JPH0873201A - Hydrogen separating membrane unit - Google Patents

Hydrogen separating membrane unit

Info

Publication number
JPH0873201A
JPH0873201A JP21259694A JP21259694A JPH0873201A JP H0873201 A JPH0873201 A JP H0873201A JP 21259694 A JP21259694 A JP 21259694A JP 21259694 A JP21259694 A JP 21259694A JP H0873201 A JPH0873201 A JP H0873201A
Authority
JP
Japan
Prior art keywords
hydrogen
permeable membrane
hydrogen permeable
recessed parts
membrane unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21259694A
Other languages
Japanese (ja)
Inventor
Toshiro Kobayashi
敏郎 小林
Yoji Nakano
要治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21259694A priority Critical patent/JPH0873201A/en
Publication of JPH0873201A publication Critical patent/JPH0873201A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE: To improve strength, durability to repetitive use and hydrogen permeation performance by using metallic or allay foil provided with many recessed parts in hydrogen permeating parts of a hydrogen permeable membrane. CONSTITUTION: The hydrogen permeable membrane 1 formed with the recessed parts 3 in a square-meshed form is sandwiched by metallic frames 4 joined with supporting plates 2 consisting of perforated metallic plates and are joined by joining parts 5. The hydrogen permeable membrane l consists of Pd and alloys, such as Pd-Ag, Pd-Y, Pd-Ni and Pd-Cu and is so formed as to attain to >t2 =t3 -t1 when the film thickness is defined as 30 to 50μm(t3 )de, the depth of the recessed parts as t1 , the film thickness of the recessed parts as t2 and the film thickness by the conventional method as t0 . The pitch of the recessed parts 3 is determined by taking the ratio (30 to 90%) of the area of the recessed parts 3 to the area over the entire part of the hydrogen permeable membrane and the strength, etc., over the entire part of the membrane into consideration. The recessed parts 3 described above may be formed on any of the gaseous raw material side, refined hydrogen side and both sides of the hydrogen permeable membrane 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素精製装置や水素製造
装置に適用される水素分離膜ユニットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen separation membrane unit applied to a hydrogen refining device or a hydrogen producing device.

【0002】[0002]

【従来の技術】図8に従来の水素分離膜ユニットの断面
図の1例を示す。図8の水素分離膜ユニットでは枠4に
溶接部5′で溶接され補強された金属多孔質材(金網を
含む)からなる支持板2の間に水素(H2 )のみを透過
する性質を有するPd又はPd合金箔からなる水素透過
膜1をはさみ、接合部5でろう付、拡散接合、溶接等に
より接合されている。稼動時には高温下で原料ガス側に
水素を含む原料ガスを流すことにより、水素のみが選択
的に水素透過膜を通過して原料ガス側から精製水素側へ
拡散、移動し、精製水素側で高純度の水素が得られる。
このときの水素の透過速度は水素透過膜の厚さtに反比
例し、膜の厚さtが薄ければ薄いほど高い水素分離性能
が得られる。また、原料ガス側の圧力P1 と精製水素側
の圧力P2 との差圧△P=P1 −P 2 が大きい方が水素
透過速度が大きくなり、高性能となる。
2. Description of the Related Art FIG. 8 is a cross section of a conventional hydrogen separation membrane unit.
An example of the figure is shown. In the hydrogen separation membrane unit of FIG.
Metal porous material (wire mesh
Between the support plates 2 made of hydrogen (H2) Only transparent
Hydrogen Permeation Made of Pd or Pd Alloy Foil with Properties
For sandwiching the membrane 1 and brazing, diffusion bonding, welding, etc. at the joint 5
Is more joined. At the time of operation, at high temperature, to the raw material gas side
Only hydrogen is selected by flowing a source gas containing hydrogen
Passing through the hydrogen permeable membrane from the source gas side to the purified hydrogen side
It diffuses and moves, and high-purity hydrogen is obtained on the purified hydrogen side.
The hydrogen permeation rate at this time is inversely proportional to the thickness t of the hydrogen permeable film.
For example, the thinner the membrane thickness t, the higher the hydrogen separation performance.
Is obtained. Also, the pressure P on the raw material gas side1And purified hydrogen side
Pressure P2Differential pressure with ΔP = P1−P 2Hydrogen is larger
The permeation rate is high and the performance is high.

【0003】[0003]

【発明が解決しようとする課題】図8に示すような水素
分離膜ユニットにおいては、支持板2は枠4に溶接によ
り接合されている。このような接合の場合、通常図8の
A部の使用時の状態を示す拡大図である図7に示すよう
に枠4の水素透過膜1に接する面と支持板2の水素透過
膜1に平行な面との間に段差aが生じる。また、金網を
含む金属多孔板で形成される支持板2の表面には多数の
凹凸がある。このような水素分離膜ユニットにおいて、
水素分離性能を向上させるため△Pを大きくし、tを小
さくしようとすると次のような問題がある。 (1)段差a部で水素透過膜1に局部的な歪6が加わり
破断する恐れがある。 (2)水素透過膜1が支持板2に押しつけられ、支持板
表面の凹部にくい込み、大きな歪を受けて破断する恐れ
がある。
In the hydrogen separation membrane unit as shown in FIG. 8, the support plate 2 is joined to the frame 4 by welding. In the case of such a joining, as shown in FIG. 7 which is an enlarged view showing the state of the portion A in FIG. A step a is formed between the parallel surfaces. In addition, the surface of the support plate 2 formed of a perforated metal plate including a wire net has many irregularities. In such a hydrogen separation membrane unit,
If ΔP is increased and t is decreased in order to improve the hydrogen separation performance, the following problems occur. (1) There is a possibility that the hydrogen permeable film 1 may be broken due to local strain 6 at the step a. (2) The hydrogen permeable membrane 1 may be pressed against the support plate 2, and the recesses on the surface of the support plate may not fit into the support plate 2, and may receive large strain and break.

【0004】本発明は前記技術水準に鑑み、従来技術に
おける水素透過膜の破断を防止することができる水素分
離膜ユニットを提供しようとするものである。
In view of the above-mentioned state of the art, the present invention is to provide a hydrogen separation membrane unit capable of preventing breakage of a hydrogen permeable membrane in the prior art.

【0005】[0005]

【課題を解決するための手段】本発明は(1)金属又は
合金箔製の水素透過膜の周囲を両面から金属製の枠では
さんで固定し、前記水素透過膜の少くとも精製水素側の
面を周囲が前記金属製の枠に接合された金属多孔質材か
らなる支持板で支持した水素分離膜ユニットにおいて、
前記水素透過膜として水素の透過部分に多数の凹部を設
けた金属又は合金箔製の水素透過膜を使用したことを特
徴とする水素分離膜ユニット及び(2)水素透過膜に設
けた凹部がディンプル状又は升目状に形成されているこ
とを特徴とする前記(1)の水素分離膜ユニットであ
る。
According to the present invention, (1) a hydrogen-permeable membrane made of a metal or alloy foil is fixed on both sides by a metal frame, and the hydrogen-permeable membrane has at least a purified hydrogen side. In a hydrogen separation membrane unit whose surface is supported by a supporting plate made of a metal porous material whose periphery is joined to the metal frame,
A hydrogen separation membrane unit comprising a metal or alloy foil hydrogen permeable membrane having a large number of depressions in the hydrogen permeable portion is used as the hydrogen permeable membrane, and (2) the depressions provided in the hydrogen permeable membrane are dimples. The hydrogen separation membrane unit according to (1) above, which is formed in a square shape or a grid shape.

【0006】本発明の水素分離膜ユニットにおいては、
従来この種の水素分離膜ユニットに使用されている厚さ
約20μmの水素透過膜に代えて厚さ30〜50μmの
水素透過膜を使用する。これによって水素透過膜の強度
が増加するので、枠と支持板との接合部の段差による局
部的な歪による破断を防ぐことができ、また支持板表面
の凹部へのくい込みを少くすることができる。厚みが3
0μm未満では強度向上の効果がなく、50μmを超え
ると凹部を薄く加工することが困難である。
In the hydrogen separation membrane unit of the present invention,
A hydrogen permeable membrane having a thickness of 30 to 50 μm is used instead of the hydrogen permeable membrane having a thickness of about 20 μm conventionally used in this type of hydrogen separation membrane unit. This increases the strength of the hydrogen permeable membrane, so that it is possible to prevent breakage due to local strain due to the step difference at the joint between the frame and the support plate, and it is possible to reduce the bite into the recess on the surface of the support plate. . Thickness is 3
If it is less than 0 μm, there is no effect of improving the strength, and if it exceeds 50 μm, it is difficult to process the recess thinly.

【0007】このように水素透過膜の厚みを厚くすると
水素透過性が悪くなるので水素透過部分の表面に多数の
凹部、すなわち膜厚の薄い部分を設け水素の透過性を確
保する。凹部の深さt1 は、凹部のない部分の膜厚をt
3 、凹部における膜厚をt2、従来方法における膜厚を
0 とした場合にt0 >t2 =t3 −t1 となるように
するのが望ましい。凹部の形状としては特に制限はな
く、図4に示す升目状、図5に示すディンプル状など膜
の材質、形状等に応じて適当な形状とすればよい。水素
透過膜の凹部のピッチ(l1 )は凹部の面積の水素透過
面全体の面積に対する割合と膜全体の強度等を考慮して
適宜定めればよい。なお、支持板として使用する金属支
持板の表面にも凹凸がある。通常、金属多孔板の凹部の
ピッチは明確ではないが、大まかな傾向としてそのピッ
チを(l2 )とした場合l2 <l1 となると水素透過膜
が破損しやすくなる恐れがあるので、(l1 )は支持板
表面の凹部のピッチ(l 2 )より小さくなるようにする
のが望ましい。また、凹部の面積は水素透過面全体の面
積の30〜90%程度とする。30%未満では水素透過
性が悪く、90%を超えると強度が低下するので好まし
くない。
When the thickness of the hydrogen permeable membrane is increased in this way
Since the hydrogen permeability deteriorates, a large number of
A concave portion, that is, a thin film portion is provided to ensure hydrogen permeability.
To keep. Depth t of recess1Is the film thickness of the part without the recess t
3, The thickness of the recess is t2, The film thickness in the conventional method
t0And t0> T2= T3-T1So that
It is desirable to do. There is no particular limitation on the shape of the recess.
4 and the dimple-like film shown in FIG.
An appropriate shape may be used depending on the material, shape, and the like. hydrogen
Pitch of concave part of permeable membrane (l1) Is hydrogen permeation in the area of the recess
Considering the ratio to the area of the entire surface and the strength of the entire film, etc.
It may be set appropriately. The metal support used as a support plate
The surface of the holding plate also has irregularities. Usually, the concave part of the metal perforated plate
The pitch is not clear, but the general trend is that
Chi (l2) And l2<L1When it comes to hydrogen permeable membrane
May be easily damaged, so (l1) Is a support plate
Pitch of surface recess (l 2) Be smaller
Is desirable. Also, the area of the recess is the surface of the entire hydrogen permeable surface.
30 to 90% of the product. Hydrogen permeation below 30%
It is not good, and strength exceeds 90%, so strength is reduced.
No

【0008】本発明の水素分離膜ユニットにおける水素
透過膜の材質としてはPdのほかPd−Ag,Pd−
Y,Pd−Ni,Pd−CuなどのPd合金あるいはP
dに前記のAgなどの添加金属を複合して加えた三元合
金なども使用することができる。
The material of the hydrogen permeable membrane in the hydrogen separation membrane unit of the present invention is Pd, Pd-Ag, Pd-.
Pd alloy such as Y, Pd-Ni, Pd-Cu or P
It is also possible to use a ternary alloy in which the above-mentioned additional metal such as Ag is added in combination with d.

【0009】前記の凹部は水素透過膜の原料ガス側、精
製水素側のどちらに設けてもよく、両面に設けてもよ
い。このような凹部はパターニング後エッチングするな
どの方法により形成させることができる。
The recesses may be provided on either the raw material gas side or the purified hydrogen side of the hydrogen permeable membrane, or on both sides. Such a recess can be formed by a method such as etching after patterning.

【0010】本発明の水素分離膜ユニットは前記の凹部
を設けた水素透過膜の周囲の凹部が形成されていない部
分を、両面から金属多孔質材からなる支持板が接合され
た金属製の枠ではさみ、ろう付け、拡散接合あるいは溶
接により固定した構成となっている。なお、使用条件等
により原料ガス側の支持板は省略してもよい。また、こ
こでいう金属多孔質材とは金網状あるいは不織布の形状
を含むものである。
In the hydrogen separation membrane unit of the present invention, a metal frame in which a supporting plate made of a metal porous material is bonded to both sides of a portion of the hydrogen permeable membrane around which the concave portion is provided and where the concave portion is not formed is joined. It is fixed by scissors, brazing, diffusion bonding or welding. The support plate on the side of the raw material gas may be omitted depending on the usage conditions. Further, the metal porous material referred to here includes a wire mesh shape or a non-woven cloth shape.

【0011】本発明の水素分離膜ユニットの1例につい
て、その断面図を図1に示す。図1において升目状の凹
部3が形成された水素透過膜1が、金属多孔材からなる
支持板2が接合された金属製の枠4により凹部が形成さ
れていない部分ではさまれ、接合部5で接合されてい
る。この例では凹部は原料ガス側に形成されている。
A cross-sectional view of an example of the hydrogen separation membrane unit of the present invention is shown in FIG. In FIG. 1, the hydrogen permeable membrane 1 in which the grid-shaped concave portions 3 are formed is sandwiched by the metal frame 4 to which the supporting plate 2 made of a porous metal material is joined, in the portion where the concave portions are not formed, and the joint portion 5 is formed. Are joined together. In this example, the recess is formed on the raw material gas side.

【0012】図2及び図3にそれぞれ本発明の水素分離
膜ユニットの他の例を示す。図2は水素透過膜1の升目
状の凹部3が精製水素側に形成された例である。水素透
過膜1の保持形態としては図1のように原料ガス側に凹
部3を設け、精製水素側を平坦にし、その面を支持板2
に接触させて保持するのが望ましいが、水素の透過性能
には差はない。図3は図1の構造の原料ガス側の支持板
2が省略された例であるが、水素の透過性能、膜の保持
効果は変わらない。
2 and 3 show other examples of the hydrogen separation membrane unit of the present invention. FIG. 2 shows an example in which the grid-shaped concave portions 3 of the hydrogen-permeable film 1 are formed on the purified hydrogen side. As a holding mode of the hydrogen permeable membrane 1, as shown in FIG. 1, a concave portion 3 is provided on the raw material gas side, the purified hydrogen side is flattened, and the surface thereof is supported by the support plate 2
Although it is desirable to hold it in contact with hydrogen, there is no difference in hydrogen permeation performance. FIG. 3 is an example in which the support plate 2 on the side of the source gas in the structure of FIG. 1 is omitted, but the hydrogen permeation performance and the membrane holding effect are the same.

【0013】[0013]

【作用】水素透過膜として従来使用されているものより
厚いものを用いるようにしたことにより、図1のB部の
使用時の拡大図である図6に示すように、図7に見られ
る局部的な歪6の発現が抑制され、△Pをより大きくし
ても破断し難くなる。また、水素透過部分に凹部を設け
ることにより、凸部の厚さt3 に相当する厚みを有する
水素透過膜に近い剛性が得られ、かつ、凹部の厚さt1
に相当する厚さの水素透過膜に近い優れた水素透過性能
が得られる。
By using a hydrogen permeable membrane thicker than that conventionally used, the local portion shown in FIG. 7 can be seen as shown in FIG. 6 which is an enlarged view of portion B in FIG. 1 when used. The occurrence of the specific strain 6 is suppressed, and even if ΔP is increased, it becomes difficult to break. Further, by providing the concave portion in the hydrogen permeable portion, rigidity close to that of a hydrogen permeable film having a thickness corresponding to the thickness t 3 of the convex portion can be obtained, and the thickness t 1 of the concave portion can be obtained.
Excellent hydrogen permeation performance close to that of a hydrogen permeable membrane having a thickness equivalent to

【0014】[0014]

【実施例】以下実施例により本発明をさらに具体的に説
明する。図1の形状の水素分離膜ユニットを作製し性能
評価試験を行った。先ずSUS316製の枠4とSUS
316製で厚さ0.8mmで平均孔径(凹部のピッチ)
2 が約30μmの金属多孔体(平均繊維径1.5μ
m、平均孔径30μmの不織布)からなる支持板2を溶
接により接合した。この支持板2を接合した枠4の間
に、図4に示すように一辺15μmの正方形で深さ25
μmの升目状の凹部を25μmのピッチで形成させた厚
さ40μmのPd−20wt%Ag合金圧廷箔からなる
水素透過膜1をはさんで接合し、約120mm×70m
mの大きさの水素分離膜ユニットを作製した。この例で
は図6のaに相当する段差は20μmであった。
The present invention will be described in more detail with reference to the following examples. A hydrogen separation membrane unit having the shape shown in FIG. 1 was produced and a performance evaluation test was conducted. First, the SUS316 frame 4 and SUS
Made of 316 with a thickness of 0.8 mm and an average hole diameter (concave pitch)
l 2 is about 30 μm porous metal (average fiber diameter 1.5 μm
m, and a support plate 2 made of a non-woven fabric having an average pore diameter of 30 μm) was joined by welding. As shown in FIG. 4, a square having a side of 15 μm and a depth of 25 is provided between the frames 4 to which the support plates 2 are joined.
Approximately 120 mm x 70 m, which was bonded by sandwiching a hydrogen permeable membrane 1 made of a Pd-20 wt% Ag alloy pressure-sensitive foil having a thickness of 40 μm in which μm grid-shaped recesses were formed at a pitch of 25 μm.
A hydrogen separation membrane unit having a size of m was produced. In this example, the step corresponding to a in FIG. 6 was 20 μm.

【0015】凹部を形成させた水素透過膜は次のように
して作製した。すなわち、厚さ40μmのPd−20w
t%Ag合金圧廷箔をアルカリ洗浄液中で超音波洗浄
し、真空中で乾燥後、ポジタイプのレジスト材(東京応
化製TSMR8800)を両面にコーターで塗付し、9
0℃で30分間加熱乾燥後、ピッチ25μm、一辺15
μmの正方形のマスクを用い、片面に紫外線を露光した
後、レジスト剥離液(東京応化製NMD−W)中で一辺
15μmの正方形部のレジスト材を除去した。その後、
120℃のフッ酸中で30分間保持し、一辺15μmの
正方形部をエッチング除去した。その結果、正方形凹部
の深さは約25μmであった。
The hydrogen permeable film having the recesses formed was manufactured as follows. That is, Pd-20w having a thickness of 40 μm
The t% Ag alloy pressure-sensitive foil is ultrasonically cleaned in an alkaline cleaning solution, dried in vacuum, and then a positive type resist material (TSMR8800 manufactured by Tokyo Ohka Co., Ltd.) is applied on both sides by a coater.
After heating and drying at 0 ° C for 30 minutes, pitch 25μm, side 15
After using a square mask of μm to expose one surface to ultraviolet rays, the resist material in a square portion having a side of 15 μm was removed in a resist stripping solution (NMD-W manufactured by Tokyo Ohka Kabushiki Kaisha). afterwards,
It was kept in hydrofluoric acid at 120 ° C. for 30 minutes to remove a square portion having a side of 15 μm by etching. As a result, the depth of the square recess was about 25 μm.

【0016】比較試料として水素透過膜1を厚さ20μ
mのPd−20wt%Ag合金圧廷箔としたほかは前記
と同様にして図8の構造の水素分離膜ユニットを作製し
た。
A hydrogen permeable membrane 1 having a thickness of 20 μm is used as a comparative sample.
A hydrogen separation membrane unit having the structure shown in FIG. 8 was produced in the same manner as described above except that a Pd-20 wt% Ag alloy coated foil of m was used.

【0017】このようにして作製した試料について箔の
破断試験及び水素透過性能により性能評価を行った。ま
ず箔の破断については、Ar中で原料側(P1 )と精製
水素側(P2 )の差圧△P=P1 −P2 =9kgf/c
2 として(P2 は真空)昇温速度300℃/Hrで6
00℃に加熱し、30分間保持後、冷却速度300℃/
Hrで室温まで下げる履歴を繰返した。また、水素透過
性能は差圧を9kgf/cm2 とし、原料ガス側を99
%以上の水素を含む標準水素ガスとし、550℃で精製
水素側に透過してくる水素の量から水素透過速度を測定
した。
The performance of the sample thus produced was evaluated by a foil breaking test and hydrogen permeation performance. First, regarding the breakage of the foil, the pressure difference ΔP = P 1 −P 2 = 9 kgf / c between the raw material side (P 1 ) and the purified hydrogen side (P 2 ) in Ar.
m 2 (P 2 is vacuum) 6 at a heating rate of 300 ° C./Hr
After heating to 00 ° C and holding for 30 minutes, cooling rate 300 ° C /
The history of lowering to room temperature with Hr was repeated. The hydrogen permeation performance was 9 kgf / cm 2 differential pressure and 99% on the source gas side.
The hydrogen permeation rate was measured from the amount of hydrogen permeating to the purified hydrogen side at 550 ° C. using standard hydrogen gas containing hydrogen in an amount of at least%.

【0018】試験に用いた試料の形状及び性能評価試験
結果を表1に示す。表1からわかるように破断試験にお
いては従来方法による比較例の試料では、9回目に箔が
破断しP2 の圧力が上昇した。これに対し本発明による
実施例の試料では、50回の繰返しによっても破断しな
かった。また、水素透過速度は比較例では180cm3
/(cm2 ・min・atm0. 5 )であるのに対し、本
発明の実施例では230cm3 /(cm2 ・min・a
tm0.5 )と高い値が得られた。
Table 1 shows the shapes of the samples used in the test and the results of the performance evaluation test. As can be seen from Table 1, in the breaking test, in the sample of the comparative example by the conventional method, the foil was broken at the ninth time and the pressure of P 2 was increased. In contrast, the samples of the examples according to the present invention did not break even after being repeated 50 times. The hydrogen permeation rate is 180 cm 3 in the comparative example.
/ Contrast is (cm 2 · min · atm 0. 5), in the embodiment of the present invention 230cm 3 / (cm 2 · min · a
A high value of tm 0.5 ) was obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の水素分離膜ユニットは、従来の
水素分離膜ユニットに比較すると、強度が著しく改善さ
れ、長時間の繰返し使用に対する耐性が格段に優れてお
り、しかも水素透過性能は同等以上である。
As compared with the conventional hydrogen separation membrane unit, the hydrogen separation membrane unit of the present invention has remarkably improved strength, is remarkably excellent in resistance to repeated use for a long time, and has the same hydrogen permeation performance. That is all.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水素分離膜ユニットの1例を示す断面
図。
FIG. 1 is a sectional view showing an example of a hydrogen separation membrane unit of the present invention.

【図2】本発明の水素分離膜ユニットの他の1例を示す
断面図。
FIG. 2 is a cross-sectional view showing another example of the hydrogen separation membrane unit of the present invention.

【図3】本発明の水素分離膜ユニットの他の1例を示す
断面図。
FIG. 3 is a sectional view showing another example of the hydrogen separation membrane unit of the present invention.

【図4】本発明に係る水素透過膜の升目状凹部の1例を
示す拡大図。
FIG. 4 is an enlarged view showing an example of a grid-shaped concave portion of the hydrogen-permeable film according to the present invention.

【図5】本発明に係る水素透過膜のディンプル状凹部の
1例を示す拡大図。
FIG. 5 is an enlarged view showing an example of a dimple-shaped concave portion of the hydrogen-permeable film according to the present invention.

【図6】図1のB部の使用時の状態を示す拡大図。FIG. 6 is an enlarged view showing a state when the portion B in FIG. 1 is used.

【図7】図8のA部の使用時の状態を示す拡大図。FIG. 7 is an enlarged view showing a state when the portion A in FIG. 8 is used.

【図8】従来の水素分離膜ユニットの1例を示す断面
図。
FIG. 8 is a sectional view showing an example of a conventional hydrogen separation membrane unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属又は合金箔製の水素透過膜の周囲を
両面から金属製の枠ではさんで固定し、前記水素透過膜
の少くとも精製水素側の面を周囲が前記金属製の枠に接
合された金属多孔質材からなる支持板で支持した水素分
離膜ユニットにおいて、前記水素透過膜として水素の透
過部分に多数の凹部を設けた金属又は合金箔製の水素透
過膜を使用したことを特徴とする水素分離膜ユニット。
1. A metal or alloy foil hydrogen permeable membrane is fixed from both sides by a metal frame, and at least the purified hydrogen side surface of the hydrogen permeable membrane is surrounded by the metal frame. In a hydrogen separation membrane unit supported by a support plate made of a bonded metal porous material, a hydrogen permeable membrane made of metal or alloy foil having a large number of recesses in the hydrogen permeable portion is used as the hydrogen permeable membrane. Characteristic hydrogen separation membrane unit.
【請求項2】 水素透過膜に設けた凹部がディンプル状
又は升目状に形成されていることを特徴とする請求項1
に記載の水素分離膜ユニット。
2. The hydrogen-permeable film is provided with recesses formed in a dimple shape or a grid shape.
The hydrogen separation membrane unit according to 1.
JP21259694A 1994-09-06 1994-09-06 Hydrogen separating membrane unit Withdrawn JPH0873201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21259694A JPH0873201A (en) 1994-09-06 1994-09-06 Hydrogen separating membrane unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21259694A JPH0873201A (en) 1994-09-06 1994-09-06 Hydrogen separating membrane unit

Publications (1)

Publication Number Publication Date
JPH0873201A true JPH0873201A (en) 1996-03-19

Family

ID=16625320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21259694A Withdrawn JPH0873201A (en) 1994-09-06 1994-09-06 Hydrogen separating membrane unit

Country Status (1)

Country Link
JP (1) JPH0873201A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052325A (en) * 2000-08-09 2002-02-19 Toyo Kohan Co Ltd Gas separation unit and its production method
JP2002128506A (en) * 2000-05-15 2002-05-09 Toyota Motor Corp Hydrogen-forming unit
JP2003034506A (en) * 2001-07-23 2003-02-07 Toyota Motor Corp Hydrogen extractor
JP2003081611A (en) * 2001-09-07 2003-03-19 Toyota Motor Corp Lamination structured hydrogen separation apparatus
JP2003095617A (en) * 2001-09-19 2003-04-03 Toyota Motor Corp Hydrogen separating apparatus
JP2003320214A (en) * 2002-04-26 2003-11-11 Honda Motor Co Ltd Hydrogen separation membrane structure
EP1375421A3 (en) * 2002-06-07 2005-04-20 Mitsubishi Heavy Industries, Ltd. Hydrogen separation membrane, hydrogen separation unit, and manufacturing method for hydrogen separation membrane
JP2006055705A (en) * 2004-08-18 2006-03-02 Toyota Motor Corp Hydrogen separation substrate
EP1433521A4 (en) * 2001-09-26 2006-04-12 Toyo Kohan Co Ltd Gas separating unit and method for manufacturing the same
US7141096B2 (en) * 2003-01-24 2006-11-28 Varian S.P.A. Gas-selective permeable membrane and method of manufacturing thereof
JP2008023496A (en) * 2006-07-25 2008-02-07 Mitsubishi Gas Chem Co Inc Manufacturing method of hydrogen separation membrane cell
JP2008253984A (en) * 2007-03-09 2008-10-23 Nissan Motor Co Ltd Hydrogen separator
JP2009173534A (en) * 2007-12-26 2009-08-06 Nissan Motor Co Ltd Membrane reactor
JP2009226331A (en) * 2008-03-24 2009-10-08 Japan Steel Works Ltd:The Hydrogen permeation module and method of application thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128506A (en) * 2000-05-15 2002-05-09 Toyota Motor Corp Hydrogen-forming unit
JP2002052325A (en) * 2000-08-09 2002-02-19 Toyo Kohan Co Ltd Gas separation unit and its production method
JP2003034506A (en) * 2001-07-23 2003-02-07 Toyota Motor Corp Hydrogen extractor
JP2003081611A (en) * 2001-09-07 2003-03-19 Toyota Motor Corp Lamination structured hydrogen separation apparatus
JP2003095617A (en) * 2001-09-19 2003-04-03 Toyota Motor Corp Hydrogen separating apparatus
EP1433521A4 (en) * 2001-09-26 2006-04-12 Toyo Kohan Co Ltd Gas separating unit and method for manufacturing the same
JP2003320214A (en) * 2002-04-26 2003-11-11 Honda Motor Co Ltd Hydrogen separation membrane structure
EP1375421A3 (en) * 2002-06-07 2005-04-20 Mitsubishi Heavy Industries, Ltd. Hydrogen separation membrane, hydrogen separation unit, and manufacturing method for hydrogen separation membrane
US7144444B2 (en) 2002-06-07 2006-12-05 Mitsubishi Heavy Industries, Ltd. Hydrogen separation membrane, hydrogen separation unit, and manufacturing method for hydrogen separation membrane
US7141096B2 (en) * 2003-01-24 2006-11-28 Varian S.P.A. Gas-selective permeable membrane and method of manufacturing thereof
JP2006055705A (en) * 2004-08-18 2006-03-02 Toyota Motor Corp Hydrogen separation substrate
JP4622383B2 (en) * 2004-08-18 2011-02-02 トヨタ自動車株式会社 Hydrogen separation substrate
JP2008023496A (en) * 2006-07-25 2008-02-07 Mitsubishi Gas Chem Co Inc Manufacturing method of hydrogen separation membrane cell
JP2008253984A (en) * 2007-03-09 2008-10-23 Nissan Motor Co Ltd Hydrogen separator
JP2009173534A (en) * 2007-12-26 2009-08-06 Nissan Motor Co Ltd Membrane reactor
JP2009226331A (en) * 2008-03-24 2009-10-08 Japan Steel Works Ltd:The Hydrogen permeation module and method of application thereof
US8075670B2 (en) 2008-03-24 2011-12-13 The Japan Steel Works, Ltd. Hydrogen permeable module and usage thereof

Similar Documents

Publication Publication Date Title
JPH0873201A (en) Hydrogen separating membrane unit
US8465569B2 (en) Membrane support module for permeate separation in a fuel cell
JP3537768B2 (en) Hydrogen permeable metal membrane and method for producing the same
US5782960A (en) Hydrogen separation member
US6183542B1 (en) Method and apparatus for purifying hydrogen
US3684097A (en) Blood component exchange device
JPS59192707A (en) Removal of contamination from molten polymer
US8110022B2 (en) Hydrogen purifier module and method for forming the same
SE526425C2 (en) Membrane Separation Module, Membrane Separation Structure, Separation Procedure, and Method of Manufacturing a Membrane Separation Structure
JP3951245B2 (en) Membrane module for separating hydrogen and method for producing the same
US8226750B2 (en) Hydrogen purifier module with membrane support
CA2430766C (en) Hydrogen separation membrane, hydrogen separation unit, and manufacturing method for hydrogen separation membrane
US8002875B1 (en) System and method for separating hydrogen gas from a mixed gas source using composite structure tubes
JP3801838B2 (en) Hydrogen gas separation unit and manufacturing method thereof
JP3377640B2 (en) Hydrogen separation membrane and method for producing the same
JPH10296061A (en) Hydrogen separation membrane and its manufacture
JP4274678B2 (en) Gas separation unit and manufacturing method thereof
JP2000233119A (en) Hydrogen purifying membrane
JPH11300172A (en) Support for gas separation membrane, structure for gas purification, and gas purification apparatus
JPH022809A (en) Filter apparatus
JP3993282B2 (en) Separation membrane module
US6510948B1 (en) Multiple radial arm etched disc filter element
JPH10297906A (en) Hydrogen separation membrane and its manufacture
JPH0372908A (en) Filter medium for air filter
JP2008043908A (en) Hydrogen-permeable membrane, its manufacturing method, and hydrogen-permeable member using this hydrogen-permeable membrane

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106