JPH02238241A - Control device for heat pump - Google Patents

Control device for heat pump

Info

Publication number
JPH02238241A
JPH02238241A JP1058323A JP5832389A JPH02238241A JP H02238241 A JPH02238241 A JP H02238241A JP 1058323 A JP1058323 A JP 1058323A JP 5832389 A JP5832389 A JP 5832389A JP H02238241 A JPH02238241 A JP H02238241A
Authority
JP
Japan
Prior art keywords
signal
signal vector
vector
response
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1058323A
Other languages
Japanese (ja)
Other versions
JPH086953B2 (en
Inventor
Koji Ebisu
戎 晃司
Yuji Yoshida
雄二 吉田
Kazunari Narasaki
和成 楢崎
Osamu Ito
修 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1058323A priority Critical patent/JPH086953B2/en
Publication of JPH02238241A publication Critical patent/JPH02238241A/en
Publication of JPH086953B2 publication Critical patent/JPH086953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To shorten settlement time by determining an operation signal vector such that a response of a state signal vector is coincident with a response target signal vector. CONSTITUTION:There are assumed as addition signal an output signal from an operation signal operation part input distribution matrix operation unit 63 which takes a small time before operation signal vector 59 as an input signal, an output signal from an operation signal, an output signal from an operation signal operation part response target response government matrix operation unit 62 which takes a state signal vector as an input signal, and an output signal from an operation signal operation part response target input distribution matrix operation unit 60 which takes a target signal vector 41 as an input signal. Additionally, there are added as subtraction signals a small time before state differentiation signal vector 56 and an output signal from an operation signal operation part error response government matrix operation unit 61 which takes an error signal vector 45 as an input signal. An operation signal vector 43 is yielded by an output signal from an operation signal operation part input distribution inverse matrix operation unit 65 which takes further as an input signal an output signal from an operation signal operation part vector addition/ subtraction operation unit 64. Hereby, the device can be stabilized even with severe wasteful time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、利用媒体の加熱や冷却を行うヒートポンプサ
イクルにおける利用媒体温度等の制御のためのヒートポ
ンプ用制御装置に関するものであ従来の技術 第2図は、ヒートポンプによる空気調和機のシステム構
成図であり、圧縮機1と、減圧装置8と、第一四方弁2
により前記圧縮機1の吐出部及び吸入部に切り替え可能
に接続された熱源側熱交換器3及び利用側熱交換器4と
、これら熱源側熱交換器3及び利用側熱交換器4を前記
減圧装isの出口部及び入口部に切り替え可能に接続し
且つ前記第一四方弁2と各反対側を接続された第二四方
弁5とによって閉回路となし、閉回路の内部に冷媒を封
入してヒートポンプサイクルを形成している。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump control device for controlling the temperature of the medium used in a heat pump cycle that heats and cools the medium. is a system configuration diagram of an air conditioner using a heat pump, which includes a compressor 1, a pressure reducing device 8, and a first four-way valve 2.
The heat source side heat exchanger 3 and the usage side heat exchanger 4 which are switchably connected to the discharge part and the suction part of the compressor 1, and the heat source side heat exchanger 3 and the usage side heat exchanger 4 are reduced in pressure by A closed circuit is formed by the first four-way valve 2 and the second four-way valve 5 connected to the opposite side, and the refrigerant is introduced into the closed circuit. It is sealed to form a heat pump cycle.

7はアキュムレー夕、8は利用部、9は熱源側熱交換器
3に対し熱源媒体となる空気を循環させる熱源側送風機
、10は利用側熱交換器4に対し利用部6内空気を循環
させる利用側送風機、11は利用部8内の空気温度を検
知する利用部空気温度状態検知器、12は温度検知器、
圧力検知器及び冷媒過熱度演算器からなる冷媒過熱度状
態検知器、13は利用側熱交換器4の利用部8への空気
吐出温度を検知する利用側空気吐出温度状態検知器、1
4は温度検知器、圧力検知器及び冷媒過冷却度演算器か
らなる冷媒過冷却度状態検知器、15は圧縮機1の圧縮
能力を操作する圧縮能力操作器、16は減圧装置6の減
圧能力を操作する減圧能力操作器、17は利用側送風機
10の送風能力を操作する利用側送風能力操作器、18
は熱源側送風機9の送風能力を操作する熱源側送風能力
操作器である。
7 is an accumulator, 8 is a utilization section, 9 is a heat source side blower that circulates air serving as a heat source medium to the heat source side heat exchanger 3, and 10 is a heat source side blower that circulates the air in the utilization section 6 to the utilization side heat exchanger 4. A user side blower, 11 a user part air temperature state detector that detects the air temperature in the user part 8, 12 a temperature detector,
A refrigerant superheat state detector consisting of a pressure detector and a refrigerant superheat degree calculator, 13 a user-side air discharge temperature state detector that detects the air discharge temperature to the usage part 8 of the user-side heat exchanger 4;
4 is a refrigerant supercooling degree state detector consisting of a temperature detector, a pressure sensor, and a refrigerant supercooling degree calculator; 15 is a compression capacity operating device for operating the compression capacity of the compressor 1; and 16 is a pressure reducing capacity of the pressure reducing device 6. 17 is a user side air blowing capacity operator that operates the air blowing capacity of the user side blower 10;
is a heat source side blowing capacity operating device that operates the blowing capacity of the heat source side blower 9.

かかる構成におけるヒートポンプによる空気調和機の作
用様態を以下に説明する。暖房運転時は、第2図の矢印
(実線)に示す如く、冷媒は、圧縮機1において圧縮さ
れ高温高圧の蒸気となって第一四方弁2を通って利用側
熱交換器4に至る。かかるとき利用側熱交換器4は凝縮
器として働き、利用部8内の空気に熱を与えることによ
り利用部8を暖房し、冷媒は凝縮液化する。液化した冷
媒は、第二四方弁5を通って減圧装置6において適度に
減圧されて低圧となり、熱源側熱交換器3に至る。かか
るとき熱源側熱交換器3は蒸発器としてのき、熱源空気
よりの熱を受けて蒸発し、低圧蒸気となって第一四方弁
2及びアキュムレータ7を通って圧縮機1に吸入される
The operation mode of an air conditioner using a heat pump in such a configuration will be explained below. During heating operation, as shown by the arrow (solid line) in Fig. 2, the refrigerant is compressed in the compressor 1 to become high-temperature, high-pressure steam, which passes through the first four-way valve 2 and reaches the user-side heat exchanger 4. . At this time, the user-side heat exchanger 4 functions as a condenser and heats the user section 8 by applying heat to the air within the user section 8, and the refrigerant is condensed and liquefied. The liquefied refrigerant passes through the second four-way valve 5, is appropriately reduced in pressure in the pressure reducing device 6, becomes low pressure, and reaches the heat source side heat exchanger 3. At this time, the heat source side heat exchanger 3 acts as an evaporator, receives heat from the heat source air, evaporates, becomes low pressure steam, and is sucked into the compressor 1 through the first four-way valve 2 and the accumulator 7. .

冷房運転時は第2図の矢印(破線)に示す如く、第一四
方弁2及び第二四方弁5の切り替えにより熱源側熱交換
器3は凝縮器、利用側熱交換器4は蒸発器として働き、
利用部8内の空気から吸熱することにより、利用部8を
冷房する。
During cooling operation, as shown by the arrow (broken line) in Fig. 2, by switching the first four-way valve 2 and the second four-way valve 5, the heat source side heat exchanger 3 becomes a condenser, and the user side heat exchanger 4 becomes an evaporator. Act as a vessel;
By absorbing heat from the air within the usage area 8, the usage area 8 is cooled.

次に、各操作器の作用様態を以下に説明する。Next, the mode of operation of each operating device will be explained below.

圧縮能力操作器15の操作量を増加すると、圧縮機1の
圧縮能力が増加し、暖房運転時では利用部8での暖房能
力が増え、利用部8内の空気温度が上昇し、冷房運転時
では逆に低下し、その温度変化は利用部空気温度杖態検
知器11により検知される。
When the operation amount of the compression capacity manipulator 15 is increased, the compression capacity of the compressor 1 increases, the heating capacity in the utilization section 8 increases during heating operation, the air temperature within the utilization section 8 rises, and during cooling operation On the contrary, the temperature decreases, and the temperature change is detected by the utilization part air temperature temperature detector 11.

減圧能力操作器16の操作量を増加すると、減圧装置6
の減圧能力が増加し、暖房運転時では冷媒循環量が減少
し、その結果冷媒過冷却度は上昇し、その過冷却度変化
は冷媒過冷却度状態検知器14により検知され、冷房運
転時では圧縮機1の吸入圧力が低下し、その結果冷媒過
熱度は上昇し、その過熱度変化は冷媒過熱度吠態検知器
12により検知される。
When the operation amount of the pressure reducing capacity operating device 16 is increased, the pressure reducing device 6
During heating operation, the refrigerant circulation amount decreases, and as a result, the refrigerant subcooling degree increases, and the change in the subcooling degree is detected by the refrigerant subcooling degree state detector 14. The suction pressure of the compressor 1 decreases, and as a result, the degree of superheat of the refrigerant increases, and the change in the degree of superheat is detected by the refrigerant superheat degree detector 12.

利用個送風能力操作器17の操作量を増加すると、利用
側送風機10の送風能力が増加して風量が増え、暖房運
転時では暖房能力は増大するものの利用側熱交換器4の
利用部8への空気吐出温度は低下し、冷房運転時では冷
房能力は増大するものの利用側熱交換器4の利用部8へ
の空気吐出温度は逆に上昇し、その温度変化は利用側空
気吐出温度状態検知器13により検知される。
When the operation amount of the user-side air blowing capacity controller 17 is increased, the air blowing capacity of the user-side blower 10 increases and the air volume increases, and during heating operation, although the heating capacity increases, the air flow to the user section 8 of the user-side heat exchanger 4 increases. The air discharge temperature of the user side decreases, and although the cooling capacity increases during cooling operation, the air discharge temperature of the user side heat exchanger 4 to the user section 8 increases, and the temperature change is detected by the user side air discharge temperature state detection. is detected by the device 13.

熱源側送風能力操作器18の操作量を増加すると、熱源
側送風機9の送風能力が増加して風量が増え、暖房運転
時では蒸発能力が増大し、その結果冷媒過熱度は上昇し
、その過熱度変化は冷媒過熱度状態検知器12により検
知され、冷房運転時では凝縮能力が増大し、その結果冷
媒過冷却度は上昇し、その過冷却度変化は冷媒過冷却度
状態検知器14により検知される。
When the operation amount of the heat source side air blowing capacity controller 18 is increased, the air blowing capacity of the heat source side blower 9 increases, the air volume increases, and the evaporation capacity increases during heating operation, resulting in an increase in the degree of superheating of the refrigerant and its superheating. The change in the degree of supercooling is detected by the refrigerant superheating state detector 12, and during cooling operation, the condensing capacity increases, and as a result, the degree of subcooling of the refrigerant increases, and the change in the degree of supercooling is detected by the refrigerant supercooling state detector 14. be done.

ヒートポンプによる空気調和機では、これら圧縮能力操
作器15、減圧能力操作器16、利用側送風能力操作器
17、及び熱源側送風能力操作器18の各操作量を適正
化するための制御装置が必要で、以下制御装置の作用様
態を図に基づいて説明する。
In an air conditioner using a heat pump, a control device is required to optimize the operation amount of each of the compression capacity control device 15, pressure reduction capacity control device 16, user side blowing capacity control device 17, and heat source side blowing capacity control device 18. The mode of operation of the control device will be explained below based on the drawings.

第3図は従来のヒートポンプによる空気調和機の制御装
置のブロック構成図であり、19は制御演算器、20は
利用部空気温度状態検知器11の出力信号である利用部
空気温度状態信号、21は利用側空気吐出温度状態検知
器13の出力信号である利用側空気吐出温度状態信号、
22は冷媒過熱度状fl4検知器12の出力信号である
冷媒過熱度状態信号、23は冷媒過冷却度状態検知器1
4の出力信号である冷媒過冷却度状態信号、24は利用
部空気温度状態信号20の目標信号である利用部空気温
度目標信号、25は利用側空気吐出温度状態信号21の
目標信号である利用側空気吐出温度目標信号、26は冷
媒過熱度状態信号22の目標信号である冷媒過熱度目標
信号、27は冷媒過冷却度状態信号23の自標信号であ
る冷媒過冷却度目標信号、28は利用部空気温度状態信
号20と利用部空気温度目標信号24との差である利用
部空気温度偏差信号、29は利用側空気吐出温度状態信
号21と利用側空気吐出温度目標信号25との差である
利用側空気吐出温度偏差信号、30は冷媒過熱度状態信
号22と冷媒過熱度目標信号26との差である冷媒過熱
度偏差信号、31は冷媒過冷却度状態信号23と冷媒過
冷却度目標信号27との差である冷媒過冷却度偏差信号
、32は圧縮能力操作器15の操作量を与える圧縮能力
操作信号、33は利用側送風能力操作器17の操作量を
与える利用側送風能力操作信号、34は熱源側送風能力
操作器18の操作量を与える熱源側送風能力操作信号、
35は減圧能力操作器部16の操作量を与える減圧能力
操作信号、36は利用部空気温度偏差信号28に基づき
圧縮能力操作信号32を決定する第一PID演算器、3
7は利用側空気吐出温度偏差信号29に基づき利用側送
風能力操作信号33を決定する第二PID演算器、38
は暖房運転時には冷媒過熱度偏差信号30に基づき冷房
運転時には冷媒過冷却度偏差信号31に基づき熱源用側
送風能力操作信号34を決定する第三PID演算器、3
9は暖房運転時には冷媒過冷却度偏差信号31に基づき
冷房運転時には冷媒過熱度偏差信号30に基づき減圧能
力操作信号35を決定する第四PID調節器、40は暖
房運転時には冷媒過熱度偏差信号30を第三PID演算
器38に伝えるとともに冷媒過冷却度偏差信号31を第
四PID演算器39に伝えるとともに冷房運転時には冷
媒過熱度偏差信号30を第四PID演算器39に伝え冷
媒過冷却度偏差信号31を第三PID演算器38に伝え
る冷媒過熱過冷却度偏差信号切替器である。
FIG. 3 is a block configuration diagram of a conventional control device for an air conditioner using a heat pump, in which 19 is a control calculator, 20 is a usage part air temperature state signal which is an output signal of the usage part air temperature state detector 11, and 21 is a user-side air discharge temperature state signal which is an output signal of the user-side air discharge temperature state detector 13;
22 is a refrigerant superheat degree state signal which is an output signal of the refrigerant superheat degree state detector 12, and 23 is a refrigerant supercooling degree state detector 1.
4 is the output signal of the refrigerant subcooling degree state signal, 24 is the usage part air temperature target signal which is the target signal of the usage part air temperature state signal 20, and 25 is the target signal of the usage side air discharge temperature state signal 21. A side air discharge temperature target signal, 26 a refrigerant superheat degree target signal which is a target signal of the refrigerant superheat degree state signal 22, 27 a refrigerant supercooling degree target signal which is a standard signal of the refrigerant supercooling degree state signal 23, and 28 a refrigerant supercooling degree target signal. The usage part air temperature deviation signal 29 is the difference between the usage part air temperature state signal 20 and the usage part air temperature target signal 24, and 29 is the difference between the usage part air discharge temperature state signal 21 and the usage part air discharge temperature target signal 25. A user-side air discharge temperature deviation signal, 30 is a refrigerant superheat degree deviation signal that is the difference between the refrigerant superheat degree state signal 22 and the refrigerant superheat degree target signal 26, and 31 is the refrigerant subcool degree state signal 23 and the refrigerant subcool degree target signal. A refrigerant subcooling degree deviation signal that is the difference from the signal 27, 32 is a compression capacity operation signal that gives the operation amount of the compression capacity operation device 15, and 33 is a user side blowing capacity operation that gives the operation amount of the user side blowing capacity operation device 17. signal, 34 is a heat source side blowing capacity operation signal that gives the operation amount of the heat source side blowing capacity operating device 18;
Reference numeral 35 denotes a pressure reduction capacity operation signal that provides the operation amount of the pressure reduction capacity operation unit 16; 36 a first PID calculator that determines the compression capacity operation signal 32 based on the usage section air temperature deviation signal 28;
7 is a second PID computing unit 38 that determines the user-side air blowing capacity operation signal 33 based on the user-side air discharge temperature deviation signal 29;
3 is a third PID calculator which determines a heat source side air blowing capacity operation signal 34 based on a refrigerant superheating degree deviation signal 30 during heating operation and a refrigerant subcooling degree deviation signal 31 during cooling operation;
Reference numeral 9 denotes a fourth PID controller that determines a pressure reducing capacity operation signal 35 based on the refrigerant subcooling degree deviation signal 31 during heating operation and the refrigerant superheating degree deviation signal 30 during cooling operation, and 40 determines the refrigerant superheating degree deviation signal 30 during heating operation. is transmitted to the third PID calculator 38, and the refrigerant supercooling degree deviation signal 31 is transmitted to the fourth PID calculator 39, and during cooling operation, the refrigerant superheating degree deviation signal 30 is transmitted to the fourth PID calculator 39 to calculate the refrigerant subcooling degree deviation. This is a refrigerant superheating/supercooling degree deviation signal switch that transmits the signal 31 to the third PID calculator 38.

かかる構成におけるヒートポンプによる空気調和機の制
御装置の動作様態を以下に説明する。第一〜四の各PI
D演算器36〜39では、各偏差信号28〜31に各比
例係数を掛けた各量と、各偏差信号28〜31の各積分
値に各積分係数を掛けた各量と、各偏差信号28〜31
の各微分値に各微分係数を掛けた各量とを足した各値を
、各操作信号32〜35とすることにより、各偏差信号
28〜31を零にし、利用部空気温度状態信号20を利
用部空気温度目標信号24に、利用側空気吐出温度状態
信号21を利用側空気吐出温度目標信号25に、冷媒過
熱度状態信号22を冷媒過熱度目標信号26に、冷媒過
冷却度状態信号23を冷媒過冷却度目標信号27に各々
一致させるものである。
The operating mode of the control device for an air conditioner using a heat pump in such a configuration will be described below. Each PI from 1st to 4th
The D calculators 36 to 39 calculate each quantity obtained by multiplying each deviation signal 28 to 31 by each proportional coefficient, each quantity obtained by multiplying each integral value of each deviation signal 28 to 31 by each integral coefficient, and each deviation signal 28. ~31
By adding each value obtained by multiplying each differential value by each differential coefficient to each value as each operation signal 32 to 35, each deviation signal 28 to 31 is set to zero, and the usage part air temperature state signal 20 is The user air temperature target signal 24, the user air discharge temperature state signal 21, the user air discharge temperature target signal 25, the refrigerant superheat degree state signal 22, the refrigerant superheat target signal 26, and the refrigerant subcooling state signal 23. are made to correspond to the refrigerant supercooling degree target signal 27.

各制御応答性能は、各比例係数、各積分係数及び各微分
係数の値によって決まり、各係数を決定する代表的な方
法としてはジーグラ●ニコルスのステップ応答法がよく
知られている。これは予め各操作信号32〜.35をス
テップ状に変化させた時の利用部空気温度状態信号20
、利用側空気吐出温度状態信号21、冷媒過熱度状態信
号22、及び冷媒過冷却度状態信号23の各変化波形か
ら伝達関数をむだ時間、時定数、及びゲインとして求め
、これらの値に基づき各係数を設定することにより、適
切な応答を得ようとするものである。
Each control response performance is determined by the values of each proportional coefficient, each integral coefficient, and each differential coefficient, and the Ziegler-Nichols step response method is well known as a typical method for determining each coefficient. This is done in advance for each operation signal 32-. Usage area air temperature status signal 20 when changing 35 in steps
, the user-side air discharge temperature state signal 21, the refrigerant superheat state signal 22, and the refrigerant subcooling state signal 23. The transfer function is determined as a dead time, a time constant, and a gain, and each By setting coefficients, an attempt is made to obtain an appropriate response.

発明が解決しようとする課題 しかしながら、このようなヒートボンプによる空気調和
機の制御装置では、圧縮能力操作信号32を変化させる
と冷媒過熱度状態信号22や利用側空気吐出温度状態信
号21まで影響を受けるなどの相互干渉の問題があり、
このためジーグラ●ニコルスのステップ応答法で求めた
各係数の値のままではハンチング現象といった不安定な
応答となり、安定化のためには、これより十分小さな値
にしなければならず、その結果整定時間は長くなってし
まう。
Problems to be Solved by the Invention However, in such a control device for an air conditioner using a heat pump, when the compression capacity operation signal 32 is changed, the refrigerant superheat degree state signal 22 and the user side air discharge temperature state signal 21 are also affected. There are mutual interference problems such as
For this reason, if the values of each coefficient obtained using the Ziegler-Nichols step response method are left as they are, an unstable response such as a hunting phenomenon will occur.In order to stabilize the response, the value must be made sufficiently smaller than this, resulting in an increase in the settling time. becomes long.

さらに各操作信号32〜35の大きさによって、利用部
空気温度状態信号20、利用側空気吐出温度状態信号2
1、冷媒過熱度状態信号22、及び冷媒過冷却度状態信
号23への影響の大きさや応答が異なる非線形特性の問
題があり、このため利用部8の熱負荷条件や、熱源空気
の温度条件等が変化すると、各操作信号32〜35の大
きさが変わり、予めステップ応答で求めた時の伝達関数
とは変わってしまい、やはりハンチング現象といった不
安定な応答や、安定であっても整定時間が不用に長くな
ってしまう。
Further, depending on the magnitude of each operation signal 32 to 35, the user side air temperature status signal 20 and the user side air discharge temperature status signal 2
1. There is a problem with non-linear characteristics in which the magnitude of influence and response to the refrigerant superheating state signal 22 and the refrigerant subcooling state signal 23 are different, so the heat load conditions of the usage section 8, the temperature conditions of the heat source air, etc. When , the magnitude of each operation signal 32 to 35 changes, and the transfer function determined in advance by the step response changes, resulting in unstable responses such as hunting phenomenon, and even if stable, the settling time is short. It becomes unnecessarily long.

また、ヒートポンプによる空気調和機では、配管や熱交
換器における冷媒の移動や利用部8における空気の移動
などに起因して、各操作信号32〜35の変化が各状態
信号20〜23の変化となって現れるまでのむだ時間が
大きく、不安定になりやすい性質を持ったものである。
In addition, in an air conditioner using a heat pump, changes in each of the operation signals 32 to 35 may be caused by changes in each of the status signals 20 to 23 due to movement of refrigerant in piping or a heat exchanger, movement of air in the usage section 8, etc. It has a long dead time before it appears, and it tends to be unstable.

このように、相互干渉や非線形特性の問題、さらには大
きなむだ時間により、ハンチング現象といった不安定な
応答となり、冷媒過熱度が零以下になって圧縮機1に液
冷媒が吸入される結果、圧縮機1が破損するなどの問題
を生じる。
In this way, problems such as mutual interference and nonlinear characteristics, as well as a large dead time, result in unstable responses such as the hunting phenomenon, and as a result, the degree of superheating of the refrigerant drops below zero and liquid refrigerant is sucked into the compressor 1, resulting in compression failure. This will cause problems such as damage to machine 1.

また安定な制御応答を得ようとすると、第一〜四の各P
ID演算器36〜39の各係数を十分小さな値にしなけ
ればならず、その結果整定時間が長くなり、利用部空気
温度がなかなか目標に達せず、快適性を損なうなどの問
題点があった。
In addition, when trying to obtain a stable control response, each of the first to fourth P
Each coefficient of the ID calculators 36 to 39 must be set to a sufficiently small value, which results in a long settling time, which makes it difficult for the air temperature in the usage area to reach the target, resulting in a loss of comfort.

課題を解決するための手段 本発明は、上記問題点を解消するためになされたもので
、利用部空気温度状態信号、利用側空気吐出温度状態信
号、冷媒過熱度状態信号及び冷媒過冷却度状態信号を要
素とする状態信号ベクトルに加え、杖態信号ベクトルの
微分信号で微小時間前の状態微分信号ベクトルと、同じ
く微小時間前の圧縮能力操作信号、利用側送風能力操作
信号、熱源側送風能力操作信号及び減圧能力操作信号を
要素とする操作信号ベクトルと、各状態信号の応答の目
標を与える各応答目標信号を要素とする応答目標信号ベ
クトルと、応答目標信号ベクトルと状態信号ベクトルと
の差である誤差信号ベクトルを基にその入力が微小時間
前の操作信号ベクトルであり状態信号ベクトルに対する
操作信号ベクトルの影響の大きさを支配する各入力配分
係数を行列演算成分とする入力配分行列演算器の出力信
号ベクトルと、その入力が状態信号ベクトルであり応答
目標信号ベクトルの応答を支配する各応答目標応答支配
係数を行列演算成分とする応答目標応答支配行列演算器
の出力信号ベクトルと、その入力が目標信号ベクトルで
あり応答目標信号ベクトルに対する目標信号ベクトルの
影響の大きさを支配する各入力配分係数を行列演算成分
とする応答目標入力配分行列演算器の出力信号ベクトル
とを加算信号として、また、微小時間前状態微分信号ベ
クトルと、その入力が誤差信号ベクトルであり誤差信号
ベクトルの応答を支配する各誤差応答支配係数を行列演
算成分とする誤差応答支配行列演算器の出力信号ベクト
ルとを減算信号として各々ベクトル加減演算器に入力し
、その入力がベクトル加減演算器の出力信号ベクトルで
あり入力配分行列演算器の行列演算成分の逆行列を行列
演算成分とする逆入力配分行列演算器の出力信号ベクト
ルを操作信号ベクトルとするものである。
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems. In addition to the state signal vector whose elements are signals, the differential signal of the cane state signal vector is the state differential signal vector from an infinitesimal time ago, the compression capacity operation signal, the user side air blowing capacity operation signal, and the heat source side air blowing capacity also from an infinitesimal time ago. An operation signal vector whose elements are the operation signal and the decompression capacity operation signal, a response target signal vector whose elements are each response target signal that gives the target of the response of each state signal, and the difference between the response target signal vector and the state signal vector. An input allocation matrix operator whose input is an operation signal vector from an infinitesimal time ago based on the error signal vector, whose matrix operation components are each input allocation coefficient that governs the magnitude of the influence of the operation signal vector on the state signal vector. and the output signal vector of a response target response governing matrix calculator whose input is a state signal vector and whose matrix operation components are each response target response governing coefficient that governs the response of the response target signal vector, and its input. is the target signal vector, and the output signal vector of the response target input distribution matrix calculator whose matrix calculation components are each input distribution coefficient that governs the magnitude of the influence of the target signal vector on the response target signal vector, and , subtracts the infinitesimal pre-time state differential signal vector from the output signal vector of the error response governing matrix operator whose input is the error signal vector and whose matrix operation components are each error response governing coefficient that governs the response of the error signal vector. The output of the inverse input allocation matrix calculator whose input is the output signal vector of the vector adder/subtractor and whose matrix calculation component is the inverse matrix of the matrix calculation component of the input allocation matrix calculator. The signal vector is used as an operation signal vector.

さらに、操作信号ベクトルの変化が状態信号ベクトルの
変化となって現れるまでのむだ時間に応じて、入力配分
行列演算器の行列演算成分である各入力配分係数を、実
際の状態信号ベクトルに対する操作信号ベクトルの影響
の大きさを支配する各入力配分係数よりも大きくするも
のである。
Furthermore, depending on the dead time until a change in the operation signal vector appears as a change in the state signal vector, each input distribution coefficient, which is a matrix calculation component of the input distribution matrix calculator, is set to the operation signal for the actual state signal vector. This is to make the influence of the vector larger than each input distribution coefficient that controls the magnitude of the influence.

作   用 本発明では上記のようなヒートボンプ用制御装置とする
ことにより、微小時間前の吠態微分信号ベクトルと操作
信号ベクトルとから、微小時間前の操作信号ベクトルに
対する杖態信号ベクトルの応答を支配する各係数と各状
態信号の積を量として推定し、その量を打ち消し、且つ
状態信号ベクトルの応答が応答目標信号ベクトルに一致
するように操作信号ベクトルを決定するもので、各操作
信号に対する各状態信号の応答に関わるすべての係数を
状態信号との積量として推定し打ち消すため、相互干渉
が発生せずしかも非線形特性による応答の特性変化によ
る制御応答の劣化がなく、常に安定で望ましい応答を得
ることができる。
In the present invention, by using the heat bomb control device as described above, the response of the barking signal vector to the operating signal vector of a minute time ago is controlled from the barking differential signal vector and the operation signal vector of the minute time ago. The product of each coefficient and each state signal is estimated as a quantity, and the operation signal vector is determined so that the quantity is canceled out and the response of the state signal vector matches the response target signal vector. All coefficients related to the response of the state signal are estimated and canceled as products with the state signal, so there is no mutual interference, and there is no deterioration of the control response due to changes in response characteristics due to nonlinear characteristics, ensuring a stable and desirable response at all times. Obtainable.

さらに、入力配分行列演算器の行列演算成分である各入
力配分係数を、実際の状態信号ベクトルに対する操作信
号ベクトルの影響の大きさを支配する各入力配分係数よ
りも大きくすることにより、大きなむだ時間がある場合
においてもゲイン余有がとれ、安定化することができる
Furthermore, by making each input distribution coefficient, which is a matrix operation component of the input distribution matrix calculator, larger than each input distribution coefficient that controls the influence of the operation signal vector on the actual state signal vector, a large amount of dead time can be achieved. Even in the case where there is a gain surplus, it is possible to stabilize the system.

実施例 以下、本発明の一実施例におけるヒートポンプ用制御装
置を、第1図及び第2図に基づいて説明する。
EXAMPLE Hereinafter, a heat pump control device according to an example of the present invention will be explained based on FIGS. 1 and 2.

第1図は第2図に示したヒートボンプによる空気調和機
に本発明を適用したー実施例におけるヒートポンプ用制
御装置の制御演算器を示すブロック構成図であり、41
は利用部空気温度目標信号24、利用側空気吐出温度目
標信号25、冷媒過熱度目標信号26及び冷媒過冷却度
目標信号27を要素とする目標信号ベクトル(r+t+
L  42は利用部空気温度状態信号20、利用側空気
吐出温度状態信号21、冷媒過熱度状態信号22及び冷
媒過冷却度状態信号23を要素とする状態信号ベクトル
(X+t+)、43は圧縮能力操作信号32、利用側送
風能力操作信号33、熱源側送風能力操作信号34及び
減圧能力操作信号35を要素とする操作信号ベクトル(
+.zt+)、44は目標信号ベクトル(r+1)41
に対する状態信号ベクトル(X(口)42の応答の目標
を与える応答目標信号ベクトル(Xs+t+)、45は
応答目標信号ベクトル(Xatt+) 4 4と状態信
号ベクトル(xtt+) 42との差である誤差信号ベ
クトル(+3+t+L  46は応答目標信号ベクトル
(xa+t+)44に対する目標信号ベクトル(r+t
+)41の影響の大きさを支配する各入力配分係数を行
列演算成分とする応答目標発生部部応答目標入力配分行
列演算器(B.)、47は応答目標信号ベクトル(Xs
+t+)44の応答を支配する各応答支配係数を行列演
算成分とする応答目標発生部応答目標応答支配行列演算
器(A.)、48は各信号の積分器を要素とする応答目
標発生部ベクトル積分器(1/s)、49は各信号の加
減演算器を要素とする応答目標発生部ベクトル加減演算
器、50は応答目標発生部応答目標入力配分行列演算器
(B.)48、応答目標発生部応答目標応答支配行列演
算器(A.)47、応答目標発生部ベクトル積分器(1
/s)48及び応答目標発生部ベクトル加減演算器49
を含んでなる応答目標発生部、51は各信号の加減演算
器を要素とする誤差信号演算部ベクトル加減演算器、5
2は誤差信号演算部ベクトル加減演算器51を含んでな
る誤差信号演算部、53は遅延時間が微小時間Lである
各遅延器を要素とする微小時間前状態微分信号演算部ベ
クトル遅延器(e−”)、54は各信号の微分器を要素
とする微小時間前状態微分信号演算部ベクトル微分器(
S)、55は微小時間前状fi微分信号演算部ベクトル
遅延器(e−’s)53及び微小時間前状態微分信号演
算部ベクトル微分器(s)54を含んでなる微小時間前
状態微分信号演算部、56は状態信号ベクトル(X+t
+)42を入力とした微小時間前状態微分信号演算部5
5の出力信号である微小時間前状態微分信号ベクトル(
dxtt−L+/d t)、57は遅延時間が微小時間
Lてある各遅延器を要素とする微小時間前操作信号演算
部ベクトル遅延器(e−Ls)、58は微小時間前操作
信号演算部ベクトル遅延器(e−”)57を含んでなる
微小時間前操作信号演算部、59は操作信号ベクトル(
u+t+)43を入力とした微小時間前操作信号演算部
58の出力信号である微小時間前操作信号ベクトル(u
+t−+.+)、80は応答目標発生部応答目標入力配
分行列演算器(B.) 46の行列演算成分と同じ行列
演算成分からなる操作信号演算部応答目標入力配分行列
演算器(B.)、61は誤差信号ベクトル(e+t+)
45の応答を支配する各誤差応答支配係数を行列演算成
分とする操作信号演算部誤差応答支配行列演算器(K)
、63は応答目標発生部応答目標応答支配行列演算器(
A.)47の行列演算成分と同じ行列演算成分からなる
操作信号演算部応答目標応答支配行列演算器(A.)、
63は状態信号ベクトル(X+t+)42に対する操作
信号ベクトル(u+t+)43の影響の大きさを支配す
る各入力配分係数を行列演算成分とする操作信号演算部
入力配分行列演算器(B)、84は各信号の加減演算器
を要素とする操作信号演算部ベクトル加減演算器、65
は操作信号演算部入力配分行列演算器(B)83は行列
演算成分の逆行列を行列演算成分とする操作信号演算部
入力配分逆行列演算器(B−1)、6Bは操作信号演算
部応答目標入力配分行列演算器(B.)60、操作信号
演算部誤差応答支配行列演算器(K)61、操作信号演
算部応答目標応答支配行列演算器(A.)82、操作信
号演算部入力配分行列演算器(B)83、操作信号演算
部ベクトル加減演算器84及び操作信号演算部入力配分
逆行列演算器(B−1)65を含んでなる操作信号演算
部である。
FIG. 1 is a block diagram showing a control computing unit of a heat pump control device in an embodiment in which the present invention is applied to the heat pump air conditioner shown in FIG.
is a target signal vector (r+t+
L 42 is a state signal vector (X+t+) whose elements are the usage part air temperature state signal 20, the usage side air discharge temperature state signal 21, the refrigerant superheat degree state signal 22, and the refrigerant subcooling degree state signal 23; 43 is the compression capacity operation An operation signal vector (
+. zt+), 44 is the target signal vector (r+1) 41
A response target signal vector (Xs+t+) giving the target of the response of the state signal vector (X(mouth) 42 to The vector (+3+t+L 46 is the target signal vector (r+t
+) 47 is a response target signal vector (Xs
+t+) 44 is a response target generation part response target response governing matrix calculator (A.) whose matrix calculation components are each response dominant coefficient governing the response, and 48 is a response target generation part vector whose elements are integrators of each signal. An integrator (1/s), 49 a response target generator vector addition/subtraction calculator whose elements are addition/subtraction calculators for each signal, 50 a response target generator response target input distribution matrix calculator (B.) 48, response target generator response target response governing matrix calculator (A.) 47, response target generator vector integrator (1)
/s) 48 and response target generator vector addition/subtraction calculator 49
51 is an error signal calculation unit vector addition/subtraction calculation unit having addition/subtraction calculation units for each signal as elements;
2 is an error signal calculation unit including an error signal calculation unit vector addition/subtraction calculation unit 51; 53 is a minute time pre-state differential signal calculation unit vector delay unit (e 54 is a vector differentiator (
S), 55 is a minute pre-time state differential signal comprising a minute pre-time state fi differential signal calculation section vector delayer (e-'s) 53 and a minute pre-time state differential signal calculation section vector differentiator (s) 54. The arithmetic unit 56 is a state signal vector (X+t
+) Minute time previous state differential signal calculation unit 5 which inputs 42
The minute previous state differential signal vector (
dxtt-L+/dt), 57 is a minute time pre-operation signal calculation unit vector delay device (e-Ls) whose elements are each delay device whose delay time is minute time L, and 58 is a minute time pre-operation signal calculation unit. A small time pre-operation signal calculation section including a vector delay device (e-'') 57, 59 is a control signal vector (e-'')
The minute time previous operation signal vector (u
+t-+. +), 80 is a response target input distribution matrix calculator (B.), a response target input distribution matrix calculator (B.), 61 is a response target input distribution matrix calculator (B.), an operation signal calculation unit consisting of the same matrix calculation components as those of 46; Error signal vector (e+t+)
Operation signal calculation section error response dominant matrix calculator (K) whose matrix calculation components are each error response dominant coefficient governing the response of 45.
, 63 is a response target generation unit response target response governing matrix calculator (
A. ) an operation signal calculation unit response target response governing matrix calculation unit (A.) consisting of the same matrix calculation components as the matrix calculation components of 47;
Reference numeral 63 denotes an operation signal operation unit input allocation matrix operation unit (B) whose matrix operation components are each input allocation coefficient that governs the magnitude of the influence of the operation signal vector (u+t+) 43 on the state signal vector (X+t+) 42; Operation signal calculation unit vector addition and subtraction calculation unit having addition and subtraction calculation units for each signal as elements, 65
83 is an operation signal calculation unit input distribution matrix calculation unit (B-1) whose matrix calculation component is the inverse matrix of the matrix calculation component, and 6B is the operation signal calculation unit response. Target input distribution matrix calculation unit (B.) 60, operation signal calculation section error response governing matrix calculation unit (K) 61, operation signal calculation section response target response governing matrix calculation unit (A.) 82, operation signal calculation section input distribution The operation signal operation section includes a matrix operation section (B) 83, an operation signal operation section vector addition/subtraction operation section 84, and an operation signal operation section input distribution inverse matrix operation section (B-1) 65.

目標信号ベクトル(r+t+)41を入力信号とした応
答目標発生部応答目標入力配分行列演算器(B.)46
の出力信号(B.●r+t+)を加算信号として、及び
応答目標発生部ベクトル積分器( 1/s)48の出力
信号を入力信号とした応答目標発生部応答目標応答支配
行列演算器(A.)47の出力信号( A@ ” Xs
+t+)を同じく加算信号として、各々応答目標発生部
ベクトル加減演算器49に加え、応答目標発生部ベクト
ル加減演算器49の出力信号(A.●Xsit)+ B
a ” r +t+)を入力信号とした応答目標発生部
ベクトル積分器(1/s)48の出力信号が応答目標信
号ベクトル(Xs+t+)44である。
Response target generation unit response target input distribution matrix calculator (B.) 46 with target signal vector (r+t+) 41 as input signal
The response target generation unit response target response governing matrix calculator (A. )47 output signal (A@”Xs
+t+) as an addition signal to each response target generation section vector addition/subtraction calculator 49, and the output signal (A.●Xsit)+B of the response target generation section vector addition/subtraction calculator 49.
The response target signal vector (Xs+t+) 44 is the output signal of the response target generator vector integrator (1/s) 48 which uses the response target signal vector (Xs+t+) as an input signal.

応答目標信号ベクトル( X.+t+) 4 4を加算
信号として、状態信号ベクトル(X+t+)42を減算
信号として各々加えた誤差信号演算部ベクトル加減演算
器51の出力信号が誤差信号ベクトル(e+t+)45
である。
Response target signal vector (X.+t+) 4 4 is added as an addition signal, and state signal vector (X+t+) 42 is added as a subtraction signal, and the output signal of the error signal calculation unit vector addition/subtraction calculator 51 is the error signal vector (e+t+) 45.
It is.

状態信号ベクトル(X+t+)42を入力信号とした微
小時間前状態微分信号演算部ベクトル遅延器(e−LQ
53の出力信号を、さらに入力信号とした微小時間前状
態微分信号演算部ベクトル微分器(s)54の出力信号
が微小時間前状態微分信号ベクトル( d x+t−L
+/ d t ) 5 Bである。
A vector delay device (e-LQ
The output signal of the minute pre-time state differential signal calculation section vector differentiator (s) 54 which uses the output signal of 53 as an input signal is the minute pre-time state differential signal vector (d x + t-L
+/dt) 5B.

操作信号ベクトル(tzt+)43を入力信号とした微
小時間前操作信号演算部ベクトル遅延器(e−L”)5
7の出力信号が微小時間前操作信号ベクトル( u +
t−+.+) 5 9である。
Minute time pre-operation signal calculation unit vector delay device (e-L”) 5 using the operation signal vector (tzt+) 43 as an input signal
The output signal of 7 is the minute time previous operation signal vector (u +
t-+. +) 5 9.

微小時間前操作信号ベクトル( u +t−t+) 5
 9を入力信号とする操作信号演算部入力配分行列演算
器(B)63の出力信号( B ’ u tt−L+)
と、状態信号ベクトル(X+t+)42を入力信号とす
る操作信号演算部応答目標応答支配行列演算器(A.)
 82の出力信号(As”Xtt+)と、目標信号ベク
トル(r+t+)41を入力信号とする操作信号演算部
応答目標入力配分行列演算器(B.)80の出力信号(
B.●r(い)とを各々加算信号として、また微小時間
前状態微分信号ベクトル( d x +t=L+/ d
t)56と、誤差信号ベクトル(e+t+)45を入力
信号とする操作信号演算部誤差応答支配行列演算器(K
)81の出力信号(K●e+t+)とを減算信号として
各々加えた操作信号演算部ベクトル加減演算器64の出
力信号(  dX+t−t+/d t+B”u+t−t
++As”X+t++Ba”r+t+  K@e+t+
)を、さらに入力信号とした操作信号演算部入力配分逆
行列演算器(Bり)65の出力信号(B−1●(−d 
X+t−t+/ d t +B 11u+t−t++A
a●X +c++Ba” r+t+−K’ e+t+)
)が操作信号ベクトル(u+t+)43となる。
Minute time pre-operation signal vector (u +t-t+) 5
Output signal (B'utt-L+) of the operation signal calculation unit input distribution matrix calculation unit (B) 63 which takes 9 as an input signal
and an operation signal calculation unit response target response governing matrix calculation unit (A.) which receives the state signal vector (X+t+) 42 as an input signal.
82 output signal (As"Xtt+) and the output signal (As"
B. ●r(i) as the addition signal, and the micro-time previous state differential signal vector (d x +t=L+/d
t) 56 and the error signal vector (e+t+) 45 as input signals.
) 81 output signal (K●e+t+) as a subtraction signal, the output signal of the operation signal calculation unit vector addition/subtraction calculation unit 64 (dX+t-t+/d t+B''u+t-t
++As”X+t++Ba”r+t+ K@e+t+
) is further input as the output signal (B-1●(-d
X+t-t+/d t +B 11u+t-t++A
a●X +c++Ba"r+t+-K' e+t+)
) becomes the operation signal vector (u+t+) 43.

操作信号ベクトル(u+t+)43に対する状態信号ベ
クトル(X+t+)42の応答の関係は、よく知られた
状態方程式として、以下の式で表される。
The relationship between the response of the state signal vector (X+t+) 42 to the operation signal vector (u+t+) 43 is expressed by the following equation as a well-known state equation.

d Xtt+/ d t =A+x.t+ ” X+t
++B I1u +t+― ●−(1) ここでtは時間、A+x,t+は状態信号ベクトル(X
ct+)42の応答を支配する各応答支配係数を成分と
するとともに各応苓支配係数が状態信号ベクトル(X+
t+)42及び時間tに依存する応答支配行列、Bは状
態信号ベクトル(X+t+)42に対する操作信号ベク
トル(u+t+)43の影響の大きさを支配する各入力
配分係数を成分とする入力配分行列で、操作信号演算部
入力配分行列演算器(B)63において行列演算成分と
して用いているものである。
dXtt+/dt=A+x. t+”X+t
++B I1u +t+- ●-(1) Here, t is time, A+x, t+ are state signal vector (X
ct+) 42 responses as components, and each response governing coefficient is a state signal vector (X+
B is an input distribution matrix whose components are each input distribution coefficient that governs the magnitude of the influence of the operation signal vector (u+t+) 43 on the state signal vector (X+t+) 42. , which is used as a matrix calculation component in the input distribution matrix calculation unit (B) 63 of the operation signal calculation section.

同じく目標信号ベクトル(r+t+)41に対する応答
目標信号ベクトル(X.+t+)44の応答の関係も、
状態方程式として、以下の式で表される。
Similarly, the response relationship of the response target signal vector (X.+t+) 44 to the target signal vector (r+t+) 41 is also as follows.
The state equation is expressed by the following formula.

算成分として用いているものである。またB,は応答目
標信号ベクトル(xa+t+)44に対する目標信号ベ
クトル(r+t+)41の影響の大きさを支配する各入
力配分係数を成分とする応答目標入力配分行列で、応答
目標発生部応答目標入力配分行列演算器(B.)48に
おいて行列演算成分として用いているものである。
This is used as a calculation component. B, is a response target input distribution matrix whose components are each input distribution coefficient that governs the magnitude of influence of the target signal vector (r+t+) 41 on the response target signal vector (xa+t+) 44; This is used as a matrix calculation component in the distribution matrix calculation unit (B.) 48.

誤差信号ベクトル(e+t+)45は、応答目標信号ベ
クトル(X..口)44と状態信号ベクトル(X+t+
)42とによって以下の式で表される。
The error signal vector (e+t+) 45 is composed of the response target signal vector (X..mouth) 44 and the state signal vector (X+t+).
)42 is expressed by the following formula.

eftl=Xsl)−Xltl       −11 
” ” (3)d Xm+t+/ d t = As 
@Xa+t+ 十Be●r +t+● ● ● (2) また誤差信号ベクトル(e+口)45の応答を、以下の
微分方程式で表す。
eftl=Xsl)-Xltl-11
"" (3) d Xm + t + / d t = As
@Xa+t+ 1Be●r +t+● ● ● (2) Also, the response of the error signal vector (e+mouth) 45 is expressed by the following differential equation.

ここでA.は応答目標信号ベクトル( x m Lt 
1) 44の応答を支配する各応答支配係数を成分とす
る応答目標応答支配行列で、応答目標発生部応答目標応
答支配行列演算器(A.)47において行列演d e 
+t+/ d t :  (A@+ K)  ”  e
 +t+● ● − (4) ここでKは誤差信号ベクトル(e+t+)45の応答を
支配する各誤差応答支配係数を成分とする誤差応答支配
行列で、操作信号演算部誤差応答支配行列演算器(K)
81において行列演算成分として用いているものである
。 (4)式を満たす操作信号ベクトル(u+t+)4
3を与えれば、誤差信号ベクトル(e+t+)45の応
答は( A.+ K )で支配され、 (A.+K)を
安定で望ましい応答を示す行列に設定することにより、
制御の目的である状態信号ベクトル(X+t+)42を
目標信号ベクトル(rtt+)41に一致させることが
できる。
Here A. is the response target signal vector ( x m Lt
1) A response target response governing matrix whose components are the respective response governing coefficients governing the 44 responses.
+t+/d t: (A@+K) ” e
+t+● ● - (4) Here, K is an error response governing matrix whose components are each error response governing coefficient that governs the response of the error signal vector (e+t+) 45, and the error response governing matrix operator (K )
This is used as a matrix calculation component in 81. Operation signal vector (u+t+)4 that satisfies equation (4)
3, the response of the error signal vector (e+t+) 45 is dominated by (A.+K), and by setting (A.+K) to a matrix that indicates a stable and desirable response,
The state signal vector (X+t+) 42, which is the object of control, can be matched with the target signal vector (rtt+) 41.

(3)式の両辺を微分すると、 (6)式に(2)式、 (3)式及び(4)式を代入す
ると、 dX+t+/d t=A,* Xs+t++Bs” r
+t+−  (A.+K)  ● (xs+t+−X+
t+)        一 ● ● (7)(7)式を
展開すると、 dX+t+/d t=As” X+t+十Bs” r+
t+一K@ e+t+      ● ● ● (8)
d e (t+/ d t = d Xs+t+/ d
 t−dX+t+/dt    @ **(5)(5)
式を変形すると、 となる。また(1)式を変形すると、 u +t+ = B−’ ”  ( d X +t+/
 d t− Atx,t+ ” X +t+) d X +t+/ d t = d Xs+t+/ d
 tdeath/dt    ””(8) (9)式に(8)式を代入すると、 u+t+=B−”  (   A+x.t+”X+t+
+As” X+t++Bs”  r+t+−K”  e
+t+)● ●−(10) となる。即ち、 (10)式によって操作信号ベクトル
(LI+t+)43を与えれば(4)式を溝たすことに
なるが、応答支配行列A+x,t+の各応答支配係数が
状態信号ベクトル(X+t+)42及び時間tに依存す
る未知量であることから、これを推定することが必要に
なる。
Differentiating both sides of equation (3), substituting equations (2), (3), and (4) into equation (6), dX+t+/d t=A, * Xs+t++Bs” r
+t+- (A.+K) ● (xs+t+-X+
t+) 1 ● ● (7) Expanding equation (7), dX+t+/d t=As” X+t+10Bs” r+
t+1K@e+t+ ● ● ● (8)
d e (t+/ d t = d Xs+t+/ d
t-dX+t+/dt @ **(5)(5)
Transforming the formula, we get: Also, by transforming equation (1), u +t+ = B-' ” (d X +t+/
d t- Atx,t+ ”X +t+) d X +t+/ d t = d Xs+t+/ d
tdeath/dt "" (8) Substituting equation (8) into equation (9), u+t+=B-"(A+x.t+"X+t+
+As”X+t++Bs”r+t+-K”e
+t+)●●−(10). That is, if the operation signal vector (LI+t+) 43 is given by equation (10), equation (4) will be satisfied, but each response dominant coefficient of the response dominant matrix A+x, t+ is given by the state signal vector (X+t+) 42 and Since it is an unknown quantity that depends on time t, it is necessary to estimate it.

そこで現在の(A+..。●X《。)の量を、微小時間
L前の( A+x.t−t+●x (t−t))の量で
近似する。
Therefore, the current amount of (A+...●X《.) is approximated by the amount of (A+x.t-t+●x (t-t)) a minute time L ago.

A (x.t+  ”  X +t+ = A f,t
−Ll  ”  X +t−L+● ● ● (1 1
) (1)式を変形すると、 A+x.t−t+ ” X +t−+.+= d X 
+t−t+/ d tB 11u +t−L+ ● (12) (10)式に(11)式及び(12)式を代入すると、 utt+=Bり” (  d X+t−L+/ d t
+ B  ″ u +t−t+ + A@ ’  X 
+t++Ba@ r+t+−K ”  e+t+)φ 
● ● (13) となり、この(13)式によって操作信号ベクトル(u
tt+)43を与えれば(4)式を満たすことになる。
A (x.t+ ”X +t+ = A f,t
-Ll ”X +t-L+● ● ● (1 1
) When formula (1) is transformed, A+x. t-t+ ” X +t-+.+= d X
+t-t+/ d tB 11u +t-L+ ● (12) Substituting equations (11) and (12) into equation (10), utt+=B" (d X+t-L+/ d t
+ B ″ u +t-t+ + A@ ' X
+t++Ba@r+t+-K ” e+t+)φ
● ● (13) According to this equation (13), the operation signal vector (u
If tt+)43 is given, equation (4) will be satisfied.

即ち、本実施例のヒートボンプ用制御装置において決定
した操作信号ベクトル(u+t+)43によって、制御
の目的である状態信号ベクトル(X+t》)42を目標
信号ベクトル(rtt+)41に一致させることができ
る。
That is, the operation signal vector (u+t+) 43 determined in the heat pump control device of this embodiment allows the state signal vector (X+t>>) 42, which is the purpose of control, to match the target signal vector (rtt+) 41.

しかしながらヒートポンプによる空気調和機では、配管
や熱交換器における冷媒の移動や利用部8における空気
の移動などに起因して、操作信号ベクトル(u+t+)
43の変化が状態信号ベクトル(X+t+)42の変化
となって現れるまでのむだ時間があり、むだ時間が大き
いと操作信号ベクトル(u+t+)43に対する状態信
号ベクトル(X+t+)42のゲイン余仔が小さくなり
、ついには不安定になる。
However, in an air conditioner using a heat pump, the operation signal vector (u+t+)
There is a dead time until a change in the state signal vector (X+t+) 43 appears as a change in the state signal vector (X+t+) 42, and if the dead time is large, the gain margin of the state signal vector (X+t+) 42 with respect to the operation signal vector (u+t+) 43 is small. Eventually, it becomes unstable.

そこでむだ時間に応じて、操作信号演算部入力配分行列
演算器(B)63の行列演算成分である各入力配分係数
を、実際の状態信号ベクトル(X+t+)42に対する
操作信号ベクトル(utt+) 43の影響の大きさを
支配する各入力配分係数よりも大きくすることにより、
むだ時間による位相遅れが大きい場合でも一巡伝達関数
の位相交点周波数におけるゲインが小さくなり、ゲイン
余有がとれ、安定な応答を得ることができる。
Therefore, depending on the dead time, each input distribution coefficient, which is a matrix calculation component of the input distribution matrix calculation unit (B) 63 of the operation signal calculation section, is calculated as follows: By making the magnitude of the influence larger than each input allocation coefficient that governs it,
Even when the phase delay due to dead time is large, the gain at the phase intersection frequency of the open-loop transfer function becomes small, a gain margin is secured, and a stable response can be obtained.

かかるヒートボンブ用制御装置は、熱媒体が空気である
場合に拘らず、水等を加熱●冷却する場合にも用いられ
、第2図において送風機の代わりにポンプ等の循環機を
用いてもよい。
Such a heat bomb control device is used not only when the heat medium is air, but also when heating/cooling water, etc., and a circulator such as a pump may be used instead of the blower in FIG. 2.

発明の効果 以上述べてきたように、本発明のヒートポンプ用制御装
置によれば、各操作信号に対する各状態信号の応答に関
わるすべての係数を状態信号との積量として推定し打ち
消すため、相互干渉が発生せずしかも非線形特性による
応答の特性変化による制御応答の劣化がな《、さらに入
力配分行列演算器の行列演算成分である各入力配分係数
を、実際の状態信号ベクトルに対する操作信号ベクトル
の影響の大きさを支配する各入力配分係数よりも大きく
することにより、大きなむだ時間がある場合においても
安定化できる。
Effects of the Invention As described above, according to the heat pump control device of the present invention, all the coefficients related to the response of each status signal to each operation signal are estimated as a product with the status signal and canceled, thereby eliminating mutual interference. In addition, there is no deterioration of the control response due to changes in response characteristics due to nonlinear characteristics.Furthermore, each input distribution coefficient, which is a matrix calculation component of the input distribution matrix calculator, is calculated based on the influence of the operation signal vector on the actual state signal vector. By making the size of the input distribution coefficient larger than each controlling input distribution coefficient, it is possible to stabilize the function even when there is a large dead time.

この結果、常に安定で望ましい応答が得られ、冷媒過熱
度が零以下になって圧縮機に液冷媒が吸入され圧縮機が
破損する問題や、利用部空気温度がなかなか目標に達せ
ず、快適性を損なうなどの問題点を解消することができ
るものである。
As a result, a stable and desirable response is always obtained, which eliminates problems such as when the degree of superheat of the refrigerant drops below zero and liquid refrigerant is sucked into the compressor, causing damage to the compressor. It is possible to solve problems such as damage to the image.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるヒートポンプ用制御
装置の制御演算器を示すブロック構成図、第2図はヒー
トポンプによる空気調和機のシステム構成図、第3図は
従来のヒートポンプによる空気調和機の制御装置のブロ
ック構成図である。 1,..圧縮機、3...熱源側熱交換器、4...利
用側熱交換器、6...減圧装置、8...利用部、9
...熱源側送風器、io...利用側送風機、11.
..利用部空気温度状態検知器、12...冷媒過熱度
状態検知器、13...利用側空気吐出温度状態検知器
、14...冷媒過冷却度状態検知器、15...圧縮
能力操作器、16...減圧能力操作器、17...利
用側送風能力操作器、18...熱源側送風能力操作器
、4 1 ...目標信号ベクトル(r+t+)、4 
2 ...状態信号ベクトル(X+t+L  4 3 
...操作信号ベクトル(.u+t+)、44...応
答目標信号ベクトル(Xalt+)、4 5 ...誤
差信号ベクトル(e.t,)、50,..応答目標発生
部、52...誤差信号演算部、5 5 ...微小時
間前状態微分信号演算部、5E3...微小時間前状態
微分信号ベクトル( d X lt−L,/ dt)、
5 8 ...微小時間前操作信号演算部、59...
微小時間前操作信号ベクトル(u+t−L+L  60
..,操作信号演算部応答目標入力配分行列演算器(B
.)、81...操作信号演算部誤差応答支配行列演算
器(K)、82...操作信号演算部応答目標応答支配
行列演算器(A.)、63...操作信号演算部入力配
分行列演算器(B)、64...操作信号演算部ベクト
ル加減演算器、85...操作信号演算部入力配分逆行
列演算器(B−1)、88...操作信号演算部。 代理人の氏名 弁理士 粟野重孝 ほか1名。 1一  圧廁六 7−  アキュムレーダ 8−−−ナリ用II] I6一  減圧触力揄1下 a
Fig. 1 is a block configuration diagram showing a control computing unit of a heat pump control device in an embodiment of the present invention, Fig. 2 is a system configuration diagram of an air conditioner using a heat pump, and Fig. 3 is a conventional air conditioner using a heat pump. FIG. 2 is a block configuration diagram of a control device of FIG. 1,. .. Compressor, 3. .. .. Heat source side heat exchanger, 4. .. .. User side heat exchanger, 6. .. .. pressure reducing device, 8. .. .. Usage Department, 9
.. .. .. Heat source side blower, io. .. .. User-side blower, 11.
.. .. Utilization part air temperature condition detector, 12. .. .. Refrigerant superheat state detector, 13. .. .. User-side air discharge temperature state detector, 14. .. .. Refrigerant subcooling degree state detector, 15. .. .. Compression capacity manipulator, 16. .. .. Decompression capacity operator, 17. .. .. User side air blowing capacity controller, 18. .. .. Heat source side ventilation capacity controller, 4 1. .. .. Target signal vector (r+t+), 4
2. .. .. State signal vector (X+t+L 4 3
.. .. .. Operation signal vector (.u+t+), 44. .. .. Response target signal vector (Xalt+), 4 5 . .. .. Error signal vector (e.t,), 50, . .. Response target generation unit, 52. .. .. Error signal calculation unit, 5 5. .. .. Minute time previous state differential signal calculation section, 5E3. .. .. Minute time previous state differential signal vector (d X lt-L, / dt),
5 8. .. .. Minute time pre-operation signal calculation unit, 59. .. ..
Minute time previous operation signal vector (u+t-L+L 60
.. .. , operation signal calculation unit response target input distribution matrix calculation unit (B
.. ), 81. .. .. Operation signal calculation unit error response governing matrix calculation unit (K), 82. .. .. Operation signal calculation unit response target response governing matrix calculation unit (A.), 63. .. .. Operation signal calculation unit input distribution matrix calculation unit (B), 64. .. .. Operation signal calculation unit vector addition/subtraction calculation unit, 85. .. .. Operation signal calculation unit input distribution inverse matrix calculation unit (B-1), 88. .. .. Operation signal calculation section. Name of agent: Patent attorney Shigetaka Awano and one other person. 11 Pressure 67- Accum radar 8---Nari use II] I61 Decompression tactile force 1 lower a

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、熱源側熱交換器、利用側熱交換器、減圧
装置を、順次環状に連接して閉回路となし、前記閉回路
の内部に冷媒を封入してヒートポンプサイクルを形成し
、前記利用側熱交換器に対し利用媒体を循環させる利用
側循環機と、前記熱源側熱交換器に対し熱源媒体を循環
させる熱源側循環機とを備えたヒートポンプ装置の前記
利用媒体の温度状態検知器、前記圧縮機吸入部における
前記冷媒の過熱度状態検知器、前記利用側熱交換器の利
用部への利用媒体吐出温度状態検知器、及び前記減圧装
置入口部における前記冷媒の過冷却度状態検知器のいず
れか、または全てと、前記圧縮機の圧縮能力を操作する
圧縮能力操作器、前記減圧装置の減圧能力を操作する減
圧能力操作器、前記利用側循環機の循環能力を操作する
利用側循環能力操作器、及び前記熱源側循環機の循環能
力を操作する熱源側循環能力操作器のいずれか、または
全てと、前記各検知器からの各状態信号を要素とする状
態信号ベクトル及び前記各状態信号に対する各目標信号
を要素とする目標信号ベクトルをその入力とするととも
に前記各操作器への各操作信号を要素とする操作信号ベ
クトルをその出力とする制御演算器とを備えたヒートポ
ンプ用制御装置であって、 前記制御演算器が前記目標信号ベクトルに対する前記状
態信号ベクトルの応答の目標を与える応答目標信号ベク
トルを発生させる応答目標発生部と、前記目標信号ベク
トルと前記状態信号ベクトルとの差である誤差信号ベク
トルを求める誤差信号演算部と、微小時間前の前記状態
信号ベクトルの微分信号である微小時間前状態微分信号
ベクトルを求める微小時間前状態微分信号演算部と、前
記微小時間前の前記操作信号ベクトルである微小時間前
操作信号ベクトルを求める微小時間前操作信号演算部と
、前記目標信号ベクトル、前記状態信号ベクトル、前記
誤差信号ベクトル、前記微小時間前状態微分信号ベクト
ル、及び前記微小時間前操作信号ベクトルから前記操作
信号ベクトルを求める操作信号演算部とを具備し、 前記操作信号演算部において、その入力が前記微小時間
前操作信号ベクトルであり前記状態信号ベクトルに対す
る前記操作信号ベクトルの影響の大きさを支配する各入
力配分係数を行列演算成分とする入力配分行列演算器の
出力信号ベクトルと、その入力が前記状態信号ベクトル
であり前記応答目標信号ベクトルの応答を支配する各応
答目標応答支配係数を行列演算成分とする応答目標応答
支配行列演算器の出力信号ベクトルと、その入力が前記
目標信号ベクトルであり前記応答目標信号ベクトルに対
する前記目標信号ベクトルの影響の大きさを支配する各
入力配分係数を行列演算成分とする応答目標入力配分行
列演算器の出力信号ベクトルとを加算信号として、また
、前記微小時間前状態微分信号ベクトルと、その入力が
前記誤差信号ベクトルであり前記誤差信号ベクトルの応
答を支配する各誤差応答支配係数を行列演算成分とする
誤差応答支配行列演算器の出力信号ベクトルとを減算信
号として各々ベクトル加減演算器に入力し、 その入力が前記ベクトル加減演算器の出力信号ベクトル
であり前記入力配分行列演算器の行列演算成分の逆行列
を行列演算成分とする入力配分逆行列演算器の出力信号
ベクトルを前記操作信号ベクトルとするように構成した
ことを特徴とするヒートポンプ用制御装置。
(1) A compressor, a heat source side heat exchanger, a usage side heat exchanger, and a pressure reducing device are sequentially connected in a ring shape to form a closed circuit, and a refrigerant is sealed inside the closed circuit to form a heat pump cycle, Detecting the temperature state of the usage medium of a heat pump device comprising a usage side circulator that circulates the usage medium to the usage side heat exchanger, and a heat source side circulator that circulates the heat source medium to the heat source side heat exchanger. a superheating state detector of the refrigerant in the compressor suction section, a temperature state detector of the discharge medium of the usage medium to the usage section of the usage side heat exchanger, and a supercooling degree state of the refrigerant at the inlet of the pressure reducing device. Any or all of the detectors, a compression capacity operating device that operates the compression capacity of the compressor, a pressure reducing capacity operating device that operates the pressure reducing capacity of the pressure reducing device, and a use that operates the circulation capacity of the user-side circulator. Any or all of a side circulation capacity manipulator and a heat source side circulation capacity manipulator that operates the circulation capacity of the heat source side circulator, a state signal vector having each state signal from each of the detectors as elements, and the above-mentioned state signal vector. For a heat pump, comprising a control calculator whose input is a target signal vector whose elements are each target signal for each state signal, and whose output is an operation signal vector whose elements are each operation signal to each of the operating devices. The control device includes: a response target generation unit in which the control calculator generates a response target signal vector that provides a target for the response of the state signal vector to the target signal vector; an error signal calculation unit that calculates an error signal vector that is a difference; an error signal calculation unit that calculates a state differential signal vector before a minute time that is a differential signal of the state signal vector before a minute time; a minute time previous operation signal calculation unit that calculates a minute time previous operation signal vector that is the operation signal vector of , the target signal vector, the state signal vector, the error signal vector, the minute time previous state differential signal vector, and the an operation signal calculation unit that calculates the operation signal vector from a minute time previous operation signal vector, and in the operation signal calculation unit, an input thereof is the minute time previous operation signal vector, and the operation signal vector for the state signal vector is provided. an output signal vector of an input distribution matrix calculator whose matrix operation components are each input distribution coefficient that governs the magnitude of the influence of , and each response whose input is the state signal vector and which governs the response of the response target signal vector. an output signal vector of a response target response dominant matrix calculator having a target response governing coefficient as a matrix calculation component, whose input is the target signal vector, and controls the magnitude of influence of the target signal vector on the response target signal vector; The output signal vector of a response target input distribution matrix calculator having each input distribution coefficient as a matrix calculation component is used as an addition signal, and the minute pre-time state differential signal vector and the error signal vector whose input is the error signal vector are used as addition signals. The output signal vector of the error response governing matrix calculator, which has each error response governing coefficient governing the response of the signal vector as a matrix calculation component, is input as a subtraction signal to each vector addition/subtraction calculator, and the input is the vector addition/subtraction calculator. The operation signal vector is an output signal vector of an input distribution inverse matrix calculation unit whose matrix calculation component is an inverse matrix of a matrix calculation component of the input distribution matrix calculation unit. Heat pump control device.
(2)入力配分行列演算器の行列演算成分である各入力
配分係数を、操作信号ベクトルの変化が状態信号ベクト
ルの変化となって現れるまでに要する時間であるむだ時
間に応じて大きくするように構成したことを特徴とする
請求項1記載のヒートポンプ用制御装置。
(2) Each input distribution coefficient, which is a matrix calculation component of the input distribution matrix calculator, is increased in accordance with the dead time, which is the time required for a change in the operation signal vector to appear as a change in the state signal vector. The heat pump control device according to claim 1, characterized in that the heat pump control device is configured as follows.
JP1058323A 1989-03-10 1989-03-10 Heat pump controller Expired - Fee Related JPH086953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058323A JPH086953B2 (en) 1989-03-10 1989-03-10 Heat pump controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058323A JPH086953B2 (en) 1989-03-10 1989-03-10 Heat pump controller

Publications (2)

Publication Number Publication Date
JPH02238241A true JPH02238241A (en) 1990-09-20
JPH086953B2 JPH086953B2 (en) 1996-01-29

Family

ID=13081078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058323A Expired - Fee Related JPH086953B2 (en) 1989-03-10 1989-03-10 Heat pump controller

Country Status (1)

Country Link
JP (1) JPH086953B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329155A (en) * 1986-07-21 1988-02-06 日本電信電話株式会社 Method of controlling air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329155A (en) * 1986-07-21 1988-02-06 日本電信電話株式会社 Method of controlling air conditioner

Also Published As

Publication number Publication date
JPH086953B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US20100204840A1 (en) Modified Fuzzy Control for Chiller Electronic Expansion Valve
US5222371A (en) Air conditioner of multichamber type
Bejarano et al. Multivariable analysis and H∞ control of a one-stage refrigeration cycle
Li et al. Extremum seeking control of cooling tower for self-optimizing efficient operation of chilled water systems
US10107531B2 (en) Method for controlling a chiller system
JP2654222B2 (en) Cooling / heating mixed type multi-refrigeration cycle
JPH02238241A (en) Control device for heat pump
Jolly et al. Intelligent control to reduce superheat hunting and optimize evaporator performance in container refrigeration
JPH0575937B2 (en)
JPH0316581B2 (en)
JPS6373059A (en) Refrigerator
JP2760144B2 (en) Multi-room air conditioner
JPH02133744A (en) Air conditioner
JP2712835B2 (en) Control method of multi-room air conditioner
JP2578976B2 (en) Control unit for heat pump
JPS5912942B2 (en) Refrigeration equipment
JPH04283361A (en) Multichamber type air conditioner
WO2023203593A1 (en) Refrigeration cycle device and control method
JP2755037B2 (en) Refrigeration equipment
JPH0464850A (en) Multi-chamber type air conditioner
JP2607684B2 (en) Refrigeration cycle
JPH03170753A (en) Air conditioner
JP3285395B2 (en) Refrigeration cycle
JPH0464851A (en) Control device for multi-chamber type air conditioner
US20220136751A1 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees