JPH0372908A - Filter medium for air filter - Google Patents

Filter medium for air filter

Info

Publication number
JPH0372908A
JPH0372908A JP20876489A JP20876489A JPH0372908A JP H0372908 A JPH0372908 A JP H0372908A JP 20876489 A JP20876489 A JP 20876489A JP 20876489 A JP20876489 A JP 20876489A JP H0372908 A JPH0372908 A JP H0372908A
Authority
JP
Japan
Prior art keywords
layer
porous membrane
filter
air filter
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20876489A
Other languages
Japanese (ja)
Inventor
Teruhiko Sugimori
輝彦 杉森
Kunihiro Aoki
青木 邦廣
Hiroshi Takahashi
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP20876489A priority Critical patent/JPH0372908A/en
Publication of JPH0372908A publication Critical patent/JPH0372908A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To form a filter medium for air filter having excellent mechanical strength by superposing a filter layer consisting of glass fiber only on the side of void layer of a porous membrane comprising a fine-pore layer having fine pores which have openings perpendicular to the surface of the membrane and a void layer. CONSTITUTION:A porous membrane made from organic polymer, comprising a fine-pore layer having pores which have openings substantially perpendicular to the surface of the membrane and which have average pore diameter of 0.2-10mum and an opening ratio of 35-95% and a void layer having pore diameters larger than those of pores of the fine-pore layer is formed. A filter layer consisting of glass fiber only is superposed on the side of the void layer of the porous membrane to obtain a filter medium for air filter. For superposing a filter layer on a porous membrane, when thermoplastic material is employed in forming a porous membrane, the porous membrane is heated in a spotlike manner and pressed onto the filter layer so that the membrane is easily contacted with the said layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高清浄度の環境を実現するkめの空気浄化用
高性能濾材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-performance filter medium for air purification that realizes a highly clean environment.

〔従来の技術〕[Conventional technology]

従来、高清浄度の環境を実現するだめの空気浄化用高性
能濾材としては硝子繊維からなるHJICPAフィルタ
ー 〇’r、FAフィルター等が知られている。しかし
硝子繊維単独のフィルターはガラス棒維に由来する微細
な粒子が脱落して透過気体中に流出するため空気清浄度
を高めることが困難である。
Hitherto, HJICPA filters made of glass fibers, FA filters, and the like have been known as high-performance filter media for air purification to achieve a highly clean environment. However, with a filter made only of glass fibers, fine particles originating from the glass rod fibers fall off and flow into the permeating gas, making it difficult to improve air cleanliness.

又、このような脱落粒子による問題を解消するものとし
て硝子iIt、&!層の空気流出面側にポリテトラフル
オロエチレン製の多孔質膜を積層した濾材が、特開昭6
2−2770.9号公報や実開昭6l−t32020号
公報で開示されてかり、更にその中間部に網状布体や艇
体を介在させた濾材が特開昭63−16017号公報や
特開昭63−16019号公報に開示されている。
In addition, as a solution to the problem caused by such falling particles, glass iIt, &! A filter medium in which a porous membrane made of polytetrafluoroethylene was laminated on the air outflow side of the layer was developed in Japanese Patent Application Laid-open No. 6
This is disclosed in Japanese Patent Laid-Open No. 2-2770.9 and Japanese Utility Model Application No. 6l-t32020, and furthermore, filter media in which a mesh cloth body or a hull is interposed in the intermediate part are disclosed in Japanese Patent Laid-Open No. 63-16017 and Japanese Unexamined Utility Model Publication No. 63-16017. It is disclosed in Publication No. 16019/1983.

〔発明が解決しようとする課題〕 しかし慶から、前記硝子縁1aIIIとポリテトラプル
オロエチレン製多孔質膜とからなる濾材は多孔質膜の構
造について充分に検討されてからず濾材全体の寿命を長
くできない点が問題である。
[Problems to be Solved by the Invention] However, Kei discovered that the filter medium made of the glass edge 1aIII and the polytetrafluoroethylene porous membrane had not been sufficiently studied for the structure of the porous membrane, and the life of the entire filter medium was shortened. The problem is that it cannot be made longer.

又、ポリテトラフルオロエチレン製の多孔質膜は機械的
強度が不充分なことと熱可塑性でな−ことのために加工
特性が充分でなく、硝子繊維層との熱溶融接着ができな
り点も問題である。
In addition, porous membranes made of polytetrafluoroethylene have insufficient mechanical strength and are not thermoplastic, so they do not have sufficient processing properties and cannot be thermally melted and bonded to glass fiber layers. That's a problem.

孔を有するボイド層とからなる有機重合体の多孔質膜B
のボイド層側にガラスtJ!を維からなる濾過層Aが8
l層されてなるエアフィルタ用濾材にある。
Organic polymer porous membrane B consisting of a void layer having pores
Glass tJ on the void layer side! The filtration layer A consisting of fibers is 8
The filter medium for air filters is made up of two layers.

ガラス繊維のみからなる濾過層ムとしては、エア濾適用
として知られている公知のガラス繊維濾紙を用いること
ができ、目標とするエアフィルタ用濾材の捕集効率や圧
力損失を考慮して、ガラス繊維の径、分散状態、充填率
、層の厚さ等を適宜選定して用いることができる。
As the filtration layer made only of glass fibers, a well-known glass fiber filter paper known for use in air filtration can be used. The fiber diameter, dispersion state, filling rate, layer thickness, etc. can be appropriately selected and used.

有機重合体からなる多孔質膜BFi、膜面に対して実質
的に垂直に開口した孔(以下「ストレート孔」という)
を有する廖(ストレート孔層)、及び、このようなスト
レート孔より大きな孔径なか、ストレート孔とは、膜面
と垂直な任意の切断面にかいて曲路比が1.0〜1.2
で変化比が0.6〜1.7である孔をいう。ここで、曲
路比とは、前記切断面に現われた一つの孔についてその
孔の中心部を通る曲筐たは直線をLとし、ストレート孔
層の厚みをL8としたときのL/LsO比をいう。また
、変化比とは、前記切断面に現われた一つのストレート
孔について膜外部表九 面(ストレート孔開口面)にかける孔の幅を4変化比が
前記範囲より小さいと圧力損失が増加するので好唾しく
なく、前記範囲より大きbと隣接する孔間の距離が極端
に小さくなり開口率を上げることが難しいので好ましく
ない。曲路比が前記範囲より大きbと圧力損失が増加す
るので好1しくない。
Porous membrane BFi made of organic polymer, pores opening substantially perpendicular to the membrane surface (hereinafter referred to as "straight pores")
Straight pores (straight pores) and pores with larger diameters than straight pores, straight pores have a curvature ratio of 1.0 to 1.2 in any cut plane perpendicular to the membrane surface.
pores with a change ratio of 0.6 to 1.7. Here, the curvature ratio is the L/LsO ratio when the curved casing or straight line passing through the center of the hole appearing on the cut surface is L, and the thickness of the straight hole layer is L8. means. In addition, the change ratio is the width of the hole applied to the outer nine surfaces of the membrane (straight hole opening surface) for one straight hole appearing on the cut surface.If the change ratio is smaller than the above range, the pressure loss will increase. This is undesirable, and the distance between holes that are larger than the above range and adjacent to each other becomes extremely small, making it difficult to increase the aperture ratio. If the curve ratio is larger than the above range, the pressure loss will increase, which is not preferable.

なか、細孔の曲路比、筐たは変化比が前記範囲からはず
れる部分は当然ストレート孔ではなく、この非対称膜は
通常ストレート孔層とボイド層にかける孔の径が両層の
界面から徐々に、または急激にボイド層側方向に増大す
る構造を有している。
Of course, the portion where the curvature ratio, housing, or change ratio of the pores deviates from the above range is not a straight pore, and in this asymmetric membrane, the diameter of the pores that connect the straight pore layer and the void layer usually gradually decreases from the interface between the two layers. It has a structure in which the voids increase sharply or rapidly in the side direction of the void layer.

この多孔質膜において、ストレート孔層の膜外部表面に
存在する孔(以下「表面孔」という)は、円形または楕
円形であって長径と短径の比は1.0〜2.0、その孔
径変動係数は0〜50憾であることが望筐しい。また、
その平均孔径は(12〜10μ解の範囲である。ここに
、各々の表内孔についての長径と短径の相加平均値をそ
の表面孔の孔径といい、表面孔の平均孔径とはN個の表
面孔の孔径の相加平均値をいう。通常Nの値は100が
採用される。、!た、孔径変動係数とは表面孔の孔径に
ついて以下の式で示される値をいう。
In this porous membrane, the pores (hereinafter referred to as "surface pores") existing on the outer surface of the membrane of the straight pore layer are circular or elliptical, and the ratio of the major axis to the minor axis is 1.0 to 2.0. It is desirable that the pore diameter variation coefficient is 0 to 50. Also,
The average pore diameter is in the range of 12 to 10μ.Here, the arithmetic average value of the major and minor diameters of each inner pore is called the pore diameter of the surface pore, and the average pore diameter of the surface pore is N It refers to the arithmetic average value of the pore diameters of surface pores.The value of N is usually 100.The pore diameter variation coefficient refers to the value expressed by the following formula for the pore diameter of the surface pores.

(標準偏差/平均孔径)xloo(係)平均孔径が0.
2μmより小さいものは捕集効率は高いが、圧力損失も
著しく高くなるので好オしくなく、10μmより大きい
ものは捕集効率が低く実用的ではない。平均孔径は5μ
m以下であることが好筐しく、3μm以下であることが
特に好プしい。孔径変動係数はD〜40係であることが
より好ツしい。
(Standard deviation/average pore diameter)xlooo (correspondence) Average pore diameter is 0.
If the diameter is smaller than 2 μm, the collection efficiency is high, but the pressure loss will also be extremely high, which is not preferable. If the diameter is larger than 10 μm, the collection efficiency is low and it is not practical. Average pore size is 5μ
It is preferably less than m, and particularly preferably less than 3 μm. It is more preferable that the pore diameter variation coefficient is D to 40.

長径と短径の比及び平均孔径は走査型電子顕微鏡によっ
て測定することができる。
The ratio of the major axis to the minor axis and the average pore diameter can be measured using a scanning electron microscope.

ストレート孔層の厚みは濾過効率ε圧力損失を考慮する
と1〜50μm程度であればよく、3〜20μm程度で
あることがより好−t j、v。
Considering the filtration efficiency ε pressure loss, the thickness of the straight pore layer may be about 1 to 50 μm, and more preferably about 3 to 20 μm.

又、多孔質膜B全体の膜厚は10〜200μm程度であ
ればよい。
Further, the thickness of the entire porous membrane B may be about 10 to 200 μm.

tた、開口率とは前記表面孔全面積の膜外部表面の表面
積に占める割合をい−、該開口率は35〜95憾である
1、開口率力に35’1未満であると圧力損失が高くな
るので好ましくなく、また954を越えると多孔質膜の
強度が低下し損傷され易すので好1しく危い。開口率は
40〜804であることがより好!しい。
In addition, the aperture ratio refers to the ratio of the total area of the surface pores to the surface area of the outer surface of the membrane, and the aperture ratio is 35 to 95.1, and if the aperture ratio is less than 35'1, pressure loss occurs. is undesirable because it becomes high, and it is undesirable if it exceeds 954 because the strength of the porous membrane decreases and it becomes easily damaged. It is more preferable that the aperture ratio is between 40 and 804! Yes.

多孔質膜B全体の空孔率(vot’6 )は50〜95
嘔であればよく、空孔率が前記範囲より小さいと圧力損
失が増加するので好筐しくなく、前記範囲より大きいと
多孔質膜Bの機械的特性が低下するので好ましくない。
The porosity (vot'6) of the entire porous membrane B is 50 to 95
If the porosity is smaller than the above range, the pressure loss will increase, which is undesirable, and if it is larger than the range, the mechanical properties of the porous membrane B will deteriorate, which is not preferable.

多孔質膜B全体の空孔率は65〜95懺であることがよ
り好筐しい。
It is more preferable that the porosity of the entire porous membrane B is 65 to 95 pores.

なか、空孔率は水銀ポロシメーターによって求めること
ができる。
Among these, the porosity can be determined using a mercury porosimeter.

多孔質膜Bの機械的強度は積層加工時の取扱性や折り込
み加工時の強度の問題等から、破断強度が10f151
幅以上であることが好筐しい。
The mechanical strength of porous membrane B has a breaking strength of 10f151 due to issues such as ease of handling during lamination processing and strength during folding processing.
It is preferable that the width is greater than the width of the casing.

前記範囲より小さいと膜の欠陥部の発生等が生じ、信頼
性が低下するので望1しくない。
If it is smaller than the above range, defects may occur in the film, resulting in decreased reliability, which is not desirable.

多孔質膜Bの素材とiる有機重合体は特に限定されず、
例えばポリフッ化ビニリデン、トリフルオロエチレン等
のフッ素系重合体、ポリスルホン、ポリエーテルスルホ
ン、ポリカーボネート、ポリエーテルイミド、ポリエチ
レンテレフタレート、ポリメチルメタクリレート、ポリ
ブチル(メタ)アクリレート等のポリ(メタ)アクリル
酸エステル、ポリアクリロニトリル、酢酸セルロース、
硝酸セルロース等のセルロースエステル類、ポリエチレ
ン、ポリ−4−メチル−1−ペンテン、ポリブタジェン
等のポリオレフィン、ポリ酢酸ビニル、ポリスチレン、
ポリ−α−メチルスチレン、ポリ−4−ビニルピリジン
、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビ
ニリデン、シリコン系ポリマーポリフェニレンオキサイ
ド等の重合体、あるhはこれらの共重合体を挙げること
ができる。
The organic polymer used as the material for porous membrane B is not particularly limited,
For example, fluoropolymers such as polyvinylidene fluoride and trifluoroethylene, poly(meth)acrylic esters such as polysulfone, polyethersulfone, polycarbonate, polyetherimide, polyethylene terephthalate, polymethyl methacrylate, and polybutyl (meth)acrylate; acrylonitrile, cellulose acetate,
Cellulose esters such as cellulose nitrate, polyolefins such as polyethylene, poly-4-methyl-1-pentene, polybutadiene, polyvinyl acetate, polystyrene,
Polymers such as poly-α-methylstyrene, poly-4-vinylpyridine, polyvinylpyrrolidone, polyvinyl chloride, polyvinylidene chloride, silicone-based polymer polyphenylene oxide, and copolymers thereof can be mentioned.

しかしながら、積層加工時の取扱性や熱融着による接着
加工性の点から熱可塑性有機重合体であることが積重し
い。又、これらの中でも多孔質膜の構造を微妙にコント
ロールすることが容易な(メタ)アクリル酸エステル系
重合体単独または(メタ)アクリル酸エステル系重合体
と他の重合体とのブレンド物であることが好1しく、他
の重合体はフッ素化ポリオレフィン筐たは二種以上のフ
ッ素化オレフィンの共重合体であることが好筐しい。
However, thermoplastic organic polymers are preferred from the viewpoint of handling properties during lamination processing and adhesion processing properties through thermal fusion. Among these, (meth)acrylic ester polymers alone or blends of (meth)acrylic ester polymers and other polymers are suitable for delicately controlling the structure of the porous membrane. The other polymer is preferably a fluorinated polyolefin or a copolymer of two or more fluorinated olefins.

このような多孔質膜Bは湿式凝固法や湿式凝固法と荷電
粒子照射法の併用等によって製造可能であるが、好まし
い方法として特開昭63−267406号公報記載の水
蒸気凝固法を挙げることができる。
Such a porous membrane B can be manufactured by a wet coagulation method or a combination of a wet coagulation method and a charged particle irradiation method, but a preferred method is the steam coagulation method described in JP-A-63-267406. can.

本発明のエアフィルタ用濾材は前述の濾過層Aと多孔質
膜Bが積層されたものであるが、HHPムクラス用とし
ては濾過MAと多孔質膜Bの積層体の圧力損失(ΔPj
k+B )と捕集効率(R)が下式を満足する範囲にあ
ることがム+B 好オしい。
The filter medium for air filters of the present invention is one in which the above-mentioned filtration layer A and porous membrane B are laminated, but for HHP mukras, the pressure loss (ΔPj
It is preferable that k+B ) and collection efficiency (R) be in a range that satisfies the following formula.

圧力損失 ΔPA+B≦60 wtz H2O(IIA
速5.3 cm/ sea )捕集効率 RA+B≧9
9.974 (線速5.3crn/sea、 0.3μm粒子)着た
、さらに高性能のULFAクラスの高性能濾材として利
用する場合には、下記の範囲にあることが好ましい。
Pressure loss ΔPA+B≦60 wtz H2O (IIA
Speed 5.3 cm/sea) Collection efficiency RA+B≧9
9.974 (linear velocity: 5.3 crn/sea, 0.3 μm particles) When used as a high-performance filter medium of the ULFA class, it is preferably within the following range.

圧力損失 Δ’ A+B≦80wH20(線速5.3 
cm/ sea) 捕集効率 RA+B≧99.9999係(線速5.5 
cm/ sec *α5pm粒子)このようにエアフィ
ルタ用濾材の捕集効率の水準は使用目的に応じて適宜選
択してやればよりが、圧力損失ΔPA+BはHKPAク
ラス用、ULPAクラス用共に50 wsJo以下であ
ることがより好ましい。
Pressure loss Δ' A+B≦80wH20 (linear speed 5.3
cm/sea) Collection efficiency RA+B≧99.9999 (linear speed 5.5
cm/sec *α5pm particles) In this way, the level of collection efficiency of the air filter medium can be selected appropriately depending on the purpose of use, but the pressure loss ΔPA+B is 50 wsJo or less for both HKPA class and ULPA class. It is more preferable.

なか、本発明のエアフィルタ用濾材のような積層体の圧
力損失(ΔPA−1−B )と捕集効率(RA+B)は
、濾過層ム、多孔質膜B単独の圧力損失Nえ、ΔPB、
捕集効率RA、RBと下式の関係にあす、実験値と良く
一致することが知られている。
Among them, the pressure loss (ΔPA-1-B) and collection efficiency (RA+B) of a laminate such as the filter medium for air filters of the present invention are determined by the pressure loss N of the filtration layer and porous membrane B alone, ΔPB,
It is known that the relationship between the collection efficiencies RA and RB is expressed by the following formula, and that it agrees well with experimental values.

△Pム+B=ΔPム+ΔPB RA+l1=t 1−(1−R,/100 )x(1−
RB/100))xlo。
△Pmu+B=ΔPmu+ΔPB RA+l1=t 1-(1-R,/100)x(1-
RB/100))xlo.

したがって特定のΔP  %Rを得るためム+B   
 ム+B の濾過層ムと多孔質膜Bの組み合わせは様々な例を挙げ
ることができ、通常は濾過層Aと多孔質膜Bの各々の捕
集効率が80幅以上の組み合わせが採用されるが、フィ
ルタ寿命を考慮すると多孔質膜Bは濾過NIAに比べて
低圧力損失、低捕集効率の構造とすることが好1しb0
本発明にかける濾過層Aと多孔質膜Bの積層方法として
は種Aの方法を採用しうるが、多孔質膜Bに熱可塑性素
材を採用した場合は、多孔質膜Bをスポット的に加熱し
、濾過層Aに圧着することによう容易に接着することが
できる。
Therefore, to obtain a specific ΔP %R, M+B
Various examples can be given of the combination of the filtration layer A and the porous membrane B in M+B, and usually a combination in which the collection efficiency of each of the filtration layer A and the porous membrane B is 80 or more is adopted. Considering filter life, it is preferable that porous membrane B has a structure with lower pressure loss and lower collection efficiency than filtration NIA.
The method of type A can be adopted as the method for laminating the filtration layer A and the porous membrane B according to the present invention, but if a thermoplastic material is used for the porous membrane B, the porous membrane B is heated in spots. However, it can be easily adhered to the filtration layer A by pressure bonding.

又、必要に応じて後述の熱融着性繊維を有する網状体C
を濾過mAと多孔質gBの中間にはさんで加熱圧着して
もよい。
In addition, if necessary, a network C having heat-fusible fibers described below may be used.
may be sandwiched between the filtration mA and the porous gB and heat-pressed.

尚、本発明において多孔質膜Bのボイド層側に濾過層A
が積層されるのは、挿過層Aを通過した微粒子や濾過層
A自体からの脱落繊維を予め多孔質膜Bのボイド層で濾
過し、次いでストレート孔層で確実に濾過するためであ
るが、fr層加工時の多孔質膜Bの開口率の低下を抑制
できるという効果もある。
In addition, in the present invention, the filtration layer A is provided on the void layer side of the porous membrane B.
The reason why these are laminated is to ensure that fine particles passing through the insertion layer A and fibers falling off from the filtration layer A are filtered in advance through the void layer of the porous membrane B, and then through the straight pore layer. This also has the effect of suppressing a decrease in the aperture ratio of the porous membrane B during processing of the fr layer.

網状体Cとしては公知の熱融着性繊維が利用できる。こ
の熱融着性繊維としては、かよそ150℃以下の比較的
低い温度での加熱処理もしくは湿熱処理により溶融接着
するポリエチレン、プロピレン系共重合体もしくはポリ
エステル系共重合体等の成分とこれらの加熱処理により
溶融しなりポリエステルやポリプロピレン等の高融点成
分との2戒分から成る複合型m雅を挙げることができる
As the network C, known heat-fusible fibers can be used. The heat-fusible fibers include components such as polyethylene, propylene-based copolymers, or polyester-based copolymers that can be melt-bonded by heat treatment or moist heat treatment at a relatively low temperature of about 150°C or less, and the heating of these components. Composite type m-ya consisting of two precepts with a high melting point component such as polyester or polypropylene, which melts and bends due to treatment, can be mentioned.

本発明のエアフィルタ用柳材に>Vでは必要に応じて多
孔質膜Bの表面の損傷防止等を目的として多孔質膜Bの
外表面側に熱融着性lI1.維を有する網状保護NjI
Dが積層配置されていてもよく網状保護層りとしては網
状体0と同様のものを用いることができる。
If the willow material for air filters of the present invention is >V, heat-sealable lI1. Reticular protection NjI with fibers
D may be arranged in a laminated manner, and as the net-like protective layer, the same one as the net-like body 0 can be used.

〔実施例〕〔Example〕

以下実施例により本発明を説明する。実施例においては
走査型電子w4微鏡による1000〜5000倍の拡大
写真を用して、膜厚、ストレート孔層の厚み、100個
の表面孔につめて各々の長径と短径、又切断面に現われ
た100個S の孔についてL g 自−4(16を測定し、前述の式
に従って孔径変動係数、曲路比、変化比を求めた。
The present invention will be explained below with reference to Examples. In the examples, we used 1000 to 5000 times magnified photographs taken with a scanning electronic W4 microscope to measure the film thickness, the thickness of the straight pore layer, the major and minor axes of each of the 100 surface pores, and the cut surface. L g -4 (16) was measured for the 100 S holes that appeared, and the pore diameter variation coefficient, curvature ratio, and change ratio were determined according to the above-mentioned formula.

開孔率は面積法により、空孔率は水銀ポロシメーターに
より測定した。
The porosity was measured by the area method, and the porosity was measured by a mercury porosimeter.

圧力損失はエアフィルタ用濾材を1![径47mのディ
スク状に打ち抜いてホルダーに組み込み、空気を線速S
、3 cm / secで流した場合の膜間差圧を実測
することによって求めた。
Pressure loss is 1 for air filter media! [Punch out a disk shape with a diameter of 47 m and incorporate it into a holder, and blow air at a linear velocity of S.
, 3 cm/sec by actually measuring the transmembrane pressure difference.

捕集効率はエアフィルタ用濾材を直径25閣のディスク
状に打ち抜いてホルダーに組み込みパーティクルカウン
ターに接続して室内の空気を線速5.3 cm / s
ecで2分間吸引し、(L3〜(15μmの粒子透過数
nを計測し、一方、その前後にエアフィルタ用濾材を透
過させないで計測した計測値の平均値noを求め(1−
→x1oo(4EQ で表わされる値を0.3μm粒子の捕集効率とした。
The collection efficiency is determined by punching out the air filter material into a disc shape with a diameter of 25 cm, inserting it into a holder, connecting it to a particle counter, and collecting indoor air at a linear velocity of 5.3 cm/s.
EC for 2 minutes, and (L3~(15 μm particle permeation number n) was measured. On the other hand, before and after that, the average value no of the measured values measured without passing through the air filter medium was calculated (1-
→x1oo(4EQ) The value expressed as 0.3 μm particle collection efficiency.

実施例1及び2 濾過層A用のガラス繊維周としては第1表の性能を有す
る市販のものを用い、多孔質膜Bは以下のようにして#
造した。
Examples 1 and 2 As the glass fiber periphery for the filtration layer A, a commercially available one having the performance shown in Table 1 was used, and the porous membrane B was prepared as follows.
Built.

テトラフルオロエチレン/フッ化ビニリデンが20 /
 s o (mot/mot)  からなる共重合体4
0部をメチルメタクリレート60部に溶解させ、更IC
2,2’−アゾビス(2−メチルプロピオニトリル)α
03部を加え、60℃で15時間保持し、次いで120
℃で2時間保持してメチルメタクリレートを重合し、重
合体組成物を得た。
Tetrafluoroethylene/vinylidene fluoride 20/
Copolymer 4 consisting of s o (mot/mot)
0 part was dissolved in 60 parts of methyl methacrylate, and further IC
2,2'-azobis(2-methylpropionitrile) α
Add 3 parts of 0.03 parts, hold at 60°C for 15 hours, then
Methyl methacrylate was polymerized by holding at ℃ for 2 hours to obtain a polymer composition.

この重合体組成物70部をメチルエtルケトン950部
に溶解することによって重合体溶液を調整し、続いてフ
ィルム作成用アプリケーターを用いてガラス板上に厚み
250μmで約20α四方に流延し、重合体溶液の薄膜
状物を形成した。
A polymer solution was prepared by dissolving 70 parts of this polymer composition in 950 parts of methyl ethyl ketone, and then cast onto a glass plate to a thickness of 250 μm in an area of approximately 20 α squares using a film-forming applicator. A thin film of coalescent solution was formed.

次すで3 kl?icm*の飽和水蒸気を有する配管の
バルブを開き、水蒸気流量を5.0 kg/ hrに設
定して水蒸気ノズルから20cIP1の位置に該薄膜状
物を置き、表面に水蒸気流を2分間接触させて重合体を
凝固させた。次に該薄膜状物をガラス板より剥離し、流
水中に1時間浸漬して洗浄を行なった。さらに該薄膜状
物を60℃の真空乾燥機に1時間穴れて乾燥を行なった
The next one is already 3kl? Open the valve of the piping containing saturated steam of icm*, set the steam flow rate to 5.0 kg/hr, place the thin film at a position 20cIP1 from the steam nozzle, and let the steam flow contact the surface for 2 minutes. The polymer was allowed to coagulate. Next, the thin film was peeled off from the glass plate and washed by immersing it in running water for 1 hour. Further, the thin film-like material was placed in a vacuum dryer at 60° C. for 1 hour to dry it.

このようにして得られた多孔質膜B1は第2表に示す性
能を有してかり、一方の表面側にストレート孔層を有す
る非対称膜であった。
The porous membrane B1 thus obtained had the performance shown in Table 2, and was an asymmetric membrane having a straight pore layer on one surface side.

このようにして得られた多孔質膜B!と濾過層Al又は
ム3とを、多孔質膜のストレート孔層が外側となるよう
にして重ね合わせて縦、横方向に各々1備間隔毎に直径
約1−の点で熱融着接着し、エアフィルタ用濾材を得た
Porous membrane B thus obtained! and the filtration layer Al or Mu3 are stacked on top of each other with the straight pore layer of the porous membrane facing outward, and are heat-sealed and bonded at points of about 1-diameter at intervals of 1 in both the vertical and horizontal directions. A filter medium for an air filter was obtained.

この濾材は第3表の性能を示し、評価中にかいて濾材か
らの発塵は全く認められなかった。
This filter medium exhibited the performance shown in Table 3, and no dust was observed from the filter medium during the evaluation.

実施例3 水蒸気流量を50kg/hrとする代わりに35.5k
g / h rとしその他の条件は実施例1と同様にし
て製造した第2表の特性を有する多孔質膜Bh第1表に
示す濾過WA+及びポリエチレンとポリエチレンテレフ
タレートからなる直径α32mの熱融着性繊維の網状体
O(網目の空間部は3gHX 5m )とを、網状体C
を中間層とし、かつ多孔質膜B、のストレート孔層が外
側となるように積層し温度100℃で加圧接着してエア
フィルタ用濾材を得た。
Example 3 Instead of setting the water vapor flow rate to 50kg/hr, the water vapor flow rate was 35.5k/hr.
porous membrane Bh having the properties shown in Table 2, produced in the same manner as in Example 1, with g/hr and other conditions; filtration WA+ shown in Table 1; and heat fusion properties of diameter α 32 m made of polyethylene and polyethylene terephthalate. A fiber network O (the mesh space is 3gH x 5m) is connected to a network C
was used as an intermediate layer, and the porous membrane B was laminated so that the straight pore layer was on the outside, and bonded under pressure at a temperature of 100° C. to obtain a filter medium for an air filter.

との濾材は第3表の性能を示し、発塵は全く認められな
かった。
The filter media shown in Table 3 showed the performance shown in Table 3, and no dust was observed.

第  1  表 〔発明の効果〕 本発明の綿材はガラス微粒子の発塵がなく、目詰りによ
る圧力損失の上昇が遅いという優れた特徴を有している
Table 1 [Effects of the Invention] The cotton material of the present invention has excellent characteristics in that it does not generate glass fine particles and the increase in pressure loss due to clogging is slow.

又、熱可塑性高分子重合体からなる多孔質膜を用いた濾
材はガラスlB維層との界面の接着状態を良好にするこ
とが可能であり、多孔質膜の破断強度が所定値以上のも
のは取扱い性と加工性が優れてかり、機械的強度の優れ
た濾材とすることができる。
In addition, a filter medium using a porous membrane made of a thermoplastic polymer can improve the adhesion state at the interface with the glass IB fiber layer, and the breaking strength of the porous membrane is above a specified value. has excellent handling and processability, and can be used as a filter medium with excellent mechanical strength.

Claims (8)

【特許請求の範囲】[Claims] (1)ガラス繊維のみからなる濾過層Aと有機重合体か
らなる多孔質膜Bとを有するエアフィルタ用濾材であつ
て、多孔質膜Bが平均孔径0.2〜10μm、開口率3
5〜95%の膜面に対して実質的に垂直に開口した孔を
有する微細孔層と、この微細孔層の孔より大きな孔径の
孔を有するボイド層とからなり、濾過層Aが多孔質膜B
のボイド層側に積層されてなるエアフィルタ用濾材。
(1) A filter material for an air filter having a filtration layer A made only of glass fibers and a porous membrane B made of an organic polymer, wherein the porous membrane B has an average pore diameter of 0.2 to 10 μm and an aperture ratio of 3.
The filtration layer A is porous, consisting of a microporous layer having pores opening substantially perpendicularly to the membrane surface of 5 to 95%, and a void layer having pores with a larger pore diameter than the pores of this microporous layer. Membrane B
A filter material for air filters that is laminated on the void layer side of the air filter.
(2)多孔質膜Bが熱可塑性有機重合体からなるもので
ある請求項1記載のエアフィルタ用濾材。
(2) The filter medium for an air filter according to claim 1, wherein the porous membrane B is made of a thermoplastic organic polymer.
(3)熱可塑性有機重合体が(メタ)アクリル酸エステ
ル系重合体単独物又は(メタ)アクリル酸エステル系重
合体と他の重合体のブレンド物である請求項2記載のエ
アフィルタ用濾材。
(3) The air filter medium according to claim 2, wherein the thermoplastic organic polymer is a (meth)acrylic ester polymer alone or a blend of a (meth)acrylic ester polymer and another polymer.
(4)他の重合体がフッ素化ポリオレフィン又は二種以
上のフッ素化オレフィンの共重合体である請求項3記載
のエアフィルタ用濾材。
(4) The filter medium for an air filter according to claim 3, wherein the other polymer is a fluorinated polyolefin or a copolymer of two or more fluorinated olefins.
(5)部分融着性繊維を有する網状体Cが濾過層Aと多
孔質膜Bの中間に配置されてなる請求項1〜4のいずれ
かに記載のエアフィルタ用濾材。
(5) The filter medium for an air filter according to any one of claims 1 to 4, wherein the network C having partially fusible fibers is arranged between the filtration layer A and the porous membrane B.
(6)部分融着性繊維を有する網状保護層Dが多孔質膜
Bの外表面側に配置されてなる請求項1〜4のいずれか
に記載のエアフィルタ用濾材。
(6) The filter medium for an air filter according to any one of claims 1 to 4, wherein the net-like protective layer D having partially fusible fibers is disposed on the outer surface side of the porous membrane B.
(7)空気流速5.3/secに対する圧力損失が60
mmH_2O以下で、0.3μm粒子の捕集効率が99
.97%以上である請求項1〜6のいずれかに記載のエ
アフィルタ用濾材。
(7) Pressure loss for air flow rate of 5.3/sec is 60
Below mmH_2O, the collection efficiency of 0.3 μm particles is 99
.. The filter material for an air filter according to any one of claims 1 to 6, which has a content of 97% or more.
(8)空気流速5.3cm/secに対する圧力損失が
80mmH_2O以下で、0.3μm粒子の捕集効率が
99.9999%以上である請求項1〜6のいずれかに
記載のエアフィルタ用濾材。
(8) The filter medium for an air filter according to any one of claims 1 to 6, which has a pressure loss of 80 mmH_2O or less at an air flow rate of 5.3 cm/sec and a collection efficiency of 0.3 μm particles of 99.9999% or more.
JP20876489A 1989-08-11 1989-08-11 Filter medium for air filter Pending JPH0372908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20876489A JPH0372908A (en) 1989-08-11 1989-08-11 Filter medium for air filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20876489A JPH0372908A (en) 1989-08-11 1989-08-11 Filter medium for air filter

Publications (1)

Publication Number Publication Date
JPH0372908A true JPH0372908A (en) 1991-03-28

Family

ID=16561704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20876489A Pending JPH0372908A (en) 1989-08-11 1989-08-11 Filter medium for air filter

Country Status (1)

Country Link
JP (1) JPH0372908A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513514U (en) * 1991-08-05 1993-02-23 日本ケンブリツジ・フイルター株式会社 Filter
JPH0513513U (en) * 1991-08-05 1993-02-23 日本ケンブリツジ・フイルター株式会社 Filter
JPH06257939A (en) * 1992-08-28 1994-09-16 Air Prod And Chem Inc Distilling method at low temperature of air
JP2017159281A (en) * 2016-03-11 2017-09-14 ダイキン工業株式会社 Filter medium for air filter, filter pack, air filter unit, and manufacturing method of the filter medium for air filter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513514U (en) * 1991-08-05 1993-02-23 日本ケンブリツジ・フイルター株式会社 Filter
JPH0513513U (en) * 1991-08-05 1993-02-23 日本ケンブリツジ・フイルター株式会社 Filter
JPH06257939A (en) * 1992-08-28 1994-09-16 Air Prod And Chem Inc Distilling method at low temperature of air
JP2017159281A (en) * 2016-03-11 2017-09-14 ダイキン工業株式会社 Filter medium for air filter, filter pack, air filter unit, and manufacturing method of the filter medium for air filter
WO2017154980A1 (en) * 2016-03-11 2017-09-14 ダイキン工業株式会社 Filter medium for air filters, filter pack, air filter unit, and manufacturing method for filter medium for air filters
CN108778453A (en) * 2016-03-11 2018-11-09 大金工业株式会社 The manufacturing method of filter material for air filters, bag filter, air filter unit and filter material for air filters
US10537836B2 (en) 2016-03-11 2020-01-21 Daikin Industries, Ltd. Filter medium for air filter, filter pack, air filter unit and method for producing the filter medium for air filter
CN115212651A (en) * 2016-03-11 2022-10-21 大金工业株式会社 Filter medium for air filter, filter pack, air filter unit, and method for producing filter medium for air filter

Similar Documents

Publication Publication Date Title
KR101152511B1 (en) Multiple layer filter media
EP0730490B1 (en) A composite structure and a method for forming same
KR100396859B1 (en) filtering material of air filter, air filter pack and air filter unit using the same, and method for manufacturing filtering material of air filter
JP2023021167A (en) Biaxially oriented porous membrane, synthetic material, and method of production and use
EP1855780B1 (en) Composite filter media
JP2000176262A (en) Porous material, filter material for air filter, air filter unit, and supporting material for filter material for air filter
JPH07507237A (en) supported microporous membrane
JPH09504737A (en) Improved ultra low penetration air (ULPA) filter
JP2012517898A (en) Multilayer fluid permeable fiber structure comprising nanofibers and method for producing the structure
JPH06500499A (en) smoke filter
JP2011189345A (en) Perfuluorinated thermoplastic filter cartridge
JP2000300921A (en) Air filter material and air filter unit using the same
JPWO2012090835A1 (en) Blood processing filter, blood circuit system, and centrifugation method
JP2021020219A (en) Barrier vent assembly
JP2003306863A (en) Polyester filament nonwoven fabric and separation membrane using the same
CN109550410A (en) A kind of polytetrafluoroethylhollow hollow fiber membrane and manufacturing method
JPH0372908A (en) Filter medium for air filter
JPS62155912A (en) Filter element for precision filtration
JPH0352610A (en) Filter medium for air filter
JP5379935B2 (en) Pleated filter cartridge for liquid
JP2005205305A (en) Air filter medium
JPH10211409A (en) Filter media for air filter and air filter
JP2008272692A (en) Filter and its manufacturing method
JPH0386738A (en) Microporous film having macro- porous support
JP3952282B2 (en) Polyester long fiber nonwoven fabric, moisture permeable waterproof membrane and packaging material using the same