JPH086953B2 - Heat pump controller - Google Patents

Heat pump controller

Info

Publication number
JPH086953B2
JPH086953B2 JP1058323A JP5832389A JPH086953B2 JP H086953 B2 JPH086953 B2 JP H086953B2 JP 1058323 A JP1058323 A JP 1058323A JP 5832389 A JP5832389 A JP 5832389A JP H086953 B2 JPH086953 B2 JP H086953B2
Authority
JP
Japan
Prior art keywords
signal vector
signal
response
vector
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1058323A
Other languages
Japanese (ja)
Other versions
JPH02238241A (en
Inventor
晃司 戎
雄二 吉田
和成 楢崎
修 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1058323A priority Critical patent/JPH086953B2/en
Publication of JPH02238241A publication Critical patent/JPH02238241A/en
Publication of JPH086953B2 publication Critical patent/JPH086953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、利用媒体の加熱や冷却を行うヒートポンプ
サイクルにおける利用媒体温度等の制御のためのヒート
ポンプ用制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump controller for controlling the temperature of a medium used in a heat pump cycle for heating and cooling a medium used.

従来の技術 第2図は、ヒートポンプによる空気調和機のシステム
構成図であり、圧縮機1と、減圧装置6と、第一四方弁
2により前記圧縮機1の吐出部及び吸入部に切り替え可
能に接続された熱源側熱交換器3及び利用側熱交換器4
と、これら熱源側熱交換器3及び利用側熱交換器4を前
記減圧装置6の出口部及び入口部に切り替え可能に接続
し且つ前記第一四方弁2と各反対側を接続された第二四
方弁5とによって閉回路となし、閉回路の内部に冷媒を
封入してヒートポンプサイクルを形成している。
2. Description of the Related Art FIG. 2 is a system configuration diagram of an air conditioner using a heat pump, which can be switched to a discharge part and a suction part of the compressor 1 by a compressor 1, a pressure reducing device 6, and a first four-way valve 2. Source side heat exchanger 3 and utilization side heat exchanger 4 connected to the
And the heat source side heat exchanger 3 and the use side heat exchanger 4 are switchably connected to the outlet and the inlet of the decompression device 6 and are connected to the first four-way valve 2 on the respective opposite sides. The two-four-way valve 5 forms a closed circuit, and a refrigerant is enclosed in the closed circuit to form a heat pump cycle.

7はアキュムレータ、8は利用部、9は熱源側熱交換
器3に対し熱源媒体となる空気を循環させる熱源側送風
機、10は利用側熱交換器4に対し利用部6内空気を循環
させる利用側送風機、11は利用部8内の空気温度を検知
する利用部空気温度状態検知器、12は温度検知器、圧力
検知器及び冷媒過熱度演算器からなる冷媒過熱度状態検
知器、13は利用側熱交換器4の利用部8への空気吐出温
度を検知する利用側空気吐出温度状態検知器、14は温度
検知器、圧力検知器及び冷媒過冷却度演算器からなる冷
媒過冷却度状態検知器、15は圧縮機1の圧縮能力を操作
する圧縮能力操作器、16は減圧装置6の減圧能力を操作
する減圧能力操作器、17は利用側送風機10の送風能力を
操作する利用側送風能力操作器、18は熱源側送風機9の
送風能力を操作する熱源側送風能力操作器である。
7 is an accumulator, 8 is a utilization part, 9 is a heat source side blower that circulates air serving as a heat source medium to the heat source side heat exchanger 3, and 10 is a utilization that circulates air inside the utilization part 6 to the utilization side heat exchanger 4. Side blower, 11 is a utilization part air temperature condition detector for detecting the air temperature in the utilization part 8, 12 is a refrigerant superheat condition detector consisting of a temperature detector, a pressure detector and a refrigerant superheat degree calculator, 13 is a use Use side air discharge temperature state detector for detecting the air discharge temperature to the use part 8 of the side heat exchanger 4, 14 is a refrigerant supercooling degree state detection including a temperature detector, a pressure detector and a refrigerant supercooling degree calculator A device, 15 is a compression capacity operation device that operates the compression capacity of the compressor 1, 16 is a decompression capacity operation device that operates the decompression capacity of the decompression device 6, and 17 is a usage side ventilation capacity that operates the ventilation capacity of the usage side blower 10. An operation device, 18 is a heat source side for operating the blowing ability of the heat source side blower 9. It is a wind capacity operating unit.

かかる構成におけるヒートポンプによる空気調和機の
作用態様を以下に説明する。暖房運転時は、第2図の矢
印(実線)に示す如く、冷媒は、圧縮機1において圧縮
された高温高圧の蒸気となって第一四方弁2を通って利
用側熱交換器4に至る。かかるとき利用側熱交換器4は
凝縮器として働き、利用部8内の空気に熱を与えること
により利用部8を暖房し、冷媒は凝縮液化する。液化し
た冷媒は、第二四方弁5を通って減圧装置6において適
度に減圧されて低圧となり、熱源側熱交換器3に至る。
かかるとき熱源側熱交換器3は蒸気器として働き、熱源
空気よりの熱を受けて蒸発し、低圧蒸気となって第一四
方弁2及びアキュムレータ7を通って圧縮機1に吸入さ
れる。
The mode of operation of the air conditioner using the heat pump having such a configuration will be described below. During the heating operation, as shown by the arrow (solid line) in FIG. 2, the refrigerant becomes high-temperature high-pressure vapor compressed in the compressor 1 and passes through the first four-way valve 2 to the utilization side heat exchanger 4. Reach At this time, the use-side heat exchanger 4 functions as a condenser, heats the air in the use unit 8 to heat the use unit 8, and condenses and liquefies the refrigerant. The liquefied refrigerant passes through the second four-way valve 5 and is appropriately decompressed in the decompression device 6 to a low pressure, and reaches the heat source side heat exchanger 3.
At this time, the heat source side heat exchanger 3 functions as a steamer, receives heat from the heat source air, evaporates, becomes low pressure steam, and is sucked into the compressor 1 through the first four-way valve 2 and the accumulator 7.

冷房運転時は第2図の矢印(破線)に示す如く、第一
四方弁2及び第二四方弁5の切り替えにより熱源側熱交
換器3は凝縮器、利用側熱交換器4は蒸発器として働
き、利用部8内の空気から吸熱することにより、利用部
8を冷房する。
During the cooling operation, as shown by the arrow (broken line) in FIG. 2, the heat source side heat exchanger 3 is a condenser and the use side heat exchanger 4 is evaporated by switching the first four-way valve 2 and the second four-way valve 5. It acts as a container and absorbs heat from the air in the utilization part 8 to cool the utilization part 8.

次に、各操作器の作用様態を以下に説明する。圧縮能
力操作器15の操作量を増加すると、圧縮機1の圧縮能力
が増加し、暖房運転時では利用部8での暖房能力が増
え、利用部8内の空気温度が上昇し、冷房運転時では逆
に低下し、その温度変化は利用部空気温度状態検知器11
により検知される。
Next, the mode of operation of each operating device will be described below. When the operation amount of the compression capacity operation unit 15 is increased, the compression capacity of the compressor 1 is increased. During the heating operation, the heating capacity in the use unit 8 is increased, the air temperature in the use unit 8 is increased, and the cooling operation is performed. On the contrary, the temperature change decreases, and the temperature change
Detected by.

減圧能力操作器16の操作量を増加すると、減圧装置6
の減圧能力が増加し、暖房運転時では冷媒循環量が減圧
し、その結果冷媒過冷却度は上昇し、その過冷却度変化
は冷却過冷却度状態検知器14により検知され、冷房運転
時では圧縮機1の吸入圧力が低下し、その結果冷媒過熱
度は上昇し、その過熱度変化は冷媒過熱度状態検知器12
により検知される。
When the operation amount of the decompression capacity operation device 16 is increased, the decompression device 6
The depressurizing capacity is increased, the refrigerant circulation amount is reduced during the heating operation, and as a result, the refrigerant supercooling degree increases, and the change in the supercooling degree is detected by the cooling supercooling degree state detector 14, and during the cooling operation. The suction pressure of the compressor 1 decreases, and as a result, the refrigerant superheat degree rises, and the change in the superheat degree indicates that the refrigerant superheat state detector 12
Detected by.

利用側送風能力操作器17の操作量を増加すると、利用
側送風機10の送風能力が増加して風量が増え、暖房運転
時では暖房能力は増大するものの利用側熱交換器4の利
用部8への空気吐出温度は低下し、冷房運転時では冷房
能力は増大するものの利用側熱交換器4の利用部8への
空気吐出温度は逆に上昇し、その温度変化は利用側空気
吐出温度状態検知器13により検知される。
When the operation amount of the use side blower capacity operation unit 17 is increased, the blower capacity of the use side blower 10 is increased to increase the air volume, and the heating capacity is increased during the heating operation, but to the use unit 8 of the use side heat exchanger 4. The air discharge temperature of the use side heat exchanger 4 increases while the air discharge temperature of the use side heat exchanger 4 increases while the cooling capacity increases during the cooling operation. It is detected by the device 13.

熱源側送風能力操作器18の操作量を増加すると、熱源
側送風機9の送風能力が増加して風量が増え、暖房運転
時では蒸発能力が増大し、その結果冷媒過熱度は上昇
し、その過熱度変化は冷媒過熱度状態検知器12により検
知され、冷房運転時では凝縮能力が増大し、その結果冷
媒過冷却度は上昇し、その過冷却度変化は冷媒過冷却度
状態検知器14により検知される。
When the operation amount of the heat source side blower capacity operation device 18 is increased, the blower capacity of the heat source side blower 9 is increased to increase the air volume, the evaporation capacity is increased during the heating operation, and as a result, the refrigerant superheat degree is increased and the superheat thereof is increased. Degree change is detected by the refrigerant superheat state detector 12, the condensing capacity increases during cooling operation, as a result the refrigerant supercooling degree rises, and the supercooling degree change is detected by the refrigerant supercooling degree state detector 14. To be done.

ヒートポンプによる空気調和機では、これら圧縮能力
操作器15、減圧能力操作器16、利用側送風能力操作器1
7、及び熱源側送風能力操作器18の各操作量を適正化す
るための制御装置が必要で、以下制御装置の作用様態を
図に基づいて説明する。
In an air conditioner using a heat pump, these compression capacity operation unit 15, decompression capacity operation unit 16, user-side blowing capacity operation unit 1
7, and a control device for optimizing each operation amount of the heat source side blowing ability operation device 18 is required, and the operation mode of the control device will be described below with reference to the drawings.

第3図は従来のヒートポンプによる空気調和機の制御
装置のブロック構成図であり、19は制御演算器、20は利
用部空気温度状態検知器11の出力信号である利用部空気
温度状態信号、21は利用側空気吐出温度状態検知器13の
出力信号である利用側空気吐出温度状態信号、22は冷媒
過熱度状態検知器12の出力信号である冷媒過熱度状態信
号、23は冷媒過冷却度状態検知器14の出力信号である冷
媒過冷却度状態信号、24は利用部空気温度状態信号20の
目標信号である利用部空気温度目標信号、25は利用側空
気吐出温度状態信号21の目標信号である利用側空気吐出
温度目標信号、26は冷媒過熱度状態信号22の目標信号で
ある冷媒過熱度目標信号、27は冷媒過冷却度状態信号23
の目標信号である冷媒過冷却度目標信号、28は利用部空
気温度状態信号20と利用部空気温度目標信号24との差で
ある利用部空気温度偏差信号、29は利用側空気吐出温度
状態信号21と利用側空気吐出温度目標信号25との差であ
る利用側空気吐出温度偏差信号、30は冷媒過熱度状態信
号22と冷媒過熱度目標信号26との差である冷媒過熱度偏
差信号、31は冷媒過冷却度状態信号23と冷媒過冷却度目
標信号27との差である冷媒過冷却度偏差信号、32は圧縮
能力操作器15の操作量を与える圧縮能力操作信号、33は
利用側送風能力操作器17の操作量を与える利用側送風能
力操作信号、34は熱源側送風能力操作器18の操作量を与
える熱源側送風能力操作信号、35は減圧能力操作器部16
の操作量を与える減圧能力操作信号、36は利用部空気温
度偏差信号28に基づき圧縮能力操作信号32を決定する第
一PID演算器、37は利用側空気吐出温度偏差信号29に基
づき利用側送風能力操作信号33を決定する第二PID演算
器、38は暖房運転時には冷媒過熱度偏差信号30に基づき
冷媒運転時には冷媒過冷却度偏差信号31に基づき熱源用
側送風能力操作信号34を決定する第三PID演算器、39は
暖房運転時には冷媒過冷却度偏差信号31に基づき冷房運
転時には冷媒過熱度偏差信号30に基づき減圧能力操作信
号35を決定する第四PID調節器、40は暖房運転時には冷
媒過熱度偏差信号30を第三PID演算器38に伝えるととも
に冷媒過冷却度偏差信号31を第四PID演算器39に伝える
とともに冷房運転時には冷媒過熱度偏差信号30を第四PI
D演算器39に伝え冷媒過冷却度偏差信号31を第三PID演算
器38に伝える冷媒過熱過冷却度偏差信号切替器である。
FIG. 3 is a block configuration diagram of a conventional air conditioner control device using a heat pump, 19 is a control arithmetic unit, 20 is a utilization part air temperature state signal which is an output signal of the utilization part air temperature state detector 11, and 21. Is a use side air discharge temperature state signal that is an output signal of the use side air discharge temperature state detector 13, 22 is a refrigerant superheat state signal that is an output signal of the refrigerant superheat state detector 12, and 23 is a refrigerant supercooling degree state Refrigerant supercooling degree state signal which is an output signal of the detector 14, 24 is a target portion air temperature target signal which is a target signal of the user portion air temperature state signal 20, and 25 is a target signal of the user side air discharge temperature state signal 21. A certain use-side air discharge temperature target signal, 26 is a refrigerant superheat degree target signal which is a target signal of the refrigerant superheat degree state signal 22, and 27 is a refrigerant supercooling degree state signal 23.
Refrigerant supercooling degree target signal which is a target signal of 28, 28 is a use portion air temperature deviation signal which is a difference between the use portion air temperature state signal 20 and the use portion air temperature target signal 24, and 29 is a use side air discharge temperature state signal 21 and the use side air discharge temperature deviation signal which is the difference between the use side air discharge temperature target signal 25, 30 is the refrigerant superheat degree deviation signal which is the difference between the refrigerant superheat degree state signal 22 and the refrigerant superheat degree target signal 26, 31 Is a refrigerant supercooling degree deviation signal which is the difference between the refrigerant supercooling degree state signal 23 and the refrigerant supercooling degree target signal 27, 32 is a compression capacity operation signal which gives the operation amount of the compression capacity operator 15, and 33 is a user side blower Utilization side blowing capacity operation signal for giving the operation amount of the capacity operation unit 17, 34 is a heat source side blowing capacity operation signal for giving the operation amount of the heat source side blowing capacity operation unit 18, 35 is a decompression capacity operation unit section 16
Depressurization capacity operation signal that gives the operation amount, 36 is a first PID calculator that determines the compression capacity operation signal 32 based on the use part air temperature deviation signal 28, 37 is the use side air blow based on the use side air discharge temperature deviation signal 29 A second PID calculator that determines the capacity operation signal 33, 38 determines the heat source side blowing capacity operation signal 34 based on the refrigerant supercooling degree deviation signal 31 based on the refrigerant superheat degree deviation signal 30 during heating operation A third PID calculator, 39 is a fourth PID controller that determines the pressure reduction operation signal 35 based on the refrigerant superheat degree deviation signal 30 based on the refrigerant supercooling degree deviation signal 31 during heating operation, and 40 is the refrigerant during heating operation The superheat degree deviation signal 30 is transmitted to the third PID calculator 38, the refrigerant supercooling degree deviation signal 31 is transmitted to the fourth PID calculator 39, and the refrigerant superheat degree deviation signal 30 is transmitted to the fourth PI during cooling operation.
This is a refrigerant overheat / supercooling degree deviation signal switch for transmitting the refrigerant supercooling degree deviation signal 31 to the D calculator 39 to the third PID calculator 38.

かかる構成におけるヒートポンプによる空気調和機の
制御装置の動作態様を以下に説明する。第一〜四の各PI
D演算器36〜39では、各偏差信号28〜31に各比例係数を
掛けた各量と、各偏差信号28〜31の各積分値に各積分係
数を掛けた各量と、各偏差信号28〜31の各微分値に各微
分係数を掛けた各量とを足した各値を、各操作信号32〜
35とすることにより、各偏差信号28〜31を零にし、利用
部空気温度状態信号20を利用部空気温度目標信号24に、
利用側空気吐出温度状態信号21を利用側空気吐出温度目
標信号25に、冷媒過熱度状態信号22を冷媒過熱度目標信
号26に、冷媒過冷却度状態信号23を冷媒過冷却度目標信
号27に各々一致させるものである。
The operation mode of the control device for the air conditioner using the heat pump having such a configuration will be described below. 1st to 4th PI
In the D computing units 36 to 39, the respective amounts obtained by multiplying the respective deviation signals 28 to 31 by the respective proportional coefficients, the respective amounts obtained by multiplying the respective integral values of the respective deviation signals 28 to 31 by the respective integration coefficients, and the respective deviation signals 28 To each operation signal 32 to 31
By setting 35, each deviation signal 28 to 31 is made zero, and the utilization part air temperature state signal 20 is used as the utilization part air temperature target signal 24,
Use side air discharge temperature state signal 21 to use side air discharge temperature target signal 25, refrigerant superheat degree signal 22 to refrigerant superheat degree target signal 26, refrigerant supercooling degree state signal 23 to refrigerant supercooling degree target signal 27. Each match.

各制御応答性能は、各比例係数、各積分係数及び各微
分係数の値によって決まり、各係数を決定する代表的な
方法としてはジーグラ・ニコルスのステップ応答法がよ
く知られている。これら予め各操作信号32〜35をステッ
プ状に変化させた時の利用部空気温度状態信号20、利用
側空気吐出温度状態信号21、冷媒過熱度状態信号22、及
び冷媒過冷却度状態信号23の各変化波形から伝達関数を
むだ時間、時定数、及びゲインとして求め、これらの値
に基づき各係数を設定することにより、適切な応答を得
ようとするものである。
Each control response performance is determined by the value of each proportional coefficient, each integral coefficient, and each differential coefficient, and the Ziegler-Nichols step response method is well known as a typical method for determining each coefficient. Of these operation signals 32 to 35 in advance, the use portion air temperature state signal 20, the use side air discharge temperature state signal 21, the refrigerant superheat degree state signal 22, and the refrigerant supercooling degree state signal 23 when changed stepwise The transfer function is obtained from each change waveform as a dead time, a time constant, and a gain, and an appropriate response is obtained by setting each coefficient based on these values.

発明が解決しようとする課題 しかしながら、このようなヒートポンプによる空気調
和機の制御装置では、圧縮能力操作信号32を変化させる
と冷媒過熱度状態信号22や利用側空気吐出温度状態信号
21まで影響を受けるなどの相互干渉の問題があり、この
ためジーグラ・ニコルスのステップ応答法で求めた各係
数の値のままではハンチング現象といった不安定な応答
となり、安定化のためには、これより十分小さな値にし
なければならず、その結果整定時間は長くなってしま
う。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in a control device for an air conditioner using such a heat pump, when the compression capacity operation signal 32 is changed, the refrigerant superheat degree state signal 22 and the use side air discharge temperature state signal
There is a problem of mutual interference such as being affected up to 21.Therefore, if the value of each coefficient obtained by the step response method of Ziegler-Nichols is left as it is, an unstable response such as a hunting phenomenon occurs. It has to be set to a much smaller value, resulting in a longer settling time.

さらに各操作信号32〜35の大きさによって、利用部空
気温度状態信号20、利用側空気吐出温度状態信号21、冷
媒過熱度状態信号22、及び冷媒過冷却度状態信号23への
影響の大きさや応答が異なる非線形特性の問題があり、
このため利用部8の熱負荷条件や、熱源空気の温度条件
等が変化すると、各操作信号32〜35の大きさが変わり、
予めステップ応答で求めた時の伝達関数とは変わってし
まい、やはりハンチング現象といった不安定な応答や、
安定であっても整定時間が不用に長くなってしまう。
Further, depending on the magnitude of each operation signal 32 to 35, the magnitude of the influence on the use portion air temperature state signal 20, the use side air discharge temperature state signal 21, the refrigerant superheat degree state signal 22, and the refrigerant supercooling degree state signal 23. There is a problem of non-linear characteristics with different responses,
Therefore, when the heat load condition of the utilization unit 8 or the temperature condition of the heat source air changes, the size of each operation signal 32 to 35 changes,
The transfer function is different from the one obtained by the step response in advance, and the unstable response such as the hunting phenomenon,
Even if it is stable, the settling time becomes unnecessarily long.

また、ヒートポンプによる空気調和機では、配管や熱
交換器における冷媒の移動や利用部8における空気の移
動などに起因して、各操作信号32〜35の変化が各状態信
号20〜23の変化となって現れるまでのむだ時間が大き
く、不安定になりやすい性質を持ったものである。
In an air conditioner using a heat pump, changes in the operation signals 32 to 35 are caused by changes in the state signals 20 to 23 due to the movement of the refrigerant in the pipes and the heat exchanger and the movement of the air in the utilization unit 8. It has a long dead time to appear and becomes unstable.

このように、相互干渉や非線形特性の問題、さらには
大きなむだ時間により、ハンチング現象といった不安定
な応答となり、冷媒過熱度が零以下になって圧縮機1に
液冷媒が吸入される結果、圧縮機1が破損するなどの問
題を生じる。
As described above, due to the problem of mutual interference, non-linear characteristics, and large dead time, an unstable response such as a hunting phenomenon occurs, the refrigerant superheat becomes zero or less, and the liquid refrigerant is sucked into the compressor 1. Problems such as breakage of the machine 1 occur.

また安定な制御応答を得ようとすると、第一〜四の各
PID演算器36〜39の各係数を十分小さな値にしなければ
ならず、その結果整定時間が長くなり、利用部空気温度
がなかなか目標に達せず、快適性を損なうなどの問題点
があった。
Also, when trying to obtain a stable control response, each of the first to fourth
Each coefficient of the PID calculators 36 to 39 must be set to a sufficiently small value, and as a result, the settling time becomes long, and the air temperature of the user part does not easily reach the target, and there is a problem that comfort is impaired.

課題を解決するための手段 本発明は、上記問題点を解消するためになされたもの
で、利用部空気温度状態信号、利用側空気吐出温度状態
信号、冷媒過熱度状態信号及び冷媒過冷却度状態信号を
要素とする状態信号ベクトルに加え、状態信号ベクトル
の微分信号で微小時間前の状態微分信号ベクトルと、同
じく微小時間前の圧縮能力操作信号、利用側送風能力操
作信号、熱源側送風能力操作信号及び減圧能力操作信号
を要素とする操作信号ベクトルと、各状態信号の応答の
目標を与える各応答目標信号を要素とする応答目標信号
ベクトルと、応答目標信号ベクトルと状態信号ベクトル
との差である誤差信号ベクトルを基にその入力が微小時
間前の操作信号ベクトルであり状態信号ベクトルに対す
る操作信号ベクトルの影響の大きさを支配する各入力配
分係数を行列演算成分とする入力配分行列演算器の出力
信号ベクトルと、その入力が状態信号ベクトルであり応
答目標信号ベクトルの応答を支配する各応答目標応答支
配係数を行列演算成分とする応答目標応答支配行列演算
器の出力信号ベクトルと、その入力が目標信号ベクトル
であり応答目標信号ベクトルに対する目標信号ベクトル
の影響を大きさの支配する各入力配分係数を行列演算成
分とする応答目標入力配分行列演算器の出力信号ベクト
ルとを加算信号として、また、微小時間前状態微分信号
ベクトルと、その入力が誤差信号ベクトルであり誤差信
号ベクトルの応答を支配する各誤差応答支配係数を行列
演算成分とする誤差応答支配行列演算器の出力信号ベク
トルとを減算信号として各々ベクトル加減演算器に入力
し、その入力がベクトル加減演算器の出力信号ベクトル
であり入力配分行列演算器の行列演算成分の逆行列を行
列演算成分とする逆入力配分行列演算器の出力信号ベク
トルを操作信号ベクトルとするものである。
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and is a use portion air temperature state signal, a use side air discharge temperature state signal, a refrigerant superheat degree state signal, and a refrigerant supercooling degree state. In addition to the status signal vector that has the signal as an element, the differential signal of the status signal vector is the state differential signal vector of the minute time before, and the compression capacity operation signal, the usage side ventilation capacity operation signal, and the heat source side ventilation capacity operation of the minute time ago. Signal and decompression capability An operation signal vector that has an operation signal as an element, a response target signal vector that has each response target signal as an element that gives a response target of each state signal, and a difference between the response target signal vector and the state signal vector Based on a certain error signal vector, its input is the operation signal vector before a minute time, and Input distribution coefficient whose input matrix coefficient is the matrix operation component Output signal vector of the matrix operator and each response whose input is the state signal vector and which controls the response of the response target signal vector Response whose target response control coefficient is the matrix operation component Target response control matrix Output signal vector of the calculator and the response target input distribution whose input is the target signal vector and whose input distribution coefficient whose magnitude controls the influence of the target signal vector on the response target signal vector is the matrix calculation component The output signal vector of the matrix calculator is used as an addition signal, and the minute time previous state differential signal vector and each error response governing coefficient whose input is an error signal vector and governs the response of the error signal vector as a matrix calculation component. Input the output signal vector of the error response governing matrix calculator to the vector addition and subtraction calculator as subtraction signals There it is an output signal vector a and input distribution matrix calculator matrix output signal vector operation signal vector of the inverse input distribution matrix calculator that the inverse matrix calculation component and matrix operations component of the vector acceleration calculator.

さらに、操作信号ベクトルの変化が状態信号ベクトル
の変化となって現れるまでのむだ時間に応じて、入力配
分行列演算器の行列演算成分である各入力配分係数を、
実際の状態信号ベクトルに対する操作信号ベクトルの影
響の大きさを支配する各入力配分係数よりも大きくする
ものである。
Further, according to the dead time until the change of the operation signal vector appears as the change of the state signal vector, each input distribution coefficient, which is the matrix calculation component of the input distribution matrix calculator,
This is set to be larger than each input distribution coefficient that controls the magnitude of the influence of the operation signal vector on the actual state signal vector.

作用 本発明では上記のようなヒートポンプ用制御装置とす
ることにより、微小時間前の状態微分信号ベクトルと操
作信号ベクトルとから、微小時間前の操作信号ベクトル
に対する状態信号ベクトルの応答を支配する各係数と各
状態信号の積を量として推定し、その量を打ち消し、且
つ状態信号ベクトルの応答が応答目標信号ベクトルに一
致するように操作信号ベクトルを決定するもので、各操
作信号に対する各状態信号の応答に関わるすべての係数
を状態信号との積量として推定し打ち消すため、相互干
渉が発生せずしかも非線形特性による応答の特性変化に
よる制御応答の劣化がなく、常に安定で望ましい応答を
得ることができる。
Action In the present invention, by using the heat pump control device as described above, from the state differential signal vector and the operation signal vector before the minute time, each coefficient that governs the response of the state signal vector to the operation signal vector before the minute time. The product of each state signal is estimated as a quantity, the amount is canceled, and the operation signal vector is determined so that the response of the state signal vector matches the response target signal vector. Since all coefficients related to the response are estimated and canceled as the product with the state signal, mutual interference does not occur, and the control response does not deteriorate due to the characteristic change of the response due to the nonlinear characteristic, and a stable and desirable response can always be obtained. it can.

さらに、入力配分行列演算器の行列演算成分である各
入力配分係数を、実際の状態信号ベクトルに対する操作
信号ベクトルの影響の大きさを支配する各入力配分係数
よりも大きくすることにより、大きなむだ時間がある場
合においてもゲイン余有がとれ、安定化することができ
る。
Further, by making each input distribution coefficient, which is a matrix operation component of the input distribution matrix calculator, larger than each input distribution coefficient that controls the magnitude of the influence of the operation signal vector on the actual state signal vector, a large dead time is obtained. Even if there is, the gain surplus can be removed and the gain can be stabilized.

実施例 以下、本発明の一実施例におけるヒートポンプ用制御
装置を、第1図及び第2図に基づいて説明する。
Embodiment A heat pump control device in an embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は第2図に示したヒートポンプによる空気調和
機に本発明を適用した一実施例におけるヒートポンプ用
制御装置の制御演算器を示すブロック構成図であり、41
は利用部空気温度目標信号24、利用側空気吐出温度目標
信号25、冷媒過熱度目標信号26及び冷媒過冷却度目標信
号27を要素とする目標信号ベクトル(r(t))、42は利用
部空気温度状態信号20、利用側空気吐出温度状態信号2
1、冷媒過熱度状態信号22及び冷媒過冷却度状態信号23
を要素とする状態信号ベクトル(x(t))、43は圧縮能力
操作信号32、利用側送風能力操作信号33、熱源側送風能
力操作信号34及び減圧能力操作信号35を要素とする操作
信号ベクトル(u(t))、44は目標信号ベクトル(r(t)
41に対する状態信号ベクトル(x(t))42の応答の目標を
与える応答目標信号ベクトル(xm(t))、45は応答目標
信号ベクトル(xm(t))44と状態信号ベクトル(x(t))4
2との差である誤差信号ベクトル(e(t))、46は応答目
標信号ベクトル(xm(t))44に対する目標信号ベクトル
(r(t))41の影響の大きさを支配する各入力配分係数を
行列演算成分とする応答目標発生部部応答目標入力配分
行列演算器(Bm)、47は応答目標信号ベクトル
(xm(t))44の応答を支配する各応答支配係数を行列演
算成分とする応答目標発生部応答目標応答支配行列演算
器(Am)、48は各信号の積分器を要素とする応答目標発
生部ベクトル積分器(1/s)、49は各信号の加減演算器
を要素とする応答目標発生部ベクトル加減演算器、50は
応答目標発生部応答目標入力配分行列演算器(Bm)46、
応答目標発生部応答目標応答支配行列演算器(Am)47、
応答目標発生部ベクトル積分器(1/s)48及び応答目標
発生部ベクトル加減演算器49を含んでなる応答目標発生
部、51は各信号の加減演算器を要素とする誤差信号演算
部ベクトル加減演算器、52は誤差信号演算部ベクトル加
減演算器51を含んでなる誤差信号演算部、53は遅延時間
が微小時間Lである各遅延器を要素とする微小時間前状
態微分信号演算部ベクトル遅延器(e-Ls)、54は各信号
の微分器を要素とする微小時間前状態微分信号演算部ベ
クトル微分器(s)、55は微小時間前状態微分信号演算
部ベクトル遅延器(e-Ls)53及び微小時間前状態微分信
号演算部ベクトル微分器(s)54を含んでなる微小時間
前状態微分信号演算部、56は状態信号ベクトル(x(t)
42を入力とした微小時間前状態微分信号演算部55の出力
信号である微小時間前状態微分信号ベクトル(dx(t-L)/
dt)、57は遅延時間が微分時間Lである各遅延器を要素
とする微小時間前操作信号演算部ベクトル遅延器
(e-Ls)、58は微小時間前操作信号演算部ベクトル遅延
器(e-Ls)57を含んでなる微小時間前操作信号演算部、
59は操作信号ベクトル(u(t))43を入力とした微小時間
前操作信号演算部58の出力信号である微小時間前操作信
号ベクトル(u(t-L))、60は応答目標発生部応答目標入
力配分行列演算器(Bm)46の行列演算成分と同じ行列演
算成分からなる操作信号演算部応答目標入力配分行列演
算器(Bm)、61は誤差信号ベクトル(e(t))45の応答を
支配する各誤差応答支配係数を行列演算成分とする操作
信号演算部誤差応答支配行列演算器(K)、63は応答目
標発生部応答目標応答支配行列演算器(Am)47の行列演
算成分と同じ行列演算成分からなる操作信号演算部応答
目標応答支配行列演算器(Am)、63は状態信号ベクトル
(x(t))42に対する操作信号ベクトル(u(t))43の影響
の大きさを支配する各入力配分係数を行列演算成分とす
る操作信号演算部入力配分行列演算器(B)、64は各信
号の加減演算器を要素とする操作信号演算部ベクトル加
減演算器、65は操作信号演算部入力配分行列演算器
(B)63は行列演算成分の逆行列を行列演算成分とする
操作信号演算部入力配分逆行列演算器(B-1)、66は操
作信号演算部応答目標入力配分行列演算器(Bm)60、操
作信号演算部誤差応答支配行列演算器(K)61、操作信
号演算部応答目標応答支配行列演算器(Am)62、操作信
号演算部入力配分行列演算器(B)63、操作信号演算部
ベクトル加減演算器64及び操作信号演算部入力配分逆行
列演算器(B-1)65を含んでなる操作信号演算部であ
る。
FIG. 1 is a block diagram showing a control calculator of a heat pump controller in one embodiment in which the present invention is applied to the air conditioner using the heat pump shown in FIG.
Is a target signal vector (r (t) ) that has a user part air temperature target signal 24, a user side air discharge temperature target signal 25, a refrigerant superheat degree target signal 26, and a refrigerant supercooling degree target signal 27, and 42 is a user part Air temperature status signal 20, user-side air discharge temperature status signal 2
1, refrigerant superheat degree state signal 22 and refrigerant supercooling degree state signal 23
Is a state signal vector (x (t) ), 43 is a compression capacity operation signal 32, a use side air supply capacity operation signal 33, a heat source side air supply capacity operation signal 34, and a pressure reduction capacity operation signal 35. (U (t) ), 44 is the target signal vector (r (t) )
The response target signal vector (x m (t) ) that gives the target of the response of the state signal vector (x (t) ) 42 to 41, 45 is the response target signal vector (x m (t) ) 44 and the state signal vector (x (t) ) 4
Error signal vector (e (t) ), which is the difference from 2, and 46 controls the magnitude of the influence of the target signal vector (r (t) ) 41 on the response target signal vector (x m (t) ) 44. Response target generation unit using input distribution coefficient as matrix operation component Response target input distribution matrix calculator (B m ), 47 is each response control coefficient that controls the response of the response target signal vector (x m (t) ) 44 Response target generator which is a matrix operation component Response target response control matrix operator (A m ), 48 is a response target generator vector integrator (1 / s) which has an integrator of each signal as an element, and 49 is each signal Response target generator vector adder / subtractor with adder / subtractor as an element, 50 is a response target generator, response target input distribution matrix calculator (B m ) 46,
Response target generator Response target Response governing matrix calculator (A m ) 47,
Response target generator vector integrator (1 / s) 48 and response target generator vector adder / subtractor 49 including a response adder / subtractor 49, error signal calculator vector adder / subtractor 51 having each signal adder / subtractor An arithmetic unit, 52 is an error signal arithmetic unit including an error signal arithmetic unit vector addition / subtraction arithmetic unit 51, and 53 is a minute time previous state differential signal arithmetic unit vector delay having each delay device having a minute time L as a delay element. (E -Ls ), 54 is a minute time pre-state differential signal operation part vector differentiator (s) which has a differentiator of each signal as an element, and 55 is a minute time previous state differential signal operation part vector delay device (e -Ls). ) 53 and minute time previous state differential signal operation unit vector differentiator (s) 54, minute time previous state differential signal operation unit, 56 indicates state signal vector (x (t) )
The minute time previous state differential signal vector (dx (tL) /
dt), 57 is a micro time pre-operation signal calculation unit vector delay unit (e- Ls ) which has each delay device whose delay time is the differential time L as an element, and 58 is a micro time pre operation signal calculation unit vector delay unit (e -Ls ) 57, a minute time pre-operation signal calculator,
59 is the operation signal vector (u (tL) ) which is the output signal of the operation signal operation unit 58 before the minute time inputting the operation signal vector (u (t) ) 43, and 60 is the response target generation unit response target Input distribution matrix calculator (B m ) 46 Operation signal calculator consisting of the same matrix calculation components as the matrix calculation components Response target input distribution matrix calculator (B m ), 61 is the error signal vector (e (t) ) 45 Operation signal operation part error response governing matrix calculator (K), in which each error response governing coefficient governing the response is a matrix calculation component, 63 is a matrix calculation of the response target generating part, response target response governing matrix calculator (A m ) 47 Operation signal operation part composed of the same matrix operation element as the response Response target response governing matrix operator (A m ), 63 is the influence of operation signal vector (u (t) ) 43 on state signal vector (x (t) ) 42 Input signal distribution of operation signal calculation unit with matrix distribution of each input distribution coefficient that controls size Matrix operation unit (B), 64 is an operation signal operation unit vector addition and subtraction operation unit having an addition and subtraction operation unit of each signal as an element, 65 is an operation signal operation unit input distribution matrix operation unit (B) 63 is an inverse matrix of matrix operation components Input signal inversion matrix operator (B -1 ), which is a matrix operation component, 66 is an operation signal operation unit response target input distribution matrix operator (B m ) 60, operation signal operation unit error response governing matrix operation Unit (K) 61, operation signal operation unit response target response governing matrix operation unit (A m ) 62, operation signal operation unit input distribution matrix operation unit (B) 63, operation signal operation unit vector addition / subtraction operation unit 64 and operation signal operation This is an operation signal calculation unit including a partial input distribution inverse matrix calculation unit (B −1 ) 65.

目標信号ベクトル(r(t))41を入力信号とした応答目
標発生部応答目標入力配分行列演算器(Bm)46の出力信
号(Bm・r(t))を加算信号として、及び応答目標発生部
ベクトル積分器(1/s)48の出力信号を入力信号とした
応答目標発生部応答目標応答支配行列演算器(Am)47の
出力信号(Am・xm(t))を同じく加算信号として、各々
応答目標発生部ベクトル加減演算器49に加え、応答目標
発生部ベクトル加減演算器49の出力信号(Am・xm(t)+B
m・r(t))を入力信号とした応答目標発生部ベクトル積
分器(1/s)48の出力信号が応答目標信号ベクトル(x
m(t))44である。
A target signal vector (r (t)) 41 to the input signal and the target response generator responsive target input distribution matrix calculator output signal (B m) 46 (B m · r (t)) as a sum signal, and in response Response with the output signal of the target generator vector integrator (1 / s) 48 as the input signal Response of the target generator response target response governing matrix calculator (A m ) 47 Output signal (A m · x m (t) ) Similarly, as addition signals, in addition to the response target generator vector adder / subtractor 49, the output signal of the response target generator vector adder / subtractor 49 (A m x m (t) + B
The output signal of the response target generator vector integrator (1 / s) 48 whose input signal is m・ r (t) is the response target signal vector (x
m (t) ) 44.

応答目標信号ベクトル(xm(t))44を加算信号とし
て、状態信号ベクトル(x(t))42を減算信号として各々
加えた誤差信号演算部ベクトル加減演算器51の出力信号
が誤差信号ベクトル(e(t))45である。
Response target signal vector (x m (t) ) 44 is added signal and state signal vector (x (t) ) 42 is added as subtraction signal. (E (t) ) 45.

状態信号ベクトル(x(t))42を入力信号とした微小時
間前状態微分信号演算部ベクトル遅延器(e-Ls)53の出
力信号を、さらに入力信号とした微小時間前状態微分信
号演算部ベクトル微分器(s)54の出力信号が微小時間
前状態微分信号ベクトル(dx(t-L)/dt)56であり、実用
上は差分により求めてもよい。
Minute time pre-state differential signal calculation section using state signal vector (x (t) ) 42 as input signal Minute time previous state differential signal calculation section using output signal of vector delay device (e -Ls ) 53 as input signal The output signal of the vector differentiator (s) 54 is the minute time previous state differential signal vector (dx (tL) / dt) 56, which may be obtained by difference in practical use.

操作信号ベクトル(u(t))43を入力信号とした微小時
間前操作信号演算部ベクトル遅延器(e-Ls)57の出力信
号が微小時間前操作信号ベクトル(u(t-L))59である。
The operation signal vector (u (t) ) 43 is used as the input signal, and the output signal of the operation signal vector delay unit (e -Ls ) 57 for the minute time advance operation signal is the minute time operation signal vector (u (tL) ) 59. .

微小時間前操作信号ベクトル(u(t-L))59を入力信号
とする操作信号演算部入力配分行列演算器(B)63の出
力信号(B・u(t-L))と、状態信号ベクトル(x(t))42
を入力信号とする操作信号演算部応答目標応答支配行列
演算器(Am)62の出力信号(Am・x(t))と、目標信号ベ
クトル(r(t))41を入力信号とする操作信号演算部応答
目標入力配分行列演算器(Bm)60の出力信号(Bm
r(t))とを各々加算信号として、また微小時間前状態微
分信号ベクトル(dx(t-L)/dt)56と、誤差信号ベクトル
(e(t))45を入力信号とする操作信号演算部誤差応答支
配行列演算器(K)61の出力信号(K・e(t))とを減算
信号として各々加えた操作信号演算部ベクトル加減演算
器64の出力信号(−dx(t-L)/dt+B・u(t-L)+Am・x(t)
+Bm・r(t)−K・e(t))を、さらに入力信号とした操作
信号演算部入力配分逆行列演算器(B-1)65の出力信号
(B-1・(−dx(t-L)/dt+B・u(t-L)+Am・x(t)+Bm+r
(t)−K・e(t)))が操作信号ベクトル(u(t))43とな
る。
The operation signal computing unit (B) 63 output signal (B · u (tL) ) from the operation signal computing unit (B) 63, which receives the operation signal vector (u (tL) ) 59 before the minute time, and the state signal vector (x ( t) ) 42
Input signal is the operation signal operation unit Response Target response governing matrix Calculator (A m ) 62 output signal (A m · x (t) ) and target signal vector (r (t) ) 41 are input signals Operation signal calculator Response target input distribution matrix calculator (B m ) 60 output signal (B m ·
r (t) ) as an addition signal, and an operation signal calculation unit that uses the minute time previous state differential signal vector (dx (tL) / dt) 56 and the error signal vector (e (t) ) 45 as input signals. The output signal (-dx (tL) / dt + B- of the operation signal calculation unit vector addition and subtraction calculator 64 to which the output signal (Ke ( t) ) of the error response governing matrix calculator (K) 61 is added as a subtraction signal, respectively. u (tL) + A m・ x (t)
+ B m · r (t) -K · e (t)) , and further input signal and operation signal calculation unit input allocation inverse matrix calculator (B -1) 65 output signal (B -1 · (-dx ( tL) / dt + B ・ u (tL) + A m・ x (t) + B m + r
(t) -K · e (t) )) becomes the operation signal vector (u (t) ) 43.

操作信号ベクトル(u(t))43に対する状態信号ベクト
ル(x(t))42の応答の関係は、よく知られた状態方程式
として、以下の式で表される。
The relation of the response of the state signal vector (x (t) ) 42 to the operation signal vector (u (t) ) 43 is represented by the following equation as a well-known state equation.

dx(t)/dt=A(x,t)・x(t)+B・u(t) ・・・(1) ここでtは時間、A(x,t)は状態信号ベクトル(x(t)
42の応答を支配する各応答支配係数を成分とするととも
に各応答支配係数が状態信号ベクトル(x(t))42及び時
間tに依存する応答支配行列、Bは状態信号ベクトル
(x(t))42に対する操作信号ベクトル(u(t))42の影響
の大きさを支配する各入力配分係数を成分とする入力配
分行列で、操作信号演算部入力配分行列演算器(B)63
において行列演算成分として用いているものである。
dx (t) / dt = A (x, t) x (t) + B u (t) (1) where t is time and A (x, t) is the state signal vector (x (t ) )
42 is a response governing matrix having each response governing coefficient as a component, and each response governing coefficient depends on the state signal vector (x (t) ) 42 and time t, and B is the state signal vector (x (t) ) 42 is an input distribution matrix whose components are the respective input distribution coefficients that control the magnitude of the influence of the operation signal vector (u (t) ) 42, and the operation signal calculation unit input distribution matrix calculator (B) 63
Is used as a matrix calculation component in.

同じく目標信号ベクトル(r(t))41に対する応答目標
信号ベクトル(xm(t))44の応答の関係も、状態方程式
として、以下の式で表される。
Similarly, the relationship of the response of the response target signal vector (x m (t) ) 44 to the target signal vector (r (t) ) 41 is also represented by the following equation as a state equation.

dxm(t)/dt=Am・xm(t)+Bm・r(t) ・・・(2) ここでAmは応答目標信号ベクトル(xm(t))44の応答
を支配する各応答支配係数を成分とする応答目標応答支
配行列で、応答目標発生部応答目標応答支配行列演算器
(Am)47において行列演算成分として用いているもので
ある。またBmは応答目標信号ベクトル(xm(t))44に対
する目標信号ベクトル(r(t))41の影響の大きさを支配
する各入力配分係数を成分とする応答目標入力配分行列
で、応答目標発生部応答目標入力配分行列演算器(Bm
46において行列演算成分として用いているものである。
dx m (t) / dt = A m・ x m (t) + B m・ r (t) (2) where A m controls the response of the response target signal vector (x m (t) ) 44. A response target response governing matrix having each response governing coefficient as a component, which is used as a matrix computing component in the response target generating unit response target response governing matrix calculator (A m ) 47. In addition, B m is a response target input distribution matrix whose components are the respective input distribution coefficients that control the magnitude of the influence of the target signal vector (r (t) ) 41 on the response target signal vector (x m (t) ) 44. Response target generator Response target input distribution matrix calculator (B m )
It is used as a matrix calculation component in 46.

誤差信号ベクトル(e(t))45は、応答目標信号ベクト
ル(xm(t))44と状態信号ベクトル(x(t))42とによっ
て以下の式で表される。
The error signal vector (e (t) ) 45 is represented by the following equation by the response target signal vector (x m (t) ) 44 and the state signal vector (x (t) ) 42.

e(t)=xm(t)−x(t) ・・・(3) また誤差信号ベクトル(e(t))45の応答を、以下の微
分方程式で表す。
e (t) = x m (t) −x (t) (3) The response of the error signal vector (e (t) ) 45 is represented by the following differential equation.

de(t)/dt=(Am+K)・e(t) ・・・(4) こでKは誤差信号ベクトル(e(t))45の応答を支配す
る各誤差応答支配係数を成分とする誤差応答支配行列
で、操作信号演算部誤差応答支配行列演算器(K)61に
おいて行列演算成分として用いているものである。
(4)式を満たす操作信号ベクトル(u(t))43を与えれ
ば、誤差信号ベクトル(e(t))45の応答は(Am+K)で
支配され、(Am+K)を安定で望ましい応答を示す行列
に設定することにより、制御の目的である状態信号ベク
トル(x(t))42を目標信号ベクトル(r(t))41に一致さ
せることができる。
de (t) / dt = ( A m + K) · e (t) ··· (4) This in K component each error response dominated factor governing the response of the error signal vector (e (t)) 45 and The error response governing matrix is used as a matrix computing component in the operation signal computing section error response governing matrix calculator (K) 61.
(4) be given an operation signal vector (u (t)) 43 that satisfies the equation, response of the error signal vector (e (t)) 45 is dominated by (A m + K), a stable (A m + K) The state signal vector (x (t) ) 42, which is the purpose of control, can be matched with the target signal vector (r (t) ) 41 by setting the matrix showing the desired response.

(3)式の両辺を微分すると、 de(t)/dt=dxm(t)/dt −dx(t)/dt ・・・(5) (5)式を変形すると、 dx(t)/dt=dxm(t)/dt −de(t)/dt ・・・(6) (6)式に(2)式、(3)式及び(4)式を代入す
ると、 dx(t)/dt=Am・xm(t)+Bm・r(t) −(Am+K)・(xm(t) −x(t)) ・・・(7) (7)式を展開すると、 dx(t)/dt=Am・x(t)+Bm・r(t) −K・e(t) ・・・(8) となる。また(1)式を変形すると、 u(t)=B-1・(dx(t)/dt −A(x,t)・x(t)) ・・・(9) (9)式に(8)を式を代入すると、 u(t)=B-1・(−A(x,t)・x(t) +Am・x(t)+Bm・r(t)−K・e(t)) ・・・(10) となる。即ち、(10)式によって操作信号ベクトル
(u(t))43を与えれば(4)式を満たすことになるが、
応答支配行列A(x,t)の各応答支配係数が状態信号ベクト
ル(x(t))42及び時間tに依存する未知量であることか
ら、これを推定することが必要になる。
Differentiating both sides of the equation (3), de (t) / dt = dx m (t) / dt −dx (t) / dt (5) By transforming the equation (5), dx (t) / dt = dx m (t) / dt −de (t) / dt (6) Substituting equations (2), (3) and (4) into equation (6), dx (t) / dt = A m · x m (t) + B m · r (t) − (A m + K) · (x m (t) − x (t) ) (7) By expanding the equation (7), become dx (t) / dt = a m · x (t) + B m · r (t) -K · e (t) ··· (8). In addition, if the equation (1) is modified, u (t) = B -1 · (dx (t) / dt −A (x, t) · x (t) ) (9) Equation (9) Substituting the equation in 8), u (t) = B -1 · (-A (x, t) · x (t) + A m · x (t) + B m · r (t) − K · e (t ) ) It becomes (10). That is, if the operation signal vector (u (t) ) 43 is given by equation (10), equation (4) will be satisfied,
Since each response governing coefficient of the response governing matrix A (x, t) is an unknown quantity that depends on the state signal vector (x (t) ) 42 and the time t, it is necessary to estimate it.

そこで現在の(A(x,t)・x(t))の量を、微小時間L前
の(A(x,t-L)・x(t-L))の量で近似する。
Therefore, the current amount of (A (x, t) · x (t) ) is approximated by the amount of (A (x, tL) · x (tL) ) before the minute time L.

A(x,t)・x(t)=A(x,t-L)・x(t-L) ・・・(11) (1)式を変形すると、 A(x,t-L)・x(t-L)=dx(t-L)/dt −
B・u(t-L) ・・・(12) (10)式に(11)式及び(12)式を代入すると、 u(t)=B-1・(−dx(t-L)・dt +B・u(t-L)+Am・x(t) +Bm・r(t)−K・e(t)) ・・・(13) となり、この(13)式によって操作信号ベクトル(u
(t))43を与えれば(4)式を満たすことになる。
A (x, t)・ x (t) = A (x, tL)・ x (tL)・ ・ ・ (11) When the formula (1) is transformed, A (x, tL)・ x (tL) = dx (tL) / dt −
B ・ u (tL)・ ・ ・ (12) Substituting Eqs. ( 11) and (12) into Eq. (10), u (t) = B -1・ (-dx (tL)・ dt + B ・ u (tL) + A m x (t) + B m r (t) -K e (t) ) (13), and the operation signal vector (u
If (t) ) 43 is given, equation (4) will be satisfied.

即ち、本実施例のヒートポンプ用制御装置において決
定した操作信号ベクトル(u(t))43によって、制御の目
的である状態信号ベクトル(x(t))42を目標信号ベクト
ル(r(t))41に一致させることができる。
That is, the state signal vector (x (t) ) 42, which is the object of control, is converted into the target signal vector (r (t) ) by the operation signal vector (u (t) ) 43 determined in the heat pump controller of this embodiment. Can match 41.

しかしながらヒートポンプによる空気調和機では、配
管や熱交換器における冷媒の移動や利用部8における空
気の移動などに起因して、操作信号ベクトル(u(t))43
の変化が状態信号ベクトル(x(t))42の変化となって現
れるまでのむだ時間がある。一般にむだ時間が大きい
と、操作信号ベクトル(u(t))43の状態信号ベクトル
(x(t))42に対する影響力を与える制御ゲインB-1の大
きい値を用いていると、ゲイン余裕が小さくなり、つい
には不安定になることが知られている。
However, in the air conditioner using the heat pump, the operation signal vector (u (t) ) 43 is caused by the movement of the refrigerant in the pipes and the heat exchanger and the movement of the air in the utilization section 8.
There is a dead time until a change in the state signal appears as a change in the state signal vector (x (t) ) 42. Generally, when the dead time is large, the gain margin becomes large when a large value of the control gain B -1 that gives an influence to the operation signal vector (u (t) ) 43 on the state signal vector (x (t) ) 42 is used. It is known to become smaller and eventually become unstable.

そこでむだ時間に応じて、操作信号演算部入力配分行
列演算器(B)63の行列演算成分である各入力配分係数
を、実際の状態信号ベクトル(x(t))42に対する操作信
号ベクトル(u(t))43の影響の大きさを支配する各入力
配分係数よりも大きくすることにより、(13)式が相互
干渉成分等を打ち消す構成のため、容易に制御ゲインB
-1の行列演算成分である各入力配分係数を小さくするこ
とが可能となり、むだ時間による位相遅れが大きい場合
でも一巡伝達関数の位相交点周波数におけるゲインが小
さくなり、ゲイン余有がとれ、安定な応答を得ることが
できる。
Therefore, according to the dead time, each input distribution coefficient, which is a matrix calculation component of the operation signal calculation unit input distribution matrix calculator (B) 63, is converted into the operation signal vector (u) with respect to the actual state signal vector (x (t) ) 42. (t) ) 43 is set to be larger than each input distribution coefficient that governs the magnitude of the effect, the equation (13) cancels mutual interference components, etc.
It is possible to reduce each input distribution coefficient, which is a matrix operation component of -1 , and the gain at the phase crossover frequency of the open loop transfer function becomes small even if the phase delay due to the dead time is large, and there is gain surplus, which is stable. You can get a response.

かかるヒートポンプ用制御装置は、熱媒体が空気であ
る場合に拘らず、水等を加熱・冷却する場合にも用いら
れ、第2図において送風機の代わりにポンプ等の循環機
を用いてもよい。
Such a heat pump control device is used not only when the heat medium is air but also when heating and cooling water and the like, and a circulation machine such as a pump may be used instead of the blower in FIG.

発明の効果 以上述べてきたように、本発明のヒートポンプ用制御
装置によれば、各操作信号に対する各状態信号の応答に
関わるすべての係数を状態信号との積量として推定し打
ち消すため、相互干渉が発生せずしかも非線形特性によ
る応答の特性変化による制御応答の劣化がなく、さらに
入力配分行列演算器の行列演算成分である各入力配分係
数を、実際の状態信号ベクトルに対する操作信号ベクト
ルの影響の大きさを支配する各入力配分係数よりも大き
くすることにより、大きなむだ時間がある場合において
も安定化できる。
EFFECTS OF THE INVENTION As described above, according to the heat pump controller of the present invention, all the coefficients relating to the response of each state signal to each operation signal are estimated and canceled as the product amount with the state signal, so that mutual interference occurs. Does not occur and the control response is not deteriorated due to the characteristic change of the response due to the non-linear characteristic, and each input distribution coefficient, which is the matrix operation component of the input distribution matrix calculator, is By making it larger than each input distribution coefficient that controls the size, it is possible to stabilize even when there is a large dead time.

この結果、常に安定で望ましい応答が得られ、冷媒過
熱度が零以下になって圧縮機に液冷媒が吸入され圧縮機
が破損する問題や、利用部空気温度がなかなか目標に達
せず、快適性を損なうなどの問題点を解消することがで
きるものである。
As a result, a stable and desirable response is always obtained, the refrigerant superheat becomes zero or less, liquid refrigerant is sucked into the compressor and the compressor is damaged, and the air temperature in the use part does not reach the target easily It is possible to solve the problems such as damage to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるヒートポンプ用制御
装置の制御演算器を示すブロック構成図、第2図はヒー
トポンプによる空気調和機のシステム構成図、第3図は
従来のヒートポンプによる空気調和機の制御装置のブロ
ック構成図である。 1…圧縮機、3…熱源側熱交換器、4…利用側熱交換
器、6…減圧装置、8…利用部、9…熱源側送風器、10
…利用側送風機、11…利用部空気温度状態検知器、12…
冷媒過熱度状態検知器、13…利用側空気吐出温度状態検
知器、14…冷媒過冷却度状態検知器、15…圧縮能力操作
器、16…減圧能力操作器、17…利用側送風能力操作器、
18…熱源側送風能力操作器、41…目標信号ベクトル(r
(t))、42…状態信号ベクトル(x(t))、43…操作信号
ベクトル(u(t))、44…応答目標信号ベクトル
(xm(t))、45…誤差信号ベクトル(e(t))、50…応答
目標発生部、52…誤差信号演算部、55…微小時間前状態
微分信号演算部、56…微小時間前状態微分信号ベクトル
(dx(t-L)/dt)、58…微小時間前操作信号演算部、59…
微小時間前操作信号ベクトル(u(t-L)、60…操作信号演
算部応答目標入力配分行列演算器(Bm)、61…操作信号
演算部誤差応答支配行列演算器(K)、62…操作信号演
算部応答目標応答支配行列演算器(Am)、63…操作信号
演算部入力配分行列演算器(B)、64…操作信号演算部
ベクトル加減演算器、65…操作信号演算部入力配分逆行
列演算器(B-1)、66…操作信号演算部。
FIG. 1 is a block configuration diagram showing a control arithmetic unit of a heat pump control device according to an embodiment of the present invention, FIG. 2 is a system configuration diagram of an air conditioner using a heat pump, and FIG. 3 is an air conditioner using a conventional heat pump. FIG. 3 is a block configuration diagram of the control device of FIG. DESCRIPTION OF SYMBOLS 1 ... Compressor, 3 ... Heat source side heat exchanger, 4 ... Utilization side heat exchanger, 6 ... Decompression device, 8 ... Utilization part, 9 ... Heat source side blower, 10
… Blower on the user side, 11… Air temperature condition detector for the user part, 12…
Refrigerant superheat state detector, 13 ... Use side air discharge temperature state detector, 14 ... Refrigerant supercool degree state detector, 15 ... Compression capacity operator, 16 ... Decompression capacity operator, 17 ... Utilization side air capacity operator ,
18… Heat source side air blowing capacity controller, 41… Target signal vector (r
(t) ), 42 ... State signal vector (x (t) ), 43 ... Manipulation signal vector (u (t) ), 44 ... Response target signal vector (x m (t) ), 45 ... Error signal vector (e (t) ), 50 ... Response target generation section, 52 ... Error signal calculation section, 55 ... Minute time pre-state differential signal calculation section, 56 ... Minute time pre-state differential signal vector (dx (tL) / dt), 58 ... Minute time pre-operation signal calculator, 59 ...
Minute time before operation signal vector (u (tL) , 60 ... Operation signal operation unit response target input distribution matrix operation unit ( Bm ), 61 ... Operation signal operation unit error response governing matrix operation unit (K), 62 ... Operation signal Operation unit response Target response governing matrix operation unit (A m ), 63 ... Operation signal operation unit input distribution matrix operation unit (B), 64 ... Operation signal operation unit vector addition / reduction operation unit, 65 ... Operation signal operation unit input distribution inverse matrix Calculator (B -1 ), 66 ... Operation signal calculator.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、熱源側熱交換器、利用側熱交換器
及び減圧装置を、順次環状に連接した閉回路と、 前記利用側熱交換器に対し利用媒体を循環させる利用側
循環機と、 前記熱源側熱交換器に対し熱源媒体を循環させる熱源側
循環機と を備え冷媒を封入されたヒートポンプにおいて、 前記利用媒体の温度状態検知器、 前記圧縮機の吸入部における前記冷媒の過熱度状態検知
器、 前記利用側熱交換器の利用部への利用媒体吐出温度状態
検知器、 及び 前記減圧装置入口部における前記冷媒の過冷却度状態検
知器 のいずれか、または全てと、 前記圧縮機の圧縮能力を操作する圧縮能力操作器、前記
減圧装置の減圧能力を操作する減圧能力操作器、 前記利用側循環機の循環能力を操作する利用側循環能力
操作器、 及び前記熱源側循環機の循環能力を操作する熱源側循環
能力操作器 のいずれか、または全てと、 少なくとも前記各検出器から検出された各状態信号を要
素とする状態信号ベクトルX(t)と微小時間前の状態信号
ベクトルX(t-L)の微分値、及び前記各状態信号に対する
各目標となる信号を作り出す目標信号ベクトルr(t)を入
力とし、 前記各操作器が前記各状態に与える相互干渉を動的に補
償した各々の操作信号を要素とする操作信号ベクトルu
(t)を出力する制御演算器 とを備え、 前記制御演算器が 目標信号ベクトルr(t)に対する前記状態信号ベクトルX
(t)の各々の時間の目標を与える応答目標信号ベクトルX
m(t)と、 前記応答目標信号ベクトルXm(t)と前記状態信号ベクト
ルX(t)との差である誤差信号ベクトルe(t)と、 微小時間L前の前記状態信号ベクトルX(t-L)の微分信号
である微小時間前状態微分信号ベクトルdx(t-L)/dtと、 前記微小時間前の前記操作信号ベクトルである微小時間
前操作信号ベクトルu(t-L)と、 前記状態信号ベクトルX(t)に対する前記操作信号ベクト
ルの影響の大きさを支配する入力配分行列Bと、 前記応答目標信号ベクトルXm(t)の応答を支配する各応
答目標行列Am,Bmと、 前記誤差信号ベクトルの応答を支配する各誤差応答行列
kとして 操作信号ベクトルu(t)=B-1・{-dX(t-L)/dt+B・u(t-L)
+Am・x(t)+Bm・r(t)−k・e(t)}を出力することを特徴と
するヒートポンプ用制御装置。
1. A closed circuit in which a compressor, a heat source side heat exchanger, a use side heat exchanger, and a decompression device are sequentially connected in an annular shape, and a use side circulator for circulating a use medium to the use side heat exchanger. And a heat source side circulator that circulates a heat source medium to the heat source side heat exchanger, in which a refrigerant is enclosed, wherein a temperature state detector for the medium to be used, the refrigerant overheat in the suction part of the compressor, Degree condition detector, any one or all of a temperature condition detector for discharging a medium to be used to the utilization part of the utilization side heat exchanger, and a condition detector for supercooling degree of the refrigerant at the inlet of the pressure reducing device, and the compression Capacity operating device for operating the compression capacity of the machine, depressurizing capacity operating device for operating the depressurizing capacity of the decompressor, utilization side circulating capacity operating device for operating the circulation capacity of the utilization side circulating machine, and the heat source side circulating machine Cycle of And any or all of the heat-source-side circulation capability operating device for operating the capacity, at least the respective detector status signals to a respective state signal component detected from the vector X (t) and the short time before the state signal vector X (tL) differential value, and the target signal vector r (t) that produces each target signal for each state signal is input, each of which dynamically compensates the mutual interference that each operating unit gives to each state. Operation signal vector u whose elements are the operation signals of
(t) is output, and the control operation unit outputs the state signal vector X for the target signal vector r (t) .
Response target signal vector X that gives the target for each time of (t)
m (t) , an error signal vector e (t) which is a difference between the response target signal vector Xm (t) and the state signal vector X (t), and the state signal vector X ( tL) minute time before state differential signal vector dx (tL) / dt, which is the differential signal, minute time before operation signal vector u (tL) which is the operation signal vector before the minute time, and the state signal vector X an input distribution matrix B governing the magnitude of the influence of the operation signal vector for (t), the response target signal vector X m each response target matrix a m that govern the response of the (t), and B m, the error As each error response matrix k that governs the response of the signal vector, the operation signal vector u (t) = B -1 · {-dX (tL) / dt + B · u (tL)
Control device for heat pump, which outputs + Am · x (t) + Bm · r (t) −k · e (t) }.
【請求項2】入力配分行列Bの行列演算成分である各入
力配分係数を、操作信号ベクトルの変化が状態信号ベク
トルの変化となって現れるまでに要する時間であるむだ
時間に応じて大きくするように構成したことを特徴とす
る請求項1記載のヒートポンプ用制御装置。
2. An input distribution coefficient, which is a matrix operation component of the input distribution matrix B, is increased according to a dead time which is a time required for a change in the operation signal vector to appear as a change in the state signal vector. The heat pump control device according to claim 1, wherein the heat pump control device is configured as described above.
JP1058323A 1989-03-10 1989-03-10 Heat pump controller Expired - Fee Related JPH086953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058323A JPH086953B2 (en) 1989-03-10 1989-03-10 Heat pump controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058323A JPH086953B2 (en) 1989-03-10 1989-03-10 Heat pump controller

Publications (2)

Publication Number Publication Date
JPH02238241A JPH02238241A (en) 1990-09-20
JPH086953B2 true JPH086953B2 (en) 1996-01-29

Family

ID=13081078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058323A Expired - Fee Related JPH086953B2 (en) 1989-03-10 1989-03-10 Heat pump controller

Country Status (1)

Country Link
JP (1) JPH086953B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329155A (en) * 1986-07-21 1988-02-06 日本電信電話株式会社 Method of controlling air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329155A (en) * 1986-07-21 1988-02-06 日本電信電話株式会社 Method of controlling air conditioner

Also Published As

Publication number Publication date
JPH02238241A (en) 1990-09-20

Similar Documents

Publication Publication Date Title
Wu et al. Development of control method and dynamic model for multi-evaporator air conditioners (MEAC)
EP2515056B1 (en) Control algorithm for electronic expansion valve modulation
JPH08510348A (en) Indoor temperature controller
US5222371A (en) Air conditioner of multichamber type
JPH1068554A (en) Optimization of set value in steam compression cycle
WO2008147828A1 (en) Modified fuzzy control for chiller electronic expansion valve
JPH086953B2 (en) Heat pump controller
JP2002327950A (en) Air conditioner
JPH0316581B2 (en)
JP2716780B2 (en) Heat pump controller
JPH0942783A (en) Controller for expansion valve for air conditioner
JPH03164657A (en) Air conditioner
JP2578976B2 (en) Control unit for heat pump
JPH0313754A (en) Controller for multiheat pump
JP2760144B2 (en) Multi-room air conditioner
JP2001201198A (en) Method for controlling air conditioner
JPH04297761A (en) Multichamber air conditioner
JP2607684B2 (en) Refrigeration cycle
JPS58104465A (en) Controller for refrigeration cycle
JPH031055A (en) Cooling and heating apparatus
Kianfar et al. Achievable optimal superheat temperature control in evaporators of hvac systems
JPH03279739A (en) Multiple-room type air conditioner
JPH04283361A (en) Multichamber type air conditioner
JPH0526519A (en) Method of controlling reversible proportional type expansion valve
JP2699657B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees