JPH10297906A - Hydrogen separation membrane and its manufacture - Google Patents
Hydrogen separation membrane and its manufactureInfo
- Publication number
- JPH10297906A JPH10297906A JP10567897A JP10567897A JPH10297906A JP H10297906 A JPH10297906 A JP H10297906A JP 10567897 A JP10567897 A JP 10567897A JP 10567897 A JP10567897 A JP 10567897A JP H10297906 A JPH10297906 A JP H10297906A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- hydrogen
- thickness
- film
- separation membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水素分離膜及びその製
作方法に関し、詳しくは、高純度水素ガスの製造装置や
精製装置に適用される水素分離膜及びその製作方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen separation membrane and a method for manufacturing the same, and more particularly, to a hydrogen separation membrane applied to a high-purity hydrogen gas production apparatus and a purification apparatus and a method for producing the same.
【0002】[0002]
【従来の技術】水素混合ガスからの高純度の水素ガスを
分離し回収する手段として、水素を選択的に透過する金
属膜を使う方法が既に実用化されている。この方法は、
例えばパラジウム(Pd)系金属膜が極めて高い水素選
択透過性を示すことを利用したもので、現在、半導体製
造様水素の分離・精製などに実用されている。Pd及び
その合金膜が示す水素選択透過現象は、水素混合ガス中
の水素分子がPd膜に吸着されて原子状態になり、更に
イオン化して膜の反対側に拡散して再結合し、再び水素
ガスになるために起こるとされている。工業的には、膜
の混合ガスに接触する面の圧力を該膜の反対側面の圧力
よりやや高くして、水素透過の推進力を付加し、膜を透
過して出て来る水素を集めて回収することにより、水素
混合ガスから高純度の水素を回収したり、或は精製する
プロセスとして使用することができる。水素透過膜とし
てのPd膜は、 Pdが高価な金属であるため製品コストをできるだ
け低減させること、 水素透過性能を現状以上に改善すること、 使用中の水素透過性の劣化を防止すること、 水素による金属膜材料の脆化を防止すること、 などが達成することにより、用途は増々拡大されると期
待される。2. Description of the Related Art As a means for separating and recovering high-purity hydrogen gas from a hydrogen mixed gas, a method using a metal membrane that selectively transmits hydrogen has already been put to practical use. This method
For example, it utilizes the fact that a palladium (Pd) -based metal film exhibits an extremely high hydrogen permselectivity, and is currently used for the separation and purification of hydrogen in semiconductor manufacturing. The hydrogen selective permeation phenomenon exhibited by Pd and its alloy film is that the hydrogen molecules in the hydrogen mixed gas are adsorbed by the Pd film to be in an atomic state, further ionized, diffused to the opposite side of the film, recombined, and hydrogen It is supposed to happen to become gas. Industrially, the pressure on the surface of the membrane that is in contact with the gas mixture is slightly higher than the pressure on the opposite side of the membrane, adding a driving force for hydrogen permeation and collecting hydrogen coming out through the membrane. By recovering, high-purity hydrogen can be recovered from the hydrogen mixed gas or used as a process for purifying hydrogen. The Pd film as the hydrogen permeable film is to reduce the product cost as much as possible because Pd is an expensive metal, to improve the hydrogen permeation performance more than the current level, to prevent the deterioration of hydrogen permeability during use, It is expected that the application will be further expanded by achieving the prevention of embrittlement of the metal film material due to the above.
【0003】従来のPd金属膜の製作方法を概説すると
次のとおりである。 PdやPd−Ag(パラジウム・銀)合金などの素
材金属を焼鈍し、冷間圧延する。なお、Pdは水素濃度
の低いα相と水素濃度の高いβ相の間の相変化を繰返す
ことにより、不可逆的変形(縦横は収縮し、厚みが増
す)を起こすので、水素化物を形成しないAgとの合金
とすることが多い。 Pd膜の支持体になる多孔質体の表面に、メッキあ
るいは蒸着操作でPdまたはPd合金の薄膜を形成させ
る(例えば、電気メッキ,無電解メッキ,電子ビーム加
熱による真空蒸着法などを応用する)。金属膜の製作に
は、上記のような手法が基本であり、これに膜の薄層
化,膜の欠陥防止および強度向上などに工夫が織込まれ
てきた。更に、膜性能の改良には、金属膜素材の改良に
も努力努力が払われ、PdまたはPd−Ag合金に各種
の希土類元素(イットリウム,セリウム,ランタニド
等)を配合する方法(特公昭52−28748)も提案
されている。[0003] A conventional method of manufacturing a Pd metal film is outlined as follows. A material metal such as Pd or a Pd-Ag (palladium / silver) alloy is annealed and cold rolled. Note that Pd causes irreversible deformation (shrinks in length and width and increases in thickness) by repeating the phase change between the α phase having a low hydrogen concentration and the β phase having a high hydrogen concentration. Alloys with A thin film of Pd or a Pd alloy is formed on the surface of a porous body serving as a support of the Pd film by plating or vapor deposition operation (for example, electroplating, electroless plating, vacuum vapor deposition by electron beam heating, etc. are applied). . The above-described method is basically used for manufacturing a metal film, and various techniques have been incorporated into the method for reducing the thickness of the film, preventing defects of the film, and improving the strength. In addition, efforts have been made to improve the film performance by making efforts to improve the metal film material, and a method of blending various rare earth elements (yttrium, cerium, lanthanide, etc.) with Pd or Pd-Ag alloy (Japanese Patent Publication No. 52-1982). 28748) has also been proposed.
【0004】以下に、従来の水素分離膜の構造例を図2
を使って説明する。冷間圧延で製作された金属性の水素
透過性金属箔4を、該水素分離膜の強度を補強するため
に、多数の孔を持つ補強板5の上に置く。補強板5は、
強度を保持するため、複数枚であることが多い。本例で
は、3枚の補強板5を備えている。更に水素透過性膜4
を透過して補強板5を通過してくる水素を集めるため
に、複数の溝を持ったベース板6の上に重ね、しかる
後、各部材4,5及び6の周囲をシール溶接により一体
化して水素分離膜のモジュールとしている。この場合、
補強板5が運転時の圧力差から生じる歪みを支える時、
多孔板の孔径から膜厚が制約を受け、従来15μm以下
のものは実用できなかった。また、多孔質体で支持され
た蒸着膜を製作する場合には、5μm程度の平均孔径を
持つ多孔質支持体の上に直接メッキ或は蒸着するのが一
般的であり、その封口のために少なくとも20μm以上
の膜厚を必要としていた。FIG. 2 shows an example of the structure of a conventional hydrogen separation membrane.
I will explain using. A metallic hydrogen-permeable metal foil 4 manufactured by cold rolling is placed on a reinforcing plate 5 having a large number of holes in order to reinforce the strength of the hydrogen separation membrane. The reinforcing plate 5
In order to maintain the strength, the number of sheets is often plural. In this example, three reinforcing plates 5 are provided. Furthermore, hydrogen permeable membrane 4
In order to collect hydrogen passing through the reinforcing plate 5 through the base plate 6, the base member 6 having a plurality of grooves is superimposed thereon, and then the periphery of each member 4, 5 and 6 is integrated by seal welding. As a hydrogen separation membrane module. in this case,
When the reinforcing plate 5 supports the strain resulting from the pressure difference during operation,
The film thickness is restricted by the pore diameter of the perforated plate, and a plate having a thickness of 15 μm or less cannot be used conventionally. In addition, when producing a vapor-deposited film supported by a porous body, it is common to directly plate or vapor-deposit on a porous support having an average pore diameter of about 5 μm. A film thickness of at least 20 μm was required.
【0005】[0005]
【発明が解決しようとする課題】ところで、水素透過性
膜の性能を向上させるには、膜そのものの水素透過性
能を向上させるとともに、膜の厚さをできるだけ薄くし
て、水素透過抵抗を小さくすること(ただしこの時膜厚
が小さくなると膜強度が低下する)、水素透過量を増
加させるため、膜の両面にかかる圧力差を上げることが
できる様な機械的強度の大きい膜を実現すること、水
素透過性能を確保するために必要な耐高温性を確保する
こと、膜の金属が水素との接触で治金的変化を受ける
ことなく、膜の使用寿命を長く保てるようにすること、
等が必要となる。本発明は、水素透過性合金膜の水素透
過性能,耐水素脆化性および耐高温性の改善を図ろうと
するものである。By the way, in order to improve the performance of the hydrogen permeable membrane, the hydrogen permeation performance of the membrane itself is improved, and the thickness of the membrane is made as small as possible to reduce the hydrogen permeation resistance. (However, if the film thickness becomes smaller at this time, the film strength decreases), and to increase the hydrogen permeation amount, to realize a film having a large mechanical strength capable of increasing the pressure difference applied to both surfaces of the film, Ensuring the high temperature resistance required to ensure hydrogen permeation performance, ensuring that the metal of the membrane does not undergo metallurgical changes due to contact with hydrogen, and that the service life of the membrane can be maintained long;
Etc. are required. The present invention seeks to improve the hydrogen permeable performance, hydrogen embrittlement resistance and high temperature resistance of a hydrogen permeable alloy film.
【0006】[0006]
【課題を解決するための手段】Pd等の金属から成る水
素透過性膜の膜厚を可能な限り小さくすることが高純度
水素分離膜の性能向上に貢献するので、本発明では、金
属多孔体上に、孔径0.1μm以下の細孔を持ち、中間
支持体となる柱状構造体を蒸着成膜して表面状態を整
え、その上にPdやPd合金の水素透過性金属膜層を形
成させることにより、水素透過性膜の膜欠陥の発生を抑
えて、最小限の膜厚で実用性のある水素透過性膜の成膜
を可能にした。なお、上記金属多孔体は、水素分離膜と
しての実用的強度を持たせるために置いたものであり、
不織布等でできた強度の大きい多孔質が好ましい。ま
た、柱状構造体(膜)の材質として、Co,Ni等の金
属あるいはZrO2等のセラミックを用いると、良質の
ものを成膜することができる。さらに、水素透過性膜と
しては、純Pd,PdとAgの合金,PdとY等の希土
類元素からなる群から選んだ1種以上の金属からなる合
金を用いると、水素選択透過性の高い良質の膜を得るこ
とができる。なお、Pdを基本組成とし、Y,Gd,L
uの希土類元素を配合した合金膜において、Y,Gd,
Luの含有量をある範囲内に限定することにより、水素
透過性能が高く、耐水素脆化性が小さく、かつ高温強度
が大きい実用性の高い水素分離膜を製作することができ
ることを確認した。Means for Solving the Problems Making the thickness of a hydrogen permeable membrane made of a metal such as Pd as small as possible contributes to the improvement of the performance of a high-purity hydrogen separation membrane. A columnar structure serving as an intermediate support having pores having a pore diameter of 0.1 μm or less is formed thereon by vapor deposition to prepare a surface state, and a hydrogen-permeable metal film layer of Pd or a Pd alloy is formed thereon. As a result, the generation of film defects in the hydrogen permeable film was suppressed, and a practically practicable hydrogen permeable film could be formed with a minimum thickness. In addition, the said metal porous body was put in order to have the practical strength as a hydrogen separation membrane,
A high-strength porous material made of nonwoven fabric or the like is preferable. If a metal such as Co or Ni or a ceramic such as ZrO 2 is used as the material of the columnar structure (film), a good quality film can be formed. Furthermore, when the hydrogen permeable membrane is made of pure Pd, an alloy of Pd and Ag, or an alloy of one or more metals selected from the group consisting of rare earth elements such as Pd and Y, high quality hydrogen selective permeability is obtained. Can be obtained. Note that Pd is a basic composition, and Y, Gd, L
In an alloy film containing a rare earth element of u, Y, Gd,
It was confirmed that by limiting the Lu content to a certain range, a highly practical hydrogen separation membrane having high hydrogen permeation performance, low hydrogen embrittlement resistance, and high high-temperature strength can be manufactured.
【0007】[0007]
【作用】薄い膜厚を持つ水素透過性膜の実用性を保つに
は、膜厚が小さくても膜に欠陥(破れ等)がないこと、
薄い膜厚でも膜の取扱時または使用中に発生する応力に
耐えて破損しなことが必要である。このため、本発明に
基づいて滑らかな欠陥のない強度支持体の表面に水素透
過性膜を成膜することにより、該膜の欠陥発生を防止す
ることができ、しかも、成膜上の問題が少なくなるの
で、膜厚を従来以上に薄くすることができる。また、表
面平滑度の高い柱状構造膜は、金属不織布などの更に強
度の高い多孔体上に蒸着して成膜されるため、総合的な
水素分離膜の強度を非常に大きくすることができる。更
に、柱状構造膜と金属多孔体の通気抵抗は小さいので、
水素分離膜として複合膜体を作っても、発生する水素分
離膜の総合圧損失を小さく保つことができる。[Function] In order to maintain the practicality of a hydrogen-permeable film having a small film thickness, there is no defect (breakage, etc.) in the film even if the film thickness is small.
Even a thin film needs to withstand the stress generated during handling or use of the film and not be damaged. For this reason, by forming a hydrogen-permeable film on the surface of a smooth support having no defects based on the present invention, it is possible to prevent the occurrence of defects in the film, and furthermore, there is a problem in film formation. Since the number is reduced, the film thickness can be made smaller than before. Further, since the columnar structure film having a high surface smoothness is deposited and formed on a porous material having a higher strength such as a metal nonwoven fabric, the overall strength of the hydrogen separation film can be significantly increased. Furthermore, since the ventilation resistance of the columnar structure membrane and the porous metal body is small,
Even if a composite membrane is made as a hydrogen separation membrane, the total pressure loss of the generated hydrogen separation membrane can be kept small.
【0008】[0008]
【実施例】以下に、本発明を実施例に基づき、具体的に
説明する。なお、本発明は、これらの実施例に限定され
るものではない。 (実施例1)先ず、水素分離膜を構成する金属多孔体1
を選定する試験を行なった。金属多孔体1としては、入
手できるものの中で多孔体の細孔径が最も小さい金属不
織布(孔径5〜10μm)を使用した。その上に形成す
る柱状構造膜2は、電子銃加熱式真空蒸着装置を用いて
成膜した。なお、圧損失が小さい(許容圧損失がH2が
20m3 N/m2 hの速度で膜を透過する時、0.1a
tmと考えた)柱状構造膜2を形成するには、真空度が
5×10-5Torr以上,成膜速度が2μm/min〜
10μm/min,膜厚は300μmであるので、成膜
欠陥の発生がほとんどない膜厚40μm以上の条件で成
膜すれば良いことが判った。材料の種については、供試
したNi,Co,ZrO2 +8%Y2 O3 の間では変化
は認められず、導入ガスに用いたAr,O2 の差も明確
ではなかった。これらの条件範囲内で成膜した柱状構造
膜2は、約0.1μmの柱状組織となっており、柱状構
造の隙間が通気孔となっている。従って、通気孔となる
細孔径は0.1μm以下で直線状のものである。上記金
属不織布の上に、前述の蒸着装置を用いて柱状構造体材
料をNi,導入ガスをAr,真空度を5×10-4Tor
r,成膜速度を10μm/minとして、膜厚40μm
の柱状構造膜を作り、その上にPdを5μmの厚さに真
空蒸着した。このようにして作った水素分離膜の性能を
測定した結果、透過性が500°C,2kgf/cm2
の運転条件で、水素透過性能45.6m3 N/m2 hを
示し、実用性の高い水素分離膜であることを確認した。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. Note that the present invention is not limited to these examples. (Example 1) First, a metal porous body 1 constituting a hydrogen separation membrane 1
A test was conducted to select As the metal porous body 1, a metal nonwoven fabric (pore diameter 5 to 10 μm) having the smallest pore diameter of the porous body among available ones was used. The columnar structure film 2 formed thereon was formed using an electron gun heating type vacuum evaporation apparatus. Incidentally, when the pressure loss is small (acceptable pressure loss H 2 is transmitted through the film at a rate of 20m 3 N / m 2 h, 0.1a
In order to form the columnar structure film 2, the degree of vacuum is 5 × 10 −5 Torr or more, and the film formation rate is 2 μm / min.
Since the film thickness was 10 μm / min and the film thickness was 300 μm, it was found that the film should be formed under the condition of a film thickness of 40 μm or more, which hardly causes a film formation defect. Regarding the species of the material, no change was observed between the tested Ni, Co, ZrO 2 + 8% Y 2 O 3 , and the difference between Ar and O 2 used for the introduced gas was not clear. The columnar structure film 2 formed within these condition ranges has a columnar structure of about 0.1 μm, and the gap between the columnar structures serves as a vent. Therefore, the pore diameter of the vent hole is 0.1 μm or less and linear. On the metal non-woven fabric, Ni was used for the columnar structure material, Ar was used as the introduced gas, and the degree of vacuum was set to 5 × 10 −4 Torr using the above-described vapor deposition apparatus.
r, a film forming speed of 10 μm / min, and a film thickness of 40 μm
Was formed, and Pd was vacuum-deposited thereon to a thickness of 5 μm. As a result of measuring the performance of the hydrogen separation membrane thus produced, the permeability was 500 ° C., 2 kgf / cm 2.
Under the operating conditions described above, the hydrogen permeation performance was 45.6 m 3 N / m 2 h, and it was confirmed that this was a highly practical hydrogen separation membrane.
【0009】(実施例2)柱状構造体材料をNi,導入
ガスをAr,真空度を5×10-3Torr,成膜速度を
10μm/minとして、実施例1と同様の装置を用い
て、金属不織布の上に200μm厚の柱状構造体2を成
膜した。更にその上に、Pdを5μm厚さに真空蒸着し
水素分離膜を試作した。試作品の水素透過性能は、実施
例1と同一の試験法により測定した結果、水素透過性能
40.5m3 N/m2 hであり、実用膜として十分な性
能を示した。 (実施例3)実施例2と同様な試験を行なった。但し、
水素透過性膜の材質はPd−23%Ag合金,膜厚は1
μmとした。水素分離膜の性能は、前記実施例と同じ測
定法を用いて行なった結果、水素透過量は118m3 N
/m2 hとなり、高性能な水素分離膜であることが判っ
た。(Embodiment 2) The columnar structure material was Ni, the introduced gas was Ar, the degree of vacuum was 5 × 10 −3 Torr, and the film formation rate was 10 μm / min. A 200 μm thick columnar structure 2 was formed on the metal nonwoven fabric. Further thereon, Pd was vacuum-deposited to a thickness of 5 μm to produce a hydrogen separation membrane as a trial. The hydrogen permeation performance of the prototype was measured by the same test method as in Example 1, and as a result, the hydrogen permeation performance was 40.5 m 3 N / m 2 h, indicating sufficient performance as a practical membrane. (Example 3) The same test as in Example 2 was performed. However,
The material of the hydrogen permeable membrane is Pd-23% Ag alloy, and the film thickness is 1
μm. The performance of the hydrogen separation membrane was measured using the same measurement method as in the above example. As a result, the hydrogen permeation amount was 118 m 3 N
/ M 2 h, indicating that the membrane is a high-performance hydrogen separation membrane.
【0010】(実施例4)実施例2と同様な試験を引続
き行なった。但し、水素透過性膜の材料はPd−8%
Y,膜厚は1μmとしている。水素分離膜の性能は、前
記実施例と同じ測定法を用いて行なった結果、水素透過
性は144m3 N/m2 hを示して、高性能な水素分離
膜が得られた。 (実施例5)実施例2と同じ柱状構造体を下地にして、
メッキ法で水素透過性膜を成膜した。本実施例では、P
dを溶かしたアンモニア性メッキ液を用い、電気メッキ
法を適用して、メッキ厚さは2μmにコントロールし
た。水素分離膜の性能は、前例と同じ測定法で性能を評
価したが、その水素透過性能は80.3m3 N/m2 h
で、極めて高い性能を示した。 (実施例6)水素透過性膜の材質をPd+23%Agと
して、膜厚を1μmとした以外は、実施例5と同じ試験
をした。水素分離膜の水素透過性能は、136m3 N/
m2hを示し、Pd+23%Ag材が良好な結果をもた
らすことが判った。Example 4 The same test as in Example 2 was continued. However, the material of the hydrogen permeable membrane is Pd-8%
Y, the film thickness is 1 μm. The performance of the hydrogen separation membrane was measured using the same measurement method as in the above example. As a result, the hydrogen permeability was 144 m 3 N / m 2 h, and a high performance hydrogen separation membrane was obtained. (Example 5) The same columnar structure as in Example 2 was used as a base,
A hydrogen permeable film was formed by a plating method. In this embodiment, P
The plating thickness was controlled to 2 μm by applying an electroplating method using an ammoniacal plating solution in which d was dissolved. The performance of the hydrogen separation membrane was evaluated by the same measurement method as in the previous example, and the hydrogen permeation performance was 80.3 m 3 N / m 2 h.
And showed extremely high performance. Example 6 The same test as in Example 5 was performed except that the material of the hydrogen-permeable film was Pd + 23% Ag and the film thickness was 1 μm. The hydrogen permeation performance of the hydrogen separation membrane is 136 m 3 N /
m 2 h, indicating that the Pd + 23% Ag material gave good results.
【0011】[0011]
【発明の効果】本発明によれば、次のような効果を得る
ことができる。 表面粗度が小さく、平滑性が高く、かつ表面状態が
均一で、水素透過性膜の接着表面として信頼性の高い柱
状構造膜を下地にして、水素透過性膜をコーティング成
膜することで、極めて薄く、欠陥のない高性能の水素透
過性膜を作ることができる。 柱状構造膜は、金属不織布などの強度の高い多孔体
を基体にして、該基体の上に成膜するようにしているた
め、水素分離膜に実用上大きな強度を持たせることがで
きる。 柱状構造膜及び金属多孔体の通気性が十分に大きい
ので、水素透過性膜の厚さが小さいこととあいまって、
運転時の圧損失を従来の水素分離膜より小さくすること
ができる。 ポリスチレンフィルム等の上に水素透過性膜を成膜
し、引続きその上に柱状多孔質膜を成膜した複合膜を多
孔体として組立てる他の方法に比べ、本発明の方法はや
や水素透過性膜厚さは増すが、膜製作の取扱いがより容
易であり、製作コストも低くすることができる。According to the present invention, the following effects can be obtained. The surface roughness is small, the smoothness is high, the surface condition is uniform, and the hydrogen permeable film is coated and formed on the basis of the highly reliable columnar structure film as the bonding surface of the hydrogen permeable film, An extremely thin and defect-free high-performance hydrogen permeable membrane can be produced. Since the columnar structure membrane is formed on a porous substrate having high strength, such as a metal nonwoven fabric, and formed on the substrate, the hydrogen separation membrane can have practically high strength. Since the permeability of the columnar structure membrane and the porous metal body is sufficiently large, in combination with the small thickness of the hydrogen permeable membrane,
The pressure loss during operation can be made smaller than that of a conventional hydrogen separation membrane. Compared to other methods of assembling a composite membrane in which a hydrogen permeable membrane is formed on a polystyrene film and the like, and then a columnar porous membrane is formed thereon as a porous body, the method of the present invention is a slightly hydrogen permeable membrane. Although the thickness is increased, the handling of membrane fabrication is easier and the fabrication costs can be lower.
【図1】本発明の一実施例に係る水素分離膜を示す要部
断面図である。FIG. 1 is a cross-sectional view of a main part showing a hydrogen separation membrane according to one embodiment of the present invention.
【図2】従来の水素分離膜を示す分解斜視図である。FIG. 2 is an exploded perspective view showing a conventional hydrogen separation membrane.
1 金属多孔体 2 柱状構造膜 3 水素透過性膜 Reference Signs List 1 porous metal body 2 columnar structure film 3 hydrogen permeable film
Claims (3)
に、真空蒸着法により柱状構造膜を40〜300μmコ
ーティングし、更にPd等の水素のみを選択的に透過す
る膜を1〜20μmコーティングしたことを特徴とする
水素分離膜。1. A surface of a metal porous support such as a metal nonwoven fabric is coated with a columnar structure film by a vacuum deposition method at a thickness of 40 to 300 μm, and a film such as Pd that selectively transmits only hydrogen is coated at a thickness of 1 to 20 μm. A hydrogen separation membrane, comprising:
純Pd,PdとAgからなる合金,PdとY及び希土類
元素からなる群から選ばれる1種以上の金属よりなる合
金であることを特徴とする請求項1に記載の水素分離
膜。2. The membrane selectively permeating only the hydrogen,
The hydrogen separation membrane according to claim 1, wherein the hydrogen separation membrane is pure Pd, an alloy composed of Pd and Ag, or an alloy composed of one or more metals selected from the group consisting of Pd, Y, and a rare earth element.
の金属あるいはZrO2 等のセラミックを、真空蒸着法
で真空度5×10-4Torrから2×10-3Torr,
成膜速度2μm/min以上の条件で作製することを特
徴とする水素分離膜の製作方法。As 3. A columnar structure film, the material is Co, the metal or ceramics such as ZrO 2 such as Ni, 2 × 10 -3 Torr vacuum degree 5 × 10 -4 Torr by a vacuum deposition method,
A method for producing a hydrogen separation membrane, characterized in that it is produced under conditions of a film formation rate of 2 μm / min or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10567897A JPH10297906A (en) | 1997-04-23 | 1997-04-23 | Hydrogen separation membrane and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10567897A JPH10297906A (en) | 1997-04-23 | 1997-04-23 | Hydrogen separation membrane and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10297906A true JPH10297906A (en) | 1998-11-10 |
Family
ID=14414096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10567897A Withdrawn JPH10297906A (en) | 1997-04-23 | 1997-04-23 | Hydrogen separation membrane and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10297906A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2479309A1 (en) | 2004-03-25 | 2012-07-25 | Topy Kogyo Kabushiki Kaisha | Metallic glass laminates, production methods and applications thereof |
KR101494187B1 (en) * | 2013-05-07 | 2015-02-17 | 한국에너지기술연구원 | Hydrogen separation membrane module sing foil separation film and manufacturing method thereof |
-
1997
- 1997-04-23 JP JP10567897A patent/JPH10297906A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2479309A1 (en) | 2004-03-25 | 2012-07-25 | Topy Kogyo Kabushiki Kaisha | Metallic glass laminates, production methods and applications thereof |
KR101494187B1 (en) * | 2013-05-07 | 2015-02-17 | 한국에너지기술연구원 | Hydrogen separation membrane module sing foil separation film and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5393325A (en) | Composite hydrogen separation metal membrane | |
JP4250525B2 (en) | Separation diffusion metal membrane and manufacturing method thereof | |
JP4991381B2 (en) | Inorganic composite membrane for fluid separation | |
US6475268B2 (en) | Supported membrane for hydrogen separation | |
US7875154B2 (en) | Preparation method of palladium alloy composite membrane for hydrogen separation | |
US7468093B2 (en) | Multiple phase alloys and metal membranes for hydrogen separation-purification and method for preparing the alloys and the metal membranes | |
JP3882567B2 (en) | Material separation structure | |
JP2000093767A (en) | Manufacture of tubular hydrogen permeable membrane, the membrane and its use | |
KR100547527B1 (en) | Hydrogen Permeable Structure and Manufacturing Method Thereof | |
US7125440B2 (en) | Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use | |
US20100132546A1 (en) | Composite Structures with Porous Anodic Oxide Layers and Methods of Fabrication | |
US3359705A (en) | Oxygen permeable membranes | |
JP2008012495A (en) | Hydrogen permeation alloy membrane | |
KR20090092532A (en) | Metal Composite Membrane for Hydrogen Separation and Preparation Method thereof | |
US4781734A (en) | Non-porous hydrogen diffusion membrane and utilization thereof | |
JPH10297906A (en) | Hydrogen separation membrane and its manufacture | |
JP4064774B2 (en) | Hydrogen permeator and method for producing the same | |
TWI442966B (en) | Methods of fabricating porous media and inorganic selective film | |
JPH10296061A (en) | Hydrogen separation membrane and its manufacture | |
JP4411409B2 (en) | Method for manufacturing hydrogen permeation device | |
WO2005075060A1 (en) | Composite structure for high efficiency hydrogen separation and its associated methods of manufacture and use | |
JP3174668B2 (en) | Hydrogen separation membrane | |
JP2008272605A (en) | Hydrogen permeable membrane and its manufacturing method | |
JP2005218963A (en) | Member for hydrogen permeation and its producing method | |
JP2008043907A (en) | Hydrogen permeable composite membrane and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040706 |