極の傾
き角度θが±2゜よりも小さいために、キャリア付着を
生じてしまった。
In Experiment No. B-8, since the inclination angle θ of the developing magnetic pole was smaller than ± 2 °, carrier adhesion occurred.

【0053】これらの結果はキャリアBをA,Cに換え
てもその傾向が変わらないことがB−9,B−10からわ
かる。
From these results, it can be seen from B-9 and B-10 that the tendency does not change even if the carrier B is changed to A or C.

【0054】[0054]

【発明の効果】本発明により、トナー及びキャリアの双
方を小径化した2成分現像剤を用いた現像装置におい
て、キャリア付着や画像のガサツキ、トナー飛散を防止
し、細線や中間調画像の再現性に優れた高画質・高精細
の画像を得ることが出来る。
According to the present invention, in a developing device using a two-component developer in which both the toner and the carrier are reduced in diameter, carrier adhesion, image rubbing and toner scattering are prevented, and reproducibility of fine lines and halftone images is prevented. It is possible to obtain excellent high quality and high definition images.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の現像装置の断面図。FIG. 1 is a sectional view of a developing device of the present invention.

【図2】磁束密度の測定法を説明するための図。FIG. 2 is a diagram for explaining a method of measuring magnetic flux density.

【符号の説明】[Explanation of symbols]

1 静電荷像担持体 2 現像器 3 現像スリーブ 13 磁石 31 現像ローラ 1 electrostatic image carrier 2 developing device 3 developing sleeve 13 magnet 31 developing roller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03G 9/08 9/10 15/09 A (72)発明者 小鶴 浩之 東京都八王子市石川町2970番地コニカ株式 会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location G03G 9/08 9/10 15/09 A (72) Inventor Hiroyuki Kozuru 2970 Ishikawa-cho, Hachioji-shi, Tokyo Address Konica Stock Company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量平均粒径が20〜100μmの磁性キャリ
アと体積平均粒径が5〜10μmの非磁性トナーを有する
2成分現像剤を用い、静電荷像担持体に対向して相対移
動し、前記現像剤を支持して現像位置へ搬送する現像剤
担持体と、該現像剤担持体内部にあって固定された複数
の磁極とを具備し、さらに前記現像位置に交番電界を形
成する現像装置を用いる画像形成方法において、該現像
剤担持体内部に具備された現像磁極の磁束密度を800〜1
200ガウスとし、さらに該現像磁極の傾き角度が、該静
電荷像担持体と現像剤担持体との中心点を結ぶ線に対し
2〜15゜であるとともに、前記磁性キャリアの重量平均
粒径をD(μm)とし、静電荷像担持体と現像剤担持体
の周速比(A)を下記式1のように定めたとき、下記式
2を満足する現像装置を用いることを特徴とする画像形
成方法。 【数1】
1. A two-component developer having a magnetic carrier having a weight average particle diameter of 20 to 100 μm and a non-magnetic toner having a volume average particle diameter of 5 to 10 μm is used, and is relatively moved facing an electrostatic image carrier. A developer carrier that supports the developer and conveys the developer to a developing position; and a plurality of magnetic poles that are fixed inside the developer carrier and that form an alternating electric field at the developing position. In the image forming method using the apparatus, the magnetic flux density of the developing magnetic pole provided inside the developer carrying member is set to 800 to 1
Further, the developing magnetic pole has an inclination angle of 2 to 15 ° with respect to a line connecting the center points of the electrostatic charge image carrier and the developer carrier, and the weight average particle diameter of the magnetic carrier is When D (μm) is set and the peripheral speed ratio (A) between the electrostatic image carrier and the developer carrier is determined by the following equation 1, a developing device satisfying the following equation 2 is used. Forming method. [Equation 1]
【請求項2】 静電荷像担持体と現像剤担持体の回転移
動方向が、双方の最近接部分で同方向であることを特徴
とする請求項1に記載の画像形成方法。
2. The image forming method according to claim 1, wherein the rotational movement directions of the electrostatic charge image bearing member and the developer bearing member are the same in the closest portions of both.
JP6052123A 1994-03-23 1994-03-23 Image forming method Pending JPH07261540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6052123A JPH07261540A (en) 1994-03-23 1994-03-23 Image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6052123A JPH07261540A (en) 1994-03-23 1994-03-23 Image forming method

Publications (1)

Publication Number Publication Date
JPH07261540A true JPH07261540A (en) 1995-10-13

Family

ID=12906107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6052123A Pending JPH07261540A (en) 1994-03-23 1994-03-23 Image forming method

Country Status (1)

Country Link
JP (1) JPH07261540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072312A (en) * 2004-08-06 2006-03-16 Ricoh Co Ltd Image forming apparatus
US8068771B2 (en) * 2007-12-21 2011-11-29 Sharp Kabushiki Kaisha Image forming apparatus
CN102314132A (en) * 2010-07-08 2012-01-11 株式会社东芝 Developer, image processing system and image forming method
JP2015141379A (en) * 2014-01-30 2015-08-03 株式会社リコー Developing device, image forming method, image forming apparatus, process cartridge, and developing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006072312A (en) * 2004-08-06 2006-03-16 Ricoh Co Ltd Image forming apparatus
US8068771B2 (en) * 2007-12-21 2011-11-29 Sharp Kabushiki Kaisha Image forming apparatus
CN102314132A (en) * 2010-07-08 2012-01-11 株式会社东芝 Developer, image processing system and image forming method
JP2015141379A (en) * 2014-01-30 2015-08-03 株式会社リコー Developing device, image forming method, image forming apparatus, process cartridge, and developing method

Similar Documents

Publication Publication Date Title
JP4860967B2 (en) Development device
US4607933A (en) Method of developing images and image recording apparatus utilizing such method
JP2703992B2 (en) Developing device
JPH07261540A (en) Image forming method
JP2007147733A (en) Developer carrier
JPH09244395A (en) Developing roll and developing device
JP2001100531A (en) Developing device for electrophotography
US6389258B2 (en) Development roller and blade used in development device, and development device and image-forming device having the development roller and blade
JP3060763B2 (en) Developing device
JP3492156B2 (en) Developing device
JPH07140730A (en) High-speed developing method for electrostatic charge image
JP2515970B2 (en) Development device
JP2006308732A (en) Developing device
JPH08146668A (en) Developing device
JP4234510B2 (en) Image forming apparatus
JPH034268A (en) Developing device
JP6677930B2 (en) Developing device and image forming device
JP2006099029A (en) Developing device, and process cartridge and image forming apparatus using the same
JP4554854B2 (en) Development device
JPH05289485A (en) Developing device
JP2800053B2 (en) Magnetic brush developing device
JP2003270951A (en) Electrostatic latent image developing device, developing roller and image forming apparatus
JP2703992C (en)
JP2003057954A (en) Image forming device and developing means
JPS62196686A (en) Developing device