JPH0874058A - Reaction furnace provided with isothermal rapid cooling means - Google Patents

Reaction furnace provided with isothermal rapid cooling means

Info

Publication number
JPH0874058A
JPH0874058A JP20839894A JP20839894A JPH0874058A JP H0874058 A JPH0874058 A JP H0874058A JP 20839894 A JP20839894 A JP 20839894A JP 20839894 A JP20839894 A JP 20839894A JP H0874058 A JPH0874058 A JP H0874058A
Authority
JP
Japan
Prior art keywords
reaction tube
cooling
furnace
cooling gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20839894A
Other languages
Japanese (ja)
Inventor
Eiji Hosaka
英二 保坂
Hideki Kaihatsu
秀樹 開発
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP20839894A priority Critical patent/JPH0874058A/en
Publication of JPH0874058A publication Critical patent/JPH0874058A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a highly productive reaction furnace with the temp. difference in the vertical direction reduced, capable of various homogeneous heat treatments with a uniform heat history and capable of rapid isothermal cooling in the thin film producing device, impurity diffusion furnace, thermal oxidation furnace and various reaction tubes used in etching, etc. CONSTITUTION: This reaction furnace is provided with an isothermal rapid cooling means formed by furnishing the annular cooling gas injection pipe 14 having many cooling gas injection ports 16 at an optional position on the periphery of a reaction tube 1 at least in one stage close to the peripheral surface of the reaction tube 1. Consequently, the difference in heat history between the materials to be heated such as wafers is reduced, the device characteristic is made uniform, the product yield is increased, the time required for the semiconductor producing process is shortened, and productivity is significantly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体の製造工程で用い
られる各種の薄膜製造装置、不純物拡散炉、熱酸化炉、
あるいはエッチング装置等に使用される反応炉に係り、
特に等温急速冷却機構を備えた反応炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various thin film manufacturing apparatuses used in semiconductor manufacturing processes, impurity diffusion furnaces, thermal oxidation furnaces,
Or related to the reaction furnace used for etching equipment,
In particular, it relates to a reactor equipped with an isothermal rapid cooling mechanism.

【0002】[0002]

【従来の技術】図7に、従来の冷却手段を備えた反応炉
の一例を示す。これは、ウエハの表面に熱酸化膜を生成
するのに用いられる酸化反応炉である。図において、ボ
ート7にウエハ8を搭載し、反応管1内で所定の酸化雰
囲気および温度条件で処理した後、ヒータ2の上部に設
けられている通気穴9から反応管1の外周部の加熱炉内
の熱い雰囲気を、ラジエータ3を通して、冷却用ブロワ
4により吸引し外部へ排出する構造である。なお、加熱
炉の下部には、冷たい外気が反応管1の外周部に流れる
ように外気導入口10が設けられている。従来の冷却手
段を備えた反応炉では、炉内の降温速度を上げるため
に、通気穴9の後流に設けられている冷却用ブロワ4に
より、反応管1の下部に設けられた外気導入口10から
冷却用の外気11を引き込む構造であるため、ウエハ8
の炉内冷却時において、炉内の縦断面方向に温度差が生
じ、反応管1内に充填されている上部ウエハと下部ウエ
ハの間に、例えば図5(b)に示すような温度差(10
0℃以上)が生じたり、また図6(b)に示すように、
ウエハ表面に、冷却用外気の排気方向に偏った温度勾配
が生じ、ウエハを等温冷却することができず、ウエハに
均質な熱酸化膜の形成、あるいは不純物の均一な拡散等
が行えないという問題があった。また、図4に示すよう
に、従来の場合は反応管1の冷却速度が遅く、ウエハの
熱処理等の処理効率が極めて低く、生産性が悪いという
問題があった。
2. Description of the Related Art FIG. 7 shows an example of a conventional reactor equipped with conventional cooling means. This is an oxidation reactor used to produce a thermal oxide film on the surface of the wafer. In the figure, after mounting the wafer 8 on the boat 7 and treating it in the reaction tube 1 under a predetermined oxidizing atmosphere and temperature condition, the outer peripheral portion of the reaction tube 1 is heated from the vent hole 9 provided in the upper portion of the heater 2. The hot atmosphere in the furnace is sucked by the cooling blower 4 through the radiator 3 and discharged to the outside. An outside air inlet 10 is provided in the lower part of the heating furnace so that cold outside air flows to the outer peripheral portion of the reaction tube 1. In a conventional reaction furnace equipped with a cooling means, in order to increase the temperature lowering rate in the furnace, an external air introduction port provided in the lower part of the reaction tube 1 is provided by a cooling blower 4 provided in the downstream of the ventilation hole 9. Since the outside air 11 for cooling is drawn from the wafer 10, the wafer 8
At the time of cooling the inside of the furnace, a temperature difference occurs in the longitudinal sectional direction in the furnace, and a temperature difference (such as that shown in FIG. 5B) is generated between the upper wafer and the lower wafer filled in the reaction tube 1. 10
0 ° C. or higher), or as shown in FIG. 6 (b),
There is a temperature gradient on the surface of the wafer that is biased toward the exhaust direction of the outside air for cooling, the wafer cannot be isothermally cooled, and a uniform thermal oxide film cannot be formed on the wafer or impurities cannot be uniformly diffused. was there. Further, as shown in FIG. 4, in the conventional case, there is a problem that the cooling rate of the reaction tube 1 is slow, the processing efficiency such as the heat treatment of the wafer is extremely low, and the productivity is poor.

【0003】[0003]

【発明が解決しようとする課題】上述したごとく従来技
術においては、半導体の製造工程で用いられる種々の加
熱用反応管の冷却過程において、反応管の縦断面方向に
おける温度差が生じ、被加熱物であるウエハ等に熱履歴
の差が生じて、均一な膜厚および膜質の熱酸化膜の形成
ができないという問題があり、また半導体中への不純物
の均等な熱拡散、あるいは均質な種々の反応が行えない
という問題があり、また反応管の等温冷却速度が遅く、
著しく生産性が悪いという問題があった。
As described above, in the prior art, in the cooling process of various heating reaction tubes used in the semiconductor manufacturing process, a temperature difference occurs in the longitudinal cross-sectional direction of the reaction tube, which causes the object to be heated. However, there is a problem that a thermal history difference occurs between wafers and the like, and it is not possible to form a thermal oxide film with a uniform film thickness and film quality. In addition, even thermal diffusion of impurities into the semiconductor, or homogeneous reaction Is not possible, and the isothermal cooling rate of the reaction tube is slow,
There was a problem that productivity was extremely poor.

【0004】本発明の目的は、上記従来技術における問
題点を解消し、半導体の製造工程で用いられる薄膜製造
装置、不純物拡散炉、熱酸化炉あるいはエッチング等に
用いられる種々の反応管において、上下の縦断面方向の
温度差が少なく、均等な熱履歴で種々の均質な処理を行
うことができ、かつ急速に等温冷却が可能で、生産性の
高い等温急速冷却手段を備えた反応炉を提供することに
ある。
The object of the present invention is to solve the above-mentioned problems in the prior art, and in various reaction tubes used in a thin film manufacturing apparatus, an impurity diffusion furnace, a thermal oxidation furnace, etching, etc. used in a semiconductor manufacturing process, A reactor equipped with an isothermal rapid cooling means with high productivity that can perform various homogeneous treatments with a uniform thermal history and has a small temperature difference in the longitudinal cross-sectional direction of To do.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、特許請求の範囲に記載されているような構
成とするものである。すなわち、請求項1に記載のよう
に、半導体装置の製造に用いられる各種の反応管の外周
部の任意の位置に、等温急速冷却手段として多数の冷却
気体噴出口を設けた、例えば環状の冷却気体噴出管を、
上記反応管の外周表面部に密接させて少なくとも1段以
上配設した反応管を加熱炉内に収容した構造の反応炉と
するものである。そして、請求項2に記載のように、請
求項1に記載の反応管と、該反応管を加熱する加熱炉を
有し、該加熱炉の上部に、上記反応管の外周部の炉内雰
囲気を吸収し、系外に排出する通気用の穴を少なくとも
1個以上配設した構造の等温急速冷却手段を備えた反応
炉とするものである。さらに、請求項3に記載のよう
に、請求項1または請求項2に記載の反応管に設ける環
状の冷却気体噴出管の形状は、円環状、楕円環状または
多角環状で、該冷却気体噴出管に設ける冷却気体噴出口
の形状は、円形状、長円形状、多角形状またはスリット
形状のノズルとするものである。
In order to achieve the above-mentioned object of the present invention, the constitution described in the claims is adopted. That is, as described in claim 1, a large number of cooling gas ejection ports are provided as isothermal rapid cooling means at arbitrary positions on the outer peripheral portion of various reaction tubes used for manufacturing a semiconductor device, for example, an annular cooling. The gas jet tube,
A reaction furnace having a structure in which at least one or more stages of reaction tubes are arranged in close contact with the outer peripheral surface of the reaction tube and is housed in a heating furnace. Further, as described in claim 2, the reaction tube according to claim 1 and the heating furnace for heating the reaction tube are provided, and the furnace atmosphere at the outer peripheral portion of the reaction tube is provided above the heating furnace. The reaction furnace is provided with an isothermal rapid cooling means having a structure in which at least one ventilation hole for absorbing the air and discharging it to the outside of the system is provided. Further, as described in claim 3, the shape of the annular cooling gas ejection pipe provided in the reaction tube according to claim 1 or 2 is an annular shape, an elliptical annular shape or a polygonal annular shape, and the cooling gas ejection tube is formed. The shape of the cooling gas ejection port provided in is a circular, oval, polygonal or slit-shaped nozzle.

【0006】[0006]

【作用】本発明の等温急速冷却手段を備えた反応炉は、
請求項1に記載のように、半導体装置の製造に用いられ
る反応管の外周部の任意の位置に、多数の冷却気体噴出
口を設けた環状の冷却気体噴出管を、上記反応管の外周
表面部に密接させて少なくとも1段以上設けているた
め、反応管の外周表面部は冷却気体により効果的に冷却
され、しかも反応管の上部および下部の温度差が小さい
状態で、いわゆる等温急速冷却が可能となる。また、請
求項2に記載のように、請求項1に記載の反応管を加熱
する加熱炉の上部に、反応管の外周部の炉内雰囲気を吸
引し、炉外に排出する通気用の穴を設けることにより、
炉内の高温の雰囲気が炉外に排出されると共に、上記反
応管の外周表面部から噴出される冷却気体によって相乗
効果的に等温急速冷却がいっそう促進される結果とな
る。そして、請求項3に記載のように、請求項1または
請求項2に記載の反応管に密接させて設ける冷却気体噴
出管の形状は、円環状、楕円環状または多角環状にし
て、どんな形状の反応管であっても、その外周面に密接
できる形状とし、また冷却気体噴出口の形状は、丸形
状、長円形状、多角形状もしくはスリット形状となし、
最も等温急速冷却の効果の大きい冷却気体噴出口の形状
に設定することができる。
The reactor equipped with the isothermal rapid cooling means of the present invention,
As described in claim 1, an annular cooling gas ejection pipe having a large number of cooling gas ejection ports is provided at an arbitrary position on an outer peripheral portion of a reaction pipe used for manufacturing a semiconductor device, and an outer peripheral surface of the reaction pipe is provided. Since the outer peripheral surface of the reaction tube is effectively cooled by the cooling gas because it is provided in at least one step in close contact with the section, so-called isothermal rapid cooling is performed in a state where the temperature difference between the upper and lower portions of the reaction tube is small. It will be possible. Further, as described in claim 2, a vent hole for sucking the furnace atmosphere of the outer peripheral portion of the reaction tube and discharging it to the upper part of the heating furnace for heating the reaction tube according to claim 1. By providing
The high temperature atmosphere in the furnace is discharged to the outside of the furnace, and the isothermal rapid cooling is synergistically promoted by the cooling gas jetted from the outer peripheral surface of the reaction tube. Then, as described in claim 3, the cooling gas ejection pipe provided in close contact with the reaction tube according to claim 1 or 2 is formed into a circular ring shape, an elliptical ring shape, or a polygonal ring shape. Even the reaction tube has a shape that can be in close contact with the outer peripheral surface thereof, and the shape of the cooling gas ejection port is round, oval, polygonal or slit.
It is possible to set the shape of the cooling gas ejection port that is most effective for isothermal rapid cooling.

【0007】[0007]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。図1は本実施例で例示する等温
急速冷却手段を備えた反応炉の全体の構成の一例を示す
もので、図2(a)は冷却気体噴出管の構成の一例を示
し、図2(b)は、図2(a)の冷却気体噴出管を加熱
炉内にセットした状態を示す模式図である。図におい
て、縦型の反応管1の内部には、熱酸化膜を形成するウ
エハ8が装填されており、所定の雰囲気および温度で所
定時間加熱された後、反応管1を冷却する場合を示す。
反応管1の外周部の加熱炉内の雰囲気は、冷却用ブロワ
4により吸引排気される。この時、冷たい外気11は、
外気導入口10から入り、反応管1の外周部を通り、加
熱炉の上部に設けられている通気孔9からダンパ5を通
過して、ラジエータ(熱交換器)3で冷却され、冷却用
ブロワ4により炉外に排出される。一方、反応管1の外
周部に密接して設けられている冷却気体噴出管14の冷
却気体噴出口16から冷却用の空気が噴出され、反応管
1の外周表面を冷却しながら上昇し、加熱炉上部の通気
穴9から系外に排気される。このように、反応管1の上
部外周表面を冷却することにより、反応管1の内部に装
填されている上部と下部のウエハ8の温度差が小さくな
り、例えば図5に示すごとく、上部ウエハと下部ウエハ
の等温冷却過程における温度差を±5℃以下にコントロ
ールすることができる。また、図4に示すように、例え
ば、1000℃からの等温急速冷却において、従来は冷
却速度が約2℃/分で、700℃に冷却するのに約12
0分要したものが、本発明の実施例においては、等温冷
却速度が約5℃/分に向上し、700℃までの冷却時間
は約60分と著しく短縮することができた。そして、ウ
エハ8を反応管1内に装填し、所定の温度に加熱した
後、等温冷却を行い、ウエハ8を取り出すまでに要する
1サイクルの時間は、従来の冷却方法では約200分
(降温速度2℃/分)であったが、本実施例の方法によ
ると約140分(降温速度5℃/分)程度に短縮するこ
とができた。さらに、ウエハ表面の温度分布差を調べた
結果、従来の冷却方法においては、図6(b)に示すよ
うに、ウエハの温度分布差は冷却気排気方向に偏り、し
かも約20℃程度のウエハ温度分布差が生じるのに対
し、本実施例においては、冷却気体排出方向に対し温度
分布差が偏ることなく、ウエハの中心部で約10℃を示
し、ウエハをほぼ均一に等温冷却することができた。さ
らに、図3に示すように、反応管1の外周に、冷却気体
噴出管を2段に設けると、上部ウエハ8と下部ウエハ8
との間の温度差を、1段の場合には±5℃程度であった
ものを±2.5℃程度に向上させることができた。以上
の実施例において、冷却気体13として空気を用いる場
合について述べたが、その他に、アルゴン、窒素、炭酸
ガス等の不活性ガスを用いることができることは言うま
でもない。また、冷却気体噴出管14は1〜2段につい
て述べたが、必要に応じて3段以上設けることも可能で
ある。
Embodiments of the present invention will be described below in more detail with reference to the drawings. FIG. 1 shows an example of the overall structure of a reactor equipped with the isothermal rapid cooling means exemplified in this embodiment, FIG. 2 (a) shows an example of the structure of a cooling gas ejection pipe, and FIG. 2] is a schematic diagram showing a state in which the cooling gas ejection pipe of FIG. 2 (a) is set in a heating furnace. In the figure, a wafer 8 for forming a thermal oxide film is loaded inside the vertical reaction tube 1, and the reaction tube 1 is cooled after being heated in a predetermined atmosphere and temperature for a predetermined time. .
The atmosphere in the heating furnace at the outer peripheral portion of the reaction tube 1 is sucked and exhausted by the cooling blower 4. At this time, the cold outside air 11
It enters from the outside air introduction port 10, passes through the outer peripheral portion of the reaction tube 1, passes through the damper 5 through the vent hole 9 provided in the upper part of the heating furnace, is cooled by the radiator (heat exchanger) 3, and is a blower for cooling. It is discharged to the outside of the furnace by No. 4. On the other hand, cooling air is ejected from the cooling gas ejection port 16 of the cooling gas ejection pipe 14, which is provided in close contact with the outer peripheral portion of the reaction tube 1, and rises while cooling the outer peripheral surface of the reaction tube 1 to be heated. The gas is exhausted to the outside of the system through the ventilation hole 9 in the upper part of the furnace. By cooling the outer peripheral surface of the upper portion of the reaction tube 1 in this way, the temperature difference between the upper and lower wafers 8 loaded inside the reaction tube 1 becomes smaller, and as shown in FIG. The temperature difference in the isothermal cooling process of the lower wafer can be controlled to ± 5 ° C. or less. Further, as shown in FIG. 4, for example, in isothermal rapid cooling from 1000 ° C., the conventional cooling rate is about 2 ° C./min, and about 12 ° C. is needed to cool to 700 ° C.
Although it took 0 minutes, in the example of the present invention, the isothermal cooling rate was improved to about 5 ° C./minute, and the cooling time up to 700 ° C. was remarkably shortened to about 60 minutes. Then, the wafer 8 is loaded into the reaction tube 1, heated to a predetermined temperature, isothermally cooled, and one cycle required until the wafer 8 is taken out is about 200 minutes (cooling rate) in the conventional cooling method. However, according to the method of the present embodiment, it was possible to reduce the temperature to about 140 minutes (temperature decrease rate of 5 ° C./minute). Further, as a result of examining the temperature distribution difference on the wafer surface, in the conventional cooling method, as shown in FIG. 6B, the wafer temperature distribution difference is biased toward the cooling air exhaust direction, and the wafer temperature is about 20 ° C. In contrast to the temperature distribution difference, in the present embodiment, the temperature distribution difference is not biased with respect to the cooling gas discharge direction, the temperature is about 10 ° C. at the center of the wafer, and the wafer can be isothermally cooled substantially uniformly. did it. Further, as shown in FIG. 3, when the cooling gas jetting pipes are provided in two stages on the outer circumference of the reaction pipe 1, the upper wafer 8 and the lower wafer 8 are provided.
It was possible to improve the temperature difference between the temperature and the temperature from ± 5 ° C in the case of one stage to ± 2.5 ° C. In the above embodiments, the case where air is used as the cooling gas 13 has been described, but it goes without saying that an inert gas such as argon, nitrogen, carbon dioxide, etc. can be used. Further, although the cooling gas ejection pipe 14 has been described for one or two stages, it is also possible to provide three or more stages if necessary.

【0008】[0008]

【発明の効果】以上詳細に説明したごとく、本発明の等
温急速冷却手段を備えた反応炉は、反応管の外周の表面
部に、簡便な構造の冷却気体噴出管を少なくとも1段以
上設けているので、反応管を効果的に等温急速冷却する
ことが可能となり、ウエハ等の被加熱物の熱履歴の差を
少なくすることができデバイス特性の均一化および製品
の歩留りをいっそう向上することができる。また、被処
理物の冷却時間を大幅に短縮することができるので、半
導体の製造プロセス時間を著しく短縮することができ、
生産性を一段と向上することが可能となる。
As described in detail above, in the reactor equipped with the isothermal rapid cooling means of the present invention, at least one stage of the cooling gas ejection pipe having a simple structure is provided on the outer peripheral surface of the reaction pipe. Therefore, it is possible to effectively and rapidly cool the reaction tube isothermally, and it is possible to reduce the difference in the thermal history of the object to be heated such as a wafer, so that the device characteristics can be made uniform and the product yield can be further improved. it can. Further, since the cooling time of the object to be processed can be significantly shortened, the semiconductor manufacturing process time can be significantly shortened,
It is possible to further improve productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で例示した等温急速冷却手段を
備えた反応炉の構成を示す模式図。
FIG. 1 is a schematic diagram showing the configuration of a reactor equipped with an isothermal rapid cooling means exemplified in an embodiment of the present invention.

【図2】本発明の実施例で例示した等温急速冷却手段の
構成および加熱炉内に装着した状態を示す模式図。
FIG. 2 is a schematic diagram showing a configuration of isothermal rapid cooling means exemplified in the embodiment of the present invention and a state of being mounted in a heating furnace.

【図3】本発明の実施例で例示した冷却気体噴出管を2
段に設けた反応管の構成を示す斜視図。
FIG. 3 shows two cooling gas ejection pipes exemplified in the embodiment of the present invention.
The perspective view which shows the structure of the reaction tube provided in the step.

【図4】本発明の実施例で例示した反応管内の温度と冷
却時間との関係を従来と比較して示すグラフ。
FIG. 4 is a graph showing the relationship between the temperature in the reaction tube and the cooling time illustrated in the examples of the present invention in comparison with the conventional one.

【図5】本発明の実施例で例示した反応管内のウエハの
温度と冷却時間との関係を従来と比較して示すグラフ。
FIG. 5 is a graph showing the relationship between the temperature of the wafer in the reaction tube and the cooling time, which are exemplified in the example of the present invention, in comparison with the related art.

【図6】本発明の実施例で例示したウエハの温度分布差
を従来と比較して示す模式図。
FIG. 6 is a schematic diagram showing the temperature distribution difference of the wafer illustrated in the embodiment of the present invention as compared with the conventional one.

【図7】従来の冷却手段を備えた反応炉の構成を示す模
式図。
FIG. 7 is a schematic diagram showing a configuration of a reaction furnace equipped with a conventional cooling means.

【符号の説明】[Explanation of symbols]

1…反応管 2…ヒータ 3…ラジエータ 4…冷却用ブロワ 5…ダンパ 6…キャップ 7…ボート 8…ウエハ 9…通気穴 10…外気導入口 11…外気 12…冷却気体導入口 13…冷却気体 14…冷却気体噴出管 15…等温線 16…冷却気体噴出口 DESCRIPTION OF SYMBOLS 1 ... Reaction tube 2 ... Heater 3 ... Radiator 4 ... Cooling blower 5 ... Damper 6 ... Cap 7 ... Boat 8 ... Wafer 9 ... Vent hole 10 ... Outside air inlet 11 ... Outside air 12 ... Cooling gas inlet 13 ... Cooling gas 14 … Cooling gas jet pipe 15… Isotherm 16… Cooling gas jet

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/306 21/31 E Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/306 21/31 E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】反応管の外周部の任意の位置に、多数の冷
却用気体噴出口を設けた環状の冷却用気体噴出管を、少
なくとも1段以上、上記反応管の外周表面部に密接して
配設してなることを特徴とする等温急速冷却手段を備え
た反応炉。
1. A ring-shaped cooling gas ejection pipe having a large number of cooling gas ejection ports provided at any position on the outer periphery of the reaction tube in close contact with at least one stage of the outer peripheral surface of the reaction tube. A reactor equipped with an isothermal rapid cooling means characterized in that the reactor is arranged as follows.
【請求項2】請求項1に記載の反応管と、該反応管を加
熱する加熱炉を有し、該加熱炉の上部に、上記反応管の
外周部の炉内雰囲気を吸引し、系外に排出する通気用の
穴を少なくとも1個以上配設してなることを特徴とする
等温急速冷却手段を備えた反応炉。
2. The reaction tube according to claim 1 and a heating furnace for heating the reaction tube, wherein the furnace atmosphere at the outer peripheral portion of the reaction tube is sucked into the upper part of the heating furnace to remove the outside of the system. A reactor equipped with an isothermal rapid cooling means, characterized in that at least one or more vent holes are provided for discharging into the chamber.
【請求項3】請求項1または請求項2に記載の反応管の
外周表面部に密接して設ける環状の冷却気体噴出管の形
状は、円環状、楕円環状または多角環状となし、上記冷
却気体噴出管に設ける冷却気体噴出口の形状を、円形
状、長円形状、多角形状またはスリット形状としてなる
ことを特徴とする等温急速冷却手段を備えた反応炉。
3. The shape of the annular cooling gas ejection pipe provided in close contact with the outer peripheral surface portion of the reaction tube according to claim 1 or 2 is a circular ring shape, an elliptical ring shape or a polygonal ring shape, A reactor equipped with an isothermal rapid cooling means, characterized in that the shape of the cooling gas ejection port provided in the ejection pipe is circular, oval, polygonal or slit.
JP20839894A 1994-09-01 1994-09-01 Reaction furnace provided with isothermal rapid cooling means Pending JPH0874058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20839894A JPH0874058A (en) 1994-09-01 1994-09-01 Reaction furnace provided with isothermal rapid cooling means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20839894A JPH0874058A (en) 1994-09-01 1994-09-01 Reaction furnace provided with isothermal rapid cooling means

Publications (1)

Publication Number Publication Date
JPH0874058A true JPH0874058A (en) 1996-03-19

Family

ID=16555598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20839894A Pending JPH0874058A (en) 1994-09-01 1994-09-01 Reaction furnace provided with isothermal rapid cooling means

Country Status (1)

Country Link
JP (1) JPH0874058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305189A (en) * 2001-04-05 2002-10-18 Tokyo Electron Ltd Vertical heat treatment apparatus and method for forcible air cooling
JP2008205426A (en) * 2007-01-26 2008-09-04 Hitachi Kokusai Electric Inc Substrate processing method and semiconductor manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305189A (en) * 2001-04-05 2002-10-18 Tokyo Electron Ltd Vertical heat treatment apparatus and method for forcible air cooling
JP4610771B2 (en) * 2001-04-05 2011-01-12 東京エレクトロン株式会社 Vertical heat treatment apparatus and forced air cooling method thereof
JP2008205426A (en) * 2007-01-26 2008-09-04 Hitachi Kokusai Electric Inc Substrate processing method and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP2714577B2 (en) Heat treatment apparatus and heat treatment method
JP3910151B2 (en) Heat treatment method and heat treatment apparatus
US4992044A (en) Reactant exhaust system for a thermal processing furnace
JPH056894A (en) Method and apparatus for heat treating
JP5721219B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and heating apparatus
JP4355441B2 (en) Heat treatment apparatus, heat treatment method, and semiconductor device manufacturing method
JPH0874058A (en) Reaction furnace provided with isothermal rapid cooling means
JP2000133606A (en) Manufacture of semiconductor device
JPH11260744A (en) Heat treating furnace
JP3332955B2 (en) Forced air cooling system for heat treatment furnace
JP3081886B2 (en) Film formation method
JPH06318553A (en) Heat treating apparatus
JP2645360B2 (en) Vertical heat treatment apparatus and heat treatment method
JPH06216056A (en) Vertical furnace
JPH0799164A (en) Apparatus and method for heat treatment
JPH09219375A (en) Semiconductor processing equipment
JP7175581B2 (en) Bell type furnace cooling device and cooling method
JP2000173945A (en) Vertical heat treating device for semiconductor substrate
KR100539386B1 (en) Furnace apparatus
JPH08181046A (en) Reaction furnace with isothermal heat and cool control means
JP2004327528A (en) Semiconductor processing device
JPH08181082A (en) Vertical-type high-speed heat treatment device
JP2001257167A (en) Semiconductor manufacturing device
JPH0574757A (en) High pressure oxidation furnace for semiconductor device
JPH07335581A (en) Cooling apparatus of vertical furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517