JPH0871717A - Continuous casting equipment and continuous casting method - Google Patents

Continuous casting equipment and continuous casting method

Info

Publication number
JPH0871717A
JPH0871717A JP21451394A JP21451394A JPH0871717A JP H0871717 A JPH0871717 A JP H0871717A JP 21451394 A JP21451394 A JP 21451394A JP 21451394 A JP21451394 A JP 21451394A JP H0871717 A JPH0871717 A JP H0871717A
Authority
JP
Japan
Prior art keywords
molten steel
mold
flow
steel surface
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21451394A
Other languages
Japanese (ja)
Other versions
JP3116742B2 (en
Inventor
Hideo Mizukami
英夫 水上
Takaharu Nakajima
敬治 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP06214513A priority Critical patent/JP3116742B2/en
Publication of JPH0871717A publication Critical patent/JPH0871717A/en
Application granted granted Critical
Publication of JP3116742B2 publication Critical patent/JP3116742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE: To produce a cast slab excellent in quality by positioning the setting position of an iron core between a molten steel surface corresponding level in a mold and an immersion nozzle dipping corresponding level of the molten steel in the mold to disperse the molten steel flow onto the whole moltin steel surface in the mold. CONSTITUTION: At the time of pouring the molten steel 3 into the mold 1 from the immersion nozzle 2, the molten steel is diverted to ascending flows in the molten steel surface direction and desceding flows to the lower part of the mold by impinging against the mold short side walls 1a side. The ascending flows are dispersed in the molten steel surface direction by receiving the braking force with static magnetic field generated with the iron core 5 of an electromagnet. That is, the static magnetic field is impressed near the molten metal surface, and in the case of fixing the deliverly rate of the molten steel from the immersion nozzle, the ascending flow is dispersed on the whole molten steel surface by impinging against the mold short side wall sides by the braking force. The flowing speed of the ascending flow is decreased and the rising up of the molten steel surface is decreased to suppress the variation of the molten steel surface. Further, the stagnant area of molten steel flow is cancelled to eliminate the low temp. area of the molten steel surface, and the lowering of the molten steel surface temp. is prevented and the temp. and viscosity are uniformized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造鋳型内溶鋼の
溶鋼表面近傍の流動を均一化し、鋳片の品質向上を可能
とする連続鋳造装置と鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting apparatus and a casting method capable of homogenizing the flow of molten steel in the continuous casting mold in the vicinity of the surface of the molten steel and improving the quality of the slab.

【0002】[0002]

【従来の技術】鋼の連続鋳造において鋳片の品質を向上
させるためには、鋳型内の溶鋼流動を適切に抑制し、連
続鋳造用パウダーの溶鋼中への巻き込み発生の抑制、初
期凝固シェルへの介在物補足の防止および凝固シェル厚
みの均一化を図る必要がある。
2. Description of the Related Art In order to improve the quality of a slab in continuous casting of steel, the flow of molten steel in a mold is appropriately suppressed, the occurrence of entrainment of powder for continuous casting in molten steel, and the formation of an initial solidified shell. It is necessary to prevent the trapping of inclusions and to make the thickness of the solidified shell uniform.

【0003】連続鋳造用パウダーは鋳型と鋳片との間の
潤滑剤として用いられるものであるが、このパウダーが
過剰な溶鋼流動により溶鋼中に巻き込まれるとノロ噛み
疵などが発生し、鋳片の品質を劣化させる。また、湯面
の変動は、潤滑剤として鋳型と鋳片との間に流れ込むパ
ウダー量を局所的に変動させ、凝固シェル厚みの不均一
の原因となる。
The powder for continuous casting is used as a lubricant between the mold and the slab, but when the powder is caught in the molten steel due to excessive molten steel flow, slag chewing flaws and the like occur, and the slab Deteriorate the quality of. Further, the fluctuation of the molten metal level locally changes the amount of powder flowing between the mold and the slab as a lubricant, which causes nonuniformity of the solidified shell thickness.

【0004】一方、鋳型内の溶鋼流動に淀みが発生する
と、その部分の溶鋼温度が低下して局所的に凝固シェル
の成長が速くなり、シェル厚みが不均一となる。この結
果、鋳片に作用する応力に相違が生じ、縦割れ疵などが
発生する。
On the other hand, when stagnation occurs in the molten steel flow in the mold, the molten steel temperature at that portion lowers, the solidified shell grows locally rapidly, and the shell thickness becomes uneven. As a result, the stress acting on the slab becomes different, causing vertical cracks and the like.

【0005】このような鋳片の欠陥が鋳型内溶鋼の流動
現象と深く関連していることをさらに詳細に説明する。
すなわち、鋳型内に溶鋼を注入するため溶鋼内に浸漬し
た耐火物製ノズルを用いるが、この浸漬ノズルからの吐
出流により、鋳型内の溶鋼流動が不規則となり、流速も
一定でなくなる。このため、溶鋼表面(以下、湯面とい
う)は波立つとともに上下に変動し、このため鋳型内で
湯面温度が均一でなくなり、湯面上に存在する溶融状態
のパウダー層の一部の厚みが小さくなるか、またはこの
溶融パウダー層そのものがなくなる部分が生ずる。
It will be explained in more detail that such a defect of the cast piece is closely related to the flow phenomenon of the molten steel in the mold.
That is, a refractory nozzle immersed in the molten steel is used to inject the molten steel into the mold, but due to the discharge flow from the immersion nozzle, the molten steel flow in the mold becomes irregular and the flow velocity is not constant. For this reason, the molten steel surface (hereinafter referred to as the molten metal surface) fluctuates and fluctuates up and down, so that the molten metal surface temperature becomes uneven in the mold, and the thickness of part of the molten powder layer present on the molten metal surface Becomes smaller, or there is a portion where the molten powder layer itself disappears.

【0006】この結果、溶融パウダー層の上に存在する
未溶融のパウダーが溶鋼と接し、溶鋼中へ巻き込まれて
補足される頻度が高まり、ノロ噛み疵となる。また、湯
面が変動すると鋳片と鋳型との間に流入する溶融パウダ
ー量が局所的に変わり、溶鋼から鋳型への伝熱量が均一
とならず、このため凝固シェル厚みが不均一となり、縦
割れ疵の発生に至る。
As a result, the unmelted powder existing on the molten powder layer comes into contact with the molten steel, is caught in the molten steel, and is more often caught, resulting in slag bite flaws. In addition, when the molten metal level changes, the amount of molten powder that flows between the slab and the mold locally changes, and the amount of heat transferred from the molten steel to the mold is not uniform. It causes cracks and flaws.

【0007】上記のような従来の連続鋳造の場合の状況
を図3に基づいて説明する。
The situation in the case of the conventional continuous casting as described above will be described with reference to FIG.

【0008】図3は、従来の連続鋳造における鋳型内の
溶鋼流動を模式的に示す縦断面図である。鋳型1内に浸
漬ノズル2から溶鋼3が注入されると、鋳型1の鋳型短
辺壁1a 側に衝突した溶鋼流は、湯面方向に向かう上昇
流と鋳型1の下方に向かう下降流とに分かれる。上昇流
は、鋳型短辺壁1a 近傍の湯面を図示するように盛り上
げるとともに湯面の変動を引き起こす。このため、溶融
パウダー層9の厚みは図示するように湯面の盛り上がり
位置で小さくなり、湯面の下降位置で大きくなる。生産
性向上のために鋳造速度を大きくすると浸漬ノズル2か
らの吐出流速が大きくなり、溶鋼3の上昇流速度も増大
する。このため、湯面の盛り上がり量が増加し、湯面の
波立ちや上下の変動も大きくなる。このような現象によ
り、未溶融のパウダーの溶鋼中へ巻き込み、および凝固
シェル4の厚みに変動や不均一がもたらされ、ノロ噛み
または縦割れなどの鋳片の品質上の問題が発生すること
になるのである。
FIG. 3 is a longitudinal sectional view schematically showing the flow of molten steel in a mold in conventional continuous casting. When the molten steel 3 is injected into the mold 1 from the dipping nozzle 2, the molten steel flow colliding with the mold short side wall 1a side of the mold 1 becomes an upward flow toward the molten metal surface and a downward flow toward the lower side of the mold 1. Divide. The ascending flow raises the level of the molten metal near the short side wall 1a of the mold as shown in the figure, and causes fluctuations in the molten metal surface. Therefore, the thickness of the molten powder layer 9 becomes smaller at the rising position of the molten metal surface and becomes larger at the lowered position of the molten metal surface as shown in the figure. When the casting speed is increased to improve the productivity, the discharge flow rate from the immersion nozzle 2 is increased and the upflow rate of the molten steel 3 is also increased. For this reason, the amount of swelling on the surface of the molten metal increases, and the ripples on the surface of the molten metal and the fluctuations in the vertical direction also increase. Due to such a phenomenon, unmelted powder is entrained in molten steel, and the thickness of the solidified shell 4 is varied or uneven, which causes a problem in quality of the slab such as biting or vertical cracking. It becomes.

【0009】鋳片の品質を向上させる方法として、特開
平5−55220 号公報に静磁場を用いる連続鋳造方法とそ
の鋳型が示されている。この方法は、鋳型の対向側壁の
各背面に設けた上下各一対の磁極間で静磁場を発生さ
せ、一方の磁極間で生じる静磁場の強度をもう一方のそ
れよりも小さくまたは大きくして、浸漬ノズルから鋳型
内に供給される溶鋼流に制動を加えるものである。これ
により、浸漬ノズルからの吐出流が鋳型の短辺壁と衝突
する際に発生する上昇流および下降流に制動を加えるこ
とができ、上記下降流による介在物の溶鋼中へ深い巻き
込み、あるいは湯面変動や温度の不均一が抑制される結
果、連続鋳造用パウダーの溶解が阻害されることがない
ことから、品質の良好な鋳片を高能率で製造することが
できるとしている。
As a method for improving the quality of a slab, Japanese Unexamined Patent Publication (Kokai) No. 5-55220 discloses a continuous casting method using a static magnetic field and its mold. This method generates a static magnetic field between each pair of upper and lower magnetic poles provided on each back surface of the opposite side wall of the mold, the strength of the static magnetic field generated between one magnetic pole is smaller or larger than that of the other, This is to add damping to the molten steel flow supplied from the immersion nozzle into the mold. With this, it is possible to apply braking to the ascending flow and the descending flow generated when the discharge flow from the immersion nozzle collides with the short side wall of the mold, and the inclusion of deep inclusions in the molten steel or the molten metal due to the descending flow. As a result of suppressing surface fluctuations and temperature non-uniformity, melting of the powder for continuous casting is not hindered, and it is said that a slab of good quality can be manufactured with high efficiency.

【0010】[0010]

【発明が解決しようとする課題】しかし、上記発明の方
法には、次のような問題がある。すなわち、鋳型内の溶
鋼流に静磁場が印加されると溶鋼流の方向と逆向きに力
が働くため、静磁場印加領域の溶鋼流速は低下するが、
静磁場の印加領域外で静磁場印加領域の方向へ流れる溶
鋼には制動力が働かないため、溶鋼流は静磁場のない方
向に向きを変えようとし、浸漬ノズルからの吐出流が鋳
型の上下に設置された磁極による静磁場で狭み込まれ、
この間で溶鋼流が停滞することになる。
However, the method of the above invention has the following problems. That is, when a static magnetic field is applied to the molten steel flow in the mold, a force acts in the direction opposite to the direction of the molten steel flow, so the molten steel flow velocity in the static magnetic field application region decreases,
Since the braking force does not act on the molten steel flowing in the direction of the static magnetic field application area outside the static magnetic field application area, the molten steel flow tries to turn in the direction without the static magnetic field, and the discharge flow from the immersion nozzle moves up and down the mold. Is narrowed by the static magnetic field due to the magnetic poles installed in
During this period, the molten steel flow becomes stagnant.

【0011】鋳造速度が一定の場合、浸漬ノズルからの
吐出流も一定であるから、静磁場で挟み込まれた溶鋼流
の停滞領域に吐出流が侵入するので、この領域の溶鋼流
は変動が大きく、極めて不安定となる。このため、浸漬
ノズルからの吐出流によって介在物が溶鋼中に巻き込ま
れて凝固シェルに補足され、あるいは湯面が激しく変動
することになるため、パウダーが溶鋼中に巻き込まれ、
鋳片欠陥が発生する。
When the casting speed is constant, the discharge flow from the dipping nozzle is also constant, so that the discharge flow enters the stagnant region of the molten steel flow sandwiched by the static magnetic field, and the molten steel flow in this region fluctuates greatly. , Becomes extremely unstable. Therefore, due to the discharge flow from the immersion nozzle, inclusions are entrained in the molten steel and captured by the solidified shell, or the molten metal surface fluctuates drastically, and powder is entrained in the molten steel.
A slab defect occurs.

【0012】本発明は、上記の課題を解決するためにな
されたものであり、本発明の目的は鋳型内湯面全体に溶
鋼流を分散し、溶鋼流に停滞域を発生させることなく湯
面変動を抑制し、品質の優れた鋳片を製造することがで
きる連続鋳造装置と鋳造方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to disperse a molten steel flow over the entire molten metal surface in a mold, and to prevent fluctuations in the molten steel flow without causing a stagnant zone. It is intended to provide a continuous casting apparatus and a casting method capable of suppressing the above-mentioned problems and manufacturing a slab with excellent quality.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、次の
(1)の連続鋳造装置および(2) のこの装置を用いる方法
にある。
The summary of the present invention is as follows.
It is in the continuous casting apparatus of (1) and the method of using this apparatus of (2).

【0014】(1)水平断面が矩形の連続鋳造用鋳型の両
方の長辺壁の外側に各1個の電磁石を対向させた連続鋳
造装置であって、電磁石は複数の鉄芯とそれらを取り巻
く1個のコイルとからなり、複数の鉄芯と鋳型壁外面と
の間隔は鉄芯毎に各々独立して調整可能であり、複数の
鉄芯の設置位置が鋳型内溶鋼表面相当レベルと浸漬ノズ
ルの鋳型内溶鋼への浸漬深さ相当レベルとの間であるこ
とを特徴とする連続鋳造装置。
(1) A continuous casting apparatus in which one electromagnet is opposed to the outside of both long side walls of a continuous casting mold having a rectangular horizontal section, and the electromagnet surrounds a plurality of iron cores. It consists of one coil, and the intervals between multiple iron cores and the outer surface of the mold wall can be adjusted independently for each iron core. The installation positions of the multiple iron cores are equivalent to the molten steel surface level in the mold and the immersion nozzle. The continuous casting apparatus is characterized in that it is between the level equivalent to the immersion depth in the molten steel in the mold.

【0015】(2)上記(1) の装置を用いて、鋳型長辺壁
中央部の鉄芯と鋳型壁外面との間隔を大きくすることに
より、鋳型長辺壁中央部における鋳型内の磁場強度を小
さくして鋳造することを特徴とする連続鋳造方法。
(2) Using the apparatus of (1) above, by increasing the distance between the iron core at the center of the mold long side wall and the outer surface of the mold wall, the magnetic field strength in the mold at the center of the mold long side wall is increased. A continuous casting method, characterized in that casting is performed with a small size.

【0016】[0016]

【作用】本発明の連続鋳造装置を図1および図2に基づ
いて説明する。図1は鋳型長辺壁側から見た側面を模式
的に示す一部側面および一部縦断面図、図2はこれを上
方から見た平面図である。
The continuous casting apparatus of the present invention will be described with reference to FIGS. FIG. 1 is a partial side view and a partial vertical cross-sectional view schematically showing the side surface viewed from the long side wall of the mold, and FIG. 2 is a plan view of the side surface viewed from above.

【0017】連続鋳造用鋳型1の中心に浸漬ノズル2が
一定の浸漬深さとなるように固定され、この浸漬ノズル
2から溶鋼3が鋳型1内に注入される。鋳型1内から凝
固シェル4が成長する。なお、溶鋼3の表面、すなわち
湯面上には図示しないパウダーが投入される。
The immersion nozzle 2 is fixed to the center of the continuous casting mold 1 so as to have a constant immersion depth, and the molten steel 3 is injected into the mold 1 from the immersion nozzle 2. The solidified shell 4 grows from within the mold 1. Powder (not shown) is put on the surface of the molten steel 3, that is, on the molten metal surface.

【0018】図2に示す鋳型1の両方の鋳型長辺壁1b
側の外側において、図1に示すように鋳型内の湯面相当
レベルと浸漬ノズル2の浸漬深さ相当レベルとの範囲内
で、図2に示すように鋳型長辺壁1b の外側の幅方向
に、複数の鉄芯5とこれらの複数の鉄芯全体を取り巻く
1個のコイル6を備えた1対の電磁石が対向して設けら
れる。
Both long side walls 1b of the mold 1 shown in FIG.
On the outer side of the side, within the range of the level equivalent to the molten metal surface in the mold and the level equivalent to the immersion depth of the immersion nozzle 2 as shown in FIG. 1, the width direction outside the long side wall 1b of the mold as shown in FIG. Further, a pair of electromagnets including a plurality of iron cores 5 and a coil 6 surrounding the plurality of iron cores are provided so as to face each other.

【0019】電磁石の各々の鉄芯5は、鉄芯5と長辺壁
1b の外表面との間隔dを、それぞれ独立に変化させる
ことができる機構を有している。この機構としては、例
えば次のような方法を用いるのがよい。
Each iron core 5 of the electromagnet has a mechanism capable of independently changing the distance d between the iron core 5 and the outer surface of the long side wall 1b. As this mechanism, for example, the following method may be used.

【0020】電磁石の各鉄芯5に油圧シリンダー7を接
続し、油圧シリンダー7の本体は鋳型1を支えるフレー
ム8に固定する。油圧を調節し、各油圧シリンダーロッ
ドの長さを独立に変化させることにより、鉄芯5と鋳型
長辺壁1b の外面との間隔dを鉄芯5毎に変えることが
できる。ここでは、油圧シリンダー7を用いる例を示し
たが、この替わりにエアシリンダー、モータ駆動または
手動のウォームギヤなどを用いる間隔dの制御機構とし
てもよい。
A hydraulic cylinder 7 is connected to each iron core 5 of the electromagnet, and the main body of the hydraulic cylinder 7 is fixed to a frame 8 supporting the mold 1. By adjusting the hydraulic pressure and independently changing the length of each hydraulic cylinder rod, the distance d between the iron core 5 and the outer surface of the long side wall 1b of the mold can be changed for each iron core 5. Although the example in which the hydraulic cylinder 7 is used is shown here, an air cylinder, a motor drive, a manual worm gear, or the like may be used as a control mechanism of the interval d instead.

【0021】このような機構により、コイル6に流す電
流が一定であっても、各々の間隔dを適切に制御して鋳
型1内で発生する磁場強度を鉄芯5の数に応じて局所的
に変化させることが可能となる。
With such a mechanism, even if the current flowing through the coil 6 is constant, the magnetic field strength generated in the mold 1 is locally controlled according to the number of the iron cores 5 by appropriately controlling the intervals d. Can be changed to.

【0022】図1に示すように、溶鋼3が浸漬ノズル2
から鋳型1内に注入されると鋳型短辺壁1a 側と衝突す
ることにより、湯面方向への上昇流と鋳型下方への下降
流に分かれる。上昇流は電磁石の鉄芯5で発生する静磁
場により制動力が加わり、湯面方向に分散される。すな
わち、湯面近傍に静磁場を印加し、浸漬ノズルからの溶
鋼の吐出量を一定とする場合には、上記の制動力により
鋳型短辺壁1a 側での衝突による上昇流は湯面全体に分
散される。このように上昇流が湯面全体に分散される
と、上昇流の流速が減少して湯面の盛り上がり量も減少
し、湯面変動が抑制されるとともに、溶鋼流の停滞領域
が解消されて湯面の低温領域がなくなり、湯面温度の低
下防止と温度および粘度の均一化とが達成される。
As shown in FIG. 1, the molten steel 3 is immersed in the immersion nozzle 2
When injected into the mold 1 from the above, it collides with the mold short side wall 1a side, and is divided into an upward flow in the direction of the molten metal surface and a downward flow in the downward direction of the mold. A braking force is applied to the ascending flow by the static magnetic field generated in the iron core 5 of the electromagnet, and the upward flow is dispersed in the molten metal surface direction. That is, when a static magnetic field is applied in the vicinity of the molten metal surface and the amount of molten steel discharged from the immersion nozzle is kept constant, the above-mentioned braking force causes the upward flow due to the collision on the mold short side wall 1a side over the molten metal surface. Distributed. When the ascending flow is dispersed over the molten metal surface in this way, the flow velocity of the ascending flow is reduced, the amount of rise of the molten metal surface is also reduced, fluctuations in the molten metal surface are suppressed, and the stagnant region of the molten steel flow is eliminated. The low temperature region on the surface of the molten metal disappears, and the prevention of lowering of the surface of the molten metal and the uniformization of temperature and viscosity are achieved.

【0023】鉄芯5の鋳型1に対する高さ方向の位置
を、鋳型内の湯面相当レベルと浸漬ノズル2の浸漬深さ
相当レベルとの間と限定したのは、次の理由による。
The position of the iron core 5 in the height direction with respect to the mold 1 is limited between the level corresponding to the molten metal surface in the mold and the level equivalent to the immersion depth of the immersion nozzle 2 for the following reason.

【0024】すなわち、溶鋼流に静磁場が印加されると
溶鋼流と逆向きに働く制動力の作用により、溶鋼流は静
磁場のない方向に向かう。このため、浸漬ノズル2から
の吐出流に直接静磁場を印加するのを避ける必要がある
からである。
That is, when a static magnetic field is applied to the molten steel flow, the molten steel flow moves in the direction in which there is no static magnetic field due to the action of the braking force that acts in the opposite direction to the molten steel flow. For this reason, it is necessary to avoid directly applying the static magnetic field to the discharge flow from the immersion nozzle 2.

【0025】このとき更に、浸漬ノズル2の近傍の鋳型
長辺壁1b の中央部において、鉄芯5と長辺壁1b の外
表面との間隔dを大きくすれば、この部分で磁場強度が
小さくなるように鋳型長辺壁1b すなわちスラブの幅方
向に磁場強度の分布を付与することができる。ここでい
う「浸漬ノズル2の近傍の鋳型長辺壁1b の中央部」と
は、例えば図2ではそれぞれ5個設けられている鉄芯5
の中央のものに相当する位置であり、浸漬ノズル2の位
置の近傍に当たる。望ましい「鋳型中央部」は、鋳型長
辺側壁1b の内のり長さに対して10〜30%の範囲であ
る。
At this time, if the distance d between the iron core 5 and the outer surface of the long side wall 1b is increased in the central portion of the long side wall 1b of the mold near the dipping nozzle 2, the magnetic field strength is reduced in this portion. As described above, the distribution of the magnetic field strength can be provided in the mold long side wall 1b, that is, in the width direction of the slab. The "central portion of the mold long side wall 1b in the vicinity of the dipping nozzle 2" referred to here is, for example, five iron cores 5 provided in FIG.
The position corresponds to the center position of, and corresponds to the vicinity of the position of the immersion nozzle 2. A desirable "mold central portion" is in the range of 10 to 30% with respect to the inner length of the long side wall 1b of the mold.

【0026】この結果、鋳型中央部の湯面近傍での溶鋼
流速の低減を抑制し、浸漬ノズル近傍における溶鋼流速
を均一化させることができる。これにより、鋳型中央部
で発生しやすい温度の低い領域を容易に解消させること
が可能となる。
As a result, it is possible to suppress the reduction of the molten steel flow velocity in the vicinity of the molten metal surface in the center of the mold, and to make the molten steel flow velocity in the vicinity of the immersion nozzle uniform. This makes it possible to easily eliminate the low temperature region that tends to occur in the center of the mold.

【0027】本発明の連続鋳造装置では、鋳造速度が増
大した場合に、さらに次のような効果を得ることができ
る。すなわち、浸漬ノズルからの溶鋼の吐出速度は、鋳
造速度の増大とともに大きくなるため、鋳型短辺側と衝
突して発生する上昇流の速度も大きくなり、浸漬ノズル
方向の流速も大きくなる。このように湯面近傍の溶鋼流
速が鋳造速度に依存して変化することから、鋳造速度の
上昇に応じて電磁石で発生する磁場強度を変えて溶鋼流
の制御を一層強力に行う必要がある。このような必要性
がある場合においても、鋳型の両長辺壁の外側の適切な
高さ方向位置に複数の鉄芯と1個のコイルを有する電磁
石を対向させて設け、鉄芯と鋳型長辺壁外面との間隔d
を変えることで、発生する磁場強度を任意に、しかも容
易に変化させ、所望の溶鋼流の制御を得ることで、品質
の優れた鋳片を製造することが可能となる。
With the continuous casting apparatus of the present invention, the following effects can be further obtained when the casting speed is increased. That is, the discharge speed of the molten steel from the immersion nozzle increases as the casting speed increases, so that the speed of the upward flow generated by collision with the short side of the mold also increases, and the flow velocity in the direction of the immersion nozzle also increases. Since the molten steel flow velocity near the molten metal surface changes depending on the casting speed as described above, it is necessary to more strongly control the molten steel flow by changing the magnetic field strength generated by the electromagnet according to the increase of the casting speed. Even in the case where there is such a need, an electromagnet having a plurality of iron cores and one coil is provided opposite to each other at appropriate height direction positions outside both long side walls of the mold, and the iron core and the mold length are provided. Distance d from the outside of the side wall
Can be changed arbitrarily and easily to obtain the desired control of the molten steel flow, thereby making it possible to manufacture a slab with excellent quality.

【0028】図1および図2では、鉄芯5の数は片方で
5個の例を示しているが、望ましい個数の範囲は片方で
3〜7個である。鉄芯5の1個毎の望ましい磁場強度の
範囲は 500〜3000 Gauss、変化可能な間隔dの望ましい
範囲は10〜300 mmである。磁場強度を変化させる場合
は、両端部の強度を100 とすると中央部の磁場強度は20
〜70%程度の範囲とし、両端部と中央部との間の鉄芯の
磁場強度はそれらの間の値とするのが望ましい。
In FIGS. 1 and 2, the number of iron cores 5 is 5 on one side, but a desirable number range is 3 to 7 on one side. The desirable magnetic field strength range for each of the iron cores 5 is 500 to 3000 Gauss, and the desirable range of the variable distance d is 10 to 300 mm. When changing the magnetic field strength, the magnetic field strength at the center is 20 when the strength at both ends is 100.
It is desirable that the range is about 70%, and the magnetic field strength of the iron core between both ends and the center is a value between them.

【0029】[0029]

【実施例】図1に示す鉄芯数が各5個の構造の装置を用
いて、表1および表2に示す条件で中炭素鋼スラブの連
続鋳造試験を行い、スラブの表面および内部の欠陥発生
率を調査した。
EXAMPLE A continuous casting test of medium carbon steel slabs was conducted under the conditions shown in Tables 1 and 2 using the apparatus having the structure shown in FIG. The incidence was investigated.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表示以外の鋳造条件は下記のとおりとし
た。
Casting conditions other than those shown were as follows.

【0033】連続鋳造機種、ストランド数:1 鋳型幅(長辺側内のり長さ) :1250mm 鋳型厚み(短辺側内のり長さ):250mm タンディッシュ内溶鋼過熱度: 10〜40℃ 浸漬ノズル浸漬深さ:300mm コイル電流: 3000 A 表面欠陥の評価は目視観察により単位長さあたりの総割
れ長さを、内部欠陥の評価は鋳片を鋳造方向と垂直な方
向に切断し、目視観察で単位長さあたりの総長さを、そ
れぞれ測定して、静磁場を印加しない比較例の発生率を
1.0 とし、これを基準値とした。調査結果を表1に併せ
て示す。
Continuous casting model, number of strands: 1 Mold width (long side inside length): 1250 mm Mold thickness (short side inside length): 250 mm Tundish molten steel superheat: 10-40 ° C Immersion nozzle immersion depth Size: 300 mm Coil current: 3000 A Surface defects are evaluated by visual observation to find the total crack length per unit length, and internal defects are evaluated by cutting the slab in a direction perpendicular to the casting direction and visually observing unit length. Measurement of the total length of the
1.0 was set as the standard value. The survey results are also shown in Table 1.

【0034】表1に示すように、いずれの欠陥の発生率
も、静磁場を印加しない比較例に比べて、均一静磁場を
印加した場合、鋳型の幅方向中央部になるに従い磁場強
度を弱くした場合の順に良好になり、なかでも、中央部
鉄芯No.3に向かって、静磁場強度の低下比を大きくした
本発明例3が最も優れていることがわかる。
As shown in Table 1, with respect to the occurrence rate of any defect, when the uniform static magnetic field was applied, the magnetic field strength became weaker toward the center of the mold in the width direction than in the comparative example in which the static magnetic field was not applied. It was found that the results were good in the order of the cases, and in particular, the present invention example 3 in which the static magnetic field strength reduction ratio was increased toward the central iron core No. 3 was the most excellent.

【0035】[0035]

【発明の効果】本発明によれば、外部および内部の欠陥
の少ない連続鋳造スラブを得ることができる。
According to the present invention, a continuously cast slab with few external and internal defects can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳型長辺壁側から見た本発明の連続鋳造装置の
側面を模式的に示す一部側面および一部縦断面図であ
る。
FIG. 1 is a partial side view and a partial vertical cross-sectional view schematically showing a side surface of a continuous casting device of the present invention as viewed from a long side wall side of a mold.

【図2】図1を上方から見た平面図である。FIG. 2 is a plan view of FIG. 1 seen from above.

【図3】従来の連続鋳造における鋳型内の溶鋼流動を模
式的に示す縦断面図である。
FIG. 3 is a vertical cross-sectional view schematically showing molten steel flow in a mold in conventional continuous casting.

【符号の説明】[Explanation of symbols]

1:鋳型、1a :鋳型短辺壁、1b :鋳型長辺壁、2:
浸漬ノズル、3:溶鋼、4:凝固シェル、 5:鉄芯、
6:コイル、7:油圧シリンダー、
8:フレーム、 9:溶融パウダー層
1: Mold 1a: Short side wall of mold 1b: Long side wall of mold 2:
Immersion nozzle, 3: molten steel, 4: solidified shell, 5: iron core,
6: coil, 7: hydraulic cylinder,
8: Frame, 9: Molten powder layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水平断面が矩形の連続鋳造用鋳型の両方の
長辺壁の外側に各1個の電磁石を対向させた連続鋳造装
置であって、電磁石は複数の鉄芯とそれらを取り巻く1
個のコイルとからなり、複数の鉄芯と鋳型壁外面との間
隔は鉄芯毎に各々独立して調整可能であり、複数の鉄芯
の設置位置が鋳型内溶鋼表面相当レベルと浸漬ノズルの
鋳型内溶鋼への浸漬深さ相当レベルとの間であることを
特徴とする連続鋳造装置。
1. A continuous casting apparatus in which one electromagnet is opposed to the outer sides of both long side walls of a continuous casting mold having a rectangular horizontal cross section, and the electromagnet includes a plurality of iron cores and surroundings thereof.
It consists of individual coils, and the spacing between multiple iron cores and the outer surface of the mold wall can be adjusted independently for each iron core, and the installation positions of the multiple iron cores are equivalent to the molten steel surface level in the mold and the immersion nozzle. A continuous casting device, characterized in that it is between a level equivalent to the immersion depth in the molten steel in the mold.
【請求項2】請求項1記載の装置を用いて、鋳型長辺壁
中央部の鉄芯と鋳型壁外面との間隔を大きくすることに
より、鋳型長辺壁中央部における鋳型内の磁場強度を小
さくして鋳造することを特徴とする連続鋳造方法。
2. The magnetic field strength in the mold at the center of the long side wall of the mold is increased by increasing the distance between the iron core at the center of the long side wall of the mold and the outer surface of the mold wall using the apparatus according to claim 1. A continuous casting method, characterized in that the casting is performed in a small size.
JP06214513A 1994-09-08 1994-09-08 Continuous casting apparatus and continuous casting method Expired - Fee Related JP3116742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06214513A JP3116742B2 (en) 1994-09-08 1994-09-08 Continuous casting apparatus and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06214513A JP3116742B2 (en) 1994-09-08 1994-09-08 Continuous casting apparatus and continuous casting method

Publications (2)

Publication Number Publication Date
JPH0871717A true JPH0871717A (en) 1996-03-19
JP3116742B2 JP3116742B2 (en) 2000-12-11

Family

ID=16656973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06214513A Expired - Fee Related JP3116742B2 (en) 1994-09-08 1994-09-08 Continuous casting apparatus and continuous casting method

Country Status (1)

Country Link
JP (1) JP3116742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239694A (en) * 2001-02-19 2002-08-27 Sumitomo Heavy Ind Ltd Control unit for fluidity of molten steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375242B2 (en) * 2009-03-24 2013-12-25 Jfeスチール株式会社 Continuous casting apparatus and continuous casting method
JP5369808B2 (en) * 2009-03-24 2013-12-18 Jfeスチール株式会社 Continuous casting apparatus and continuous casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239694A (en) * 2001-02-19 2002-08-27 Sumitomo Heavy Ind Ltd Control unit for fluidity of molten steel

Also Published As

Publication number Publication date
JP3116742B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
JPH0890176A (en) Method for continuously casting steel
JPH0871717A (en) Continuous casting equipment and continuous casting method
JPH0819842A (en) Method and device for continuous casting
EP0489202B1 (en) Method of controlling flow of molten steel in mold
US4220191A (en) Method of continuously casting steel
JP3583955B2 (en) Continuous casting method
JP4407260B2 (en) Steel continuous casting method
JP3336224B2 (en) Mold for continuous casting of molten steel
JPH0810917A (en) Method for continuously casting molten metal and apparatus thereof
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JP3257546B2 (en) Steel continuous casting method
JP4910357B2 (en) Steel continuous casting method
JP2607334B2 (en) Flow control device for molten steel in continuous casting mold
JP3186649B2 (en) Continuous casting method of molten metal
JP3149821B2 (en) Continuous casting method
JPH06606A (en) Controller for flow of molten steel in continuous casting mold
JP2607335B2 (en) Flow control device for molten steel in continuous casting mold
DE10020703A1 (en) Process for continuously casting thin slabs comprises inducing ultrasound waves in the bath mirror region of the mold and electromagnetic fields in the regions below it and overlapping it
JP3147824B2 (en) Continuous casting method
JPH08229649A (en) Continuous casting apparatus and method thereof
JP4492333B2 (en) Steel continuous casting method
JP3039346B2 (en) Continuous casting machine for molten metal
JP2002045953A (en) Method for continuously casting steel
JP2607333B2 (en) Flow control device for molten steel in continuous casting mold
JPH0671400A (en) Device for controlling flow of molten steel in continuous casting mold

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees