JPH0868389A - Molecular pump - Google Patents

Molecular pump

Info

Publication number
JPH0868389A
JPH0868389A JP6205310A JP20531094A JPH0868389A JP H0868389 A JPH0868389 A JP H0868389A JP 6205310 A JP6205310 A JP 6205310A JP 20531094 A JP20531094 A JP 20531094A JP H0868389 A JPH0868389 A JP H0868389A
Authority
JP
Japan
Prior art keywords
intake
pump
exhaust
molecular pump
control plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6205310A
Other languages
Japanese (ja)
Other versions
JP3399106B2 (en
Inventor
Osamu Ashida
修 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP20531094A priority Critical patent/JP3399106B2/en
Publication of JPH0868389A publication Critical patent/JPH0868389A/en
Application granted granted Critical
Publication of JP3399106B2 publication Critical patent/JP3399106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0253Surge control by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE: To improve exhaust capacity and to reduce the size of a device by increasing intake conductance of an exhaust amount control part. CONSTITUTION: A pump rotary shaft and a plurality of intake control plates 7 movable forward and backward in a direction extending vertically to a pump rotary shaft are installed in the vicinity of the rotor vane (a moving vane) 2a of a molecular pump intake port and an exhaust gas amount is controlled by means of the intake control plates 7. When intake is effected without controlling an exhaust gas amount, a plurality of the intake control plates 7 are moved aside to a rotor rotation central part where intake air is not shielded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ドライエッチング装
置、スパッタリング装置などガスを排気しながら薄膜を
形成する装置などに使用され、高真空排気、ガス流量制
御を行う分子ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molecular pump for high vacuum evacuation and gas flow rate control, which is used in an apparatus for forming a thin film while exhausting gas such as a dry etching apparatus and a sputtering apparatus.

【0002】[0002]

【従来の技術】従来のターボ分子ポンプの一例を図3に
示す。図においてTは従来公知のターボ分子ポンプの断
面図で、20は磁気軸受でホルダ側の永久磁石21、ロ
ータ側の永久磁石22より構成される。23はステータ
翼、24はロータ翼、25はロータ、26はケーシン
グ、27はタッチベアリング、28は回転軸、29はモ
ータ、30はアンギュラ玉軸受、31はベースA、32
はベースB、33は排気口である。このターボ分子ポン
プの作動については、従来より公知のものと同じである
ので説明を省略する。バタフライ弁12は円筒型のケー
シング11内に回転可能に配設されており、外周部に弁
パッキング13を保持している。バタフライ弁12は、
軸方向が吸気方向と直角をなす回転軸14に固定される
とともに、回転軸14の一端がケーシング11を貫通し
て、ケーシング11の外側に設置された回転駆動部(図
示せず)に結合されており、回転軸14を介して回転駆
動部により回転させられて弁開閉動作を行う。バタフラ
イ弁12をポンプ回転軸方向と垂直に設定すると、バタ
フライ弁12の外周部に保持した弁パッキング13がケ
ーシング11の内側に内接して気密シールをし、全閉状
態になり、バタフライ弁12をポンプ回転軸方向と平行
に設定すると全開状態になり排気量は最大になる。バタ
フライ弁12を回転駆動部により全閉と全開の間の任意
の位置に設定することにより排気量を可変制御すること
ができる。11aは配管である。
2. Description of the Related Art An example of a conventional turbo molecular pump is shown in FIG. In the figure, T is a cross-sectional view of a conventionally known turbo molecular pump, and 20 is a magnetic bearing, which is composed of a permanent magnet 21 on the holder side and a permanent magnet 22 on the rotor side. 23 is a stator blade, 24 is a rotor blade, 25 is a rotor, 26 is a casing, 27 is a touch bearing, 28 is a rotating shaft, 29 is a motor, 30 is an angular contact ball bearing, 31 is a base A, 32
Is a base B, and 33 is an exhaust port. The operation of this turbo-molecular pump is the same as that conventionally known, and therefore its explanation is omitted. The butterfly valve 12 is rotatably arranged in a cylindrical casing 11 and holds a valve packing 13 on its outer peripheral portion. The butterfly valve 12
The shaft is fixed to the rotary shaft 14 whose axial direction is perpendicular to the intake direction, and one end of the rotary shaft 14 penetrates the casing 11 and is coupled to a rotary drive unit (not shown) installed outside the casing 11. It is rotated by the rotation drive unit via the rotary shaft 14 to perform the valve opening / closing operation. When the butterfly valve 12 is set to be perpendicular to the pump rotation axis direction, the valve packing 13 held on the outer peripheral portion of the butterfly valve 12 is inscribed inside the casing 11 to make an airtight seal, and the butterfly valve 12 is fully closed. If it is set parallel to the pump rotation axis direction, it will be in the fully open state and the displacement will be maximum. The displacement can be variably controlled by setting the butterfly valve 12 at an arbitrary position between fully closed and fully opened by the rotary drive unit. Reference numeral 11a is a pipe.

【0003】以上のような構成においては、バタフライ
弁12が全開時にケーシング11の前後に接続されたタ
ーボ分子ポンプ等と接触しないようにするためポンプ回
転軸方向に沿ってかなり広いスペースが必要となる。そ
のため、ケーシングのポンプ回転軸方向の長さLが大き
くなり、排気コンダクタンスが小さくなる。更に、高真
空における排気コンダクタンスは口径Dの3乗に比例し
て、排気方向の長さLに逆比例するため、口径を大きく
する必要がある。ところがこの構成では排気方向の長さ
Lは口径Dの寸法より大きくする必要があるため、真空
排気装置の小形化に対するユーザーの要求が強くなるな
かで、装置小形化への障害にもなっていた。
In the above-mentioned structure, in order to prevent the butterfly valve 12 from coming into contact with the turbo molecular pump and the like connected to the front and rear of the casing 11 when fully opened, a considerably wide space is required along the pump rotation axis direction. . Therefore, the length L of the casing in the pump rotation axis direction increases, and the exhaust conductance decreases. Further, since the exhaust conductance in high vacuum is proportional to the cube of the diameter D and inversely proportional to the length L in the exhaust direction, it is necessary to increase the diameter. However, in this configuration, since the length L in the exhaust direction needs to be larger than the diameter D, the user's demand for miniaturization of the vacuum evacuation device becomes an obstacle to the miniaturization of the device. .

【0004】[0004]

【発明が解決しようとする課題】この発明は、以上の問
題点を解決したもので、排気量制御部のポンプ回転軸方
向の長さを小さくすることにより排気コンダクタンスを
大きくし、更に、装置の小形化を可能にした分子ポンプ
を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and increases the exhaust conductance by reducing the length of the exhaust amount control unit in the pump rotation axis direction. The present invention provides a molecular pump that can be miniaturized.

【0005】[0005]

【課題を解決するための手段】この発明は、かかる目的
を達成するために、分子ポンプ吸気側のロータ翼(動
翼)の近傍に、ポンプ回転軸と垂直方向に進退可能な複
数の吸気制御板を設置し、この制御板によってポンプ吸
気路のコンダクタンスを可変制御するものである。
In order to achieve such an object, the present invention provides a plurality of intake control units that can move forward and backward in the direction perpendicular to the pump rotation axis in the vicinity of rotor blades (moving blades) on the intake side of a molecular pump. A plate is installed, and the conductance of the pump intake passage is variably controlled by this control plate.

【0006】[0006]

【作用】複数の吸気制御板をポンプ回転軸と垂直な平面
内で移動させることにより、ロータ翼(動翼)近傍のコ
ンダクタンスを変化させ、排気量を制御する。即ち複数
の吸気制御板をロータ翼(動翼)の近傍に(周辺部に)
移動した場合に排気量が最小になり、これを中心部の方
へ移動させたときは排気量が大きくなる。
By moving a plurality of intake control plates in a plane perpendicular to the pump rotation axis, the conductance near the rotor blades (moving blades) is changed to control the exhaust amount. That is, a plurality of intake control plates are placed near the rotor blades (moving blades) (in the peripheral portion).
When it is moved, the displacement is minimized, and when it is moved toward the center, the displacement is increased.

【0007】[0007]

【実施例】以下、この発明の実施例を図1、2を参照し
て説明する。ターボ分子ポンプのケーシング1内には高
速回転可能にロータ2が配設されるとともに、ロータ2
の外周から突設されるロータ翼(動翼)2aとケーシン
グ1内周に内接した積層形ステータスペーサ3の間から
突設されるステータ翼(静翼)4とが交互に近接して対
向配置されており、両者によって真空排気作用が行われ
る。この排気作用はロータ翼2aの周速度が大きいほど
高く、ポンプ吸気口5において翼部近傍のリング状の排
気スペースSでは排気作用があるが、ロータ翼2aの根
元より内側のスペースでは排気作用はない。このロータ
翼2aの最上部より10〜20mmの位置に4枚の吸気制
御板7が図2に示すように設置され、制御部ケーシング
6の内側に設置されたステッピングモータ8のモータ軸
8aに一端を固定されたアーム9の反対側端に保持され
ている。排気量を制御する場合は、ステッピングモータ
8の所定角度の回転により吸気制御板7をロータ翼近傍
のリング状排気スペースS位置に移動し、必要排気特性
(流量、圧力等)に対応して吸気制御板7により吸気路
のコンダクタンスを変化させる。排気量を最大にする場
合は、図2(b)に図示のように吸気制御板7をロータ
翼2aの根元より内側のスペースに移動させて、リング
状排気スペースSの遮蔽を完全になくす。この動作時に
4枚の吸気制御板7が、移動によりお互いに衝突しない
で重なり合うように高さ位置を異ならしめてあり、ステ
ッピングモータ8の所定角度の回転により吸気制御板7
は吸気路のコンダクタンスを徐々に変えることができる
ので、排気量を微細に変化させて精密な流量制御が可能
になる。
Embodiments of the present invention will be described below with reference to FIGS. The rotor 2 is arranged in the casing 1 of the turbo molecular pump so as to be rotatable at high speed, and the rotor 2
Rotor blades (moving blades) 2a projecting from the outer periphery of the rotor 1 and stator blades (static vanes) 4 projecting from between the laminated stator spacers 3 inscribed in the inner periphery of the casing 1 alternately face and face each other. They are arranged, and both perform an evacuation operation. This exhaust action increases as the peripheral speed of the rotor blade 2a increases, and there is an exhaust action in the ring-shaped exhaust space S near the blade at the pump intake port 5, but an exhaust action does not occur in the space inside the root of the rotor blade 2a. Absent. Four intake control plates 7 are installed at a position 10 to 20 mm from the uppermost part of the rotor blade 2a as shown in FIG. 2, and one end is attached to the motor shaft 8a of the stepping motor 8 installed inside the control part casing 6. Is held at the opposite end of the fixed arm 9. When controlling the exhaust amount, the intake control plate 7 is moved to the position of the ring-shaped exhaust space S near the rotor blade by the rotation of the stepping motor 8 at a predetermined angle, and the intake air is taken in accordance with the required exhaust characteristics (flow rate, pressure, etc.). The control plate 7 changes the conductance of the intake passage. In the case of maximizing the displacement, the intake control plate 7 is moved to a space inside the root of the rotor blade 2a as shown in FIG. 2 (b) to completely eliminate the shielding of the ring-shaped exhaust space S. During this operation, the four intake control plates 7 have different height positions so that they do not collide with each other due to movement but overlap with each other, and the intake control plates 7 are rotated by a predetermined angle by the rotation of the stepping motor 8.
Since the conductance of the intake passage can be gradually changed, it is possible to finely change the exhaust amount and control the flow rate precisely.

【0008】この吸気制御板の形状は、実施例に示すよ
うにケーシングの内接円に沿った弦月状のじゃま板片と
するのが効率的であるが、写真機の絞り片のようなもの
など各種の形状のものが利用できる。
The shape of the intake control plate is effectively a string-shaped baffle plate piece along the inscribed circle of the casing as shown in the embodiment, but it is like a diaphragm piece of a camera. Various shapes such as ones can be used.

【0009】又この吸気制御板7の進退は、上記の例の
他に、ポンプ回転中心方向に対して直線運動で行っても
よい。また、この方式はターボ分子ポンプの他に回転す
る円筒もしくは固定側円筒の少なくとも一方にねじ溝を
備えたモレキュラドラッグポンプの場合にも適用でき
る。
Further, the advancing / retreating of the intake control plate 7 may be performed by a linear motion with respect to the pump rotation center direction other than the above example. In addition to this turbo molecular pump, this system can also be applied to a molecular drag pump having a thread groove in at least one of a rotating cylinder and a fixed cylinder.

【0010】[0010]

【発明の効果】この発明は、以上のように排気量制御部
の口径を大きくしてもポンプ回転軸方向の長さが小さく
できるので、吸気のコンダクタンスが大きくとれて装置
の排気能力が向上し、更に、装置の小形化に寄与でき
る。
As described above, according to the present invention, even if the diameter of the exhaust amount control section is increased, the length in the pump rotation axis direction can be reduced, so that the conductance of the intake air can be increased and the exhaust capacity of the device can be improved. Further, it can contribute to downsizing of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例のターボ分子ポンプの構成を
示す図。
FIG. 1 is a diagram showing a configuration of a turbo molecular pump according to an embodiment of the present invention.

【図2】この発明の実施例の図1のA−A断面図。FIG. 2 is a sectional view taken along the line AA of FIG. 1 showing the embodiment of the present invention.

【図3】従来のターボ分子ポンプの構成を示す図。FIG. 3 is a diagram showing a configuration of a conventional turbo molecular pump.

【符号の説明】[Explanation of symbols]

1…ケーシング 2…ロータ 2a…ロータ翼 3…ステータス
ペーサ 4…ステータ翼 6…制御部ケーシ
ング 7…吸気制御板 8…ステッピング
モータ 12…バタフライ弁 13…弁パッキン
グ 14…回転軸 20…磁気軸受 S…排気スペース T…ターボ分子ポ
ンプ
DESCRIPTION OF SYMBOLS 1 ... Casing 2 ... Rotor 2a ... Rotor blade 3 ... Stator spacer 4 ... Stator blade 6 ... Control part casing 7 ... Intake control plate 8 ... Stepping motor 12 ... Butterfly valve 13 ... Valve packing 14 ... Rotation shaft 20 ... Magnetic bearing S ... Exhaust space T ... Turbo molecular pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ロータ翼が高速回転して真空排気を行う分
子ポンプにおいて、ポンプ吸気口のロータ翼の近傍に、
ポンプ回転軸と垂直方向に進退可能な複数の吸気制御板
を設置し、この吸気制御板によってポンプ吸気路のコン
ダクタンスを可変制御することを特徴とする分子ポン
プ。
1. A molecular pump in which a rotor blade rotates at high speed to perform vacuum exhaust, in the vicinity of the rotor blade of a pump intake port,
A molecular pump characterized in that a plurality of intake control plates capable of advancing and retracting in a direction perpendicular to a pump rotation axis are installed, and the conductance of a pump intake passage is variably controlled by the intake control plates.
JP20531094A 1994-08-30 1994-08-30 Molecular pump Expired - Fee Related JP3399106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20531094A JP3399106B2 (en) 1994-08-30 1994-08-30 Molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20531094A JP3399106B2 (en) 1994-08-30 1994-08-30 Molecular pump

Publications (2)

Publication Number Publication Date
JPH0868389A true JPH0868389A (en) 1996-03-12
JP3399106B2 JP3399106B2 (en) 2003-04-21

Family

ID=16504839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20531094A Expired - Fee Related JP3399106B2 (en) 1994-08-30 1994-08-30 Molecular pump

Country Status (1)

Country Link
JP (1) JP3399106B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062810A (en) * 1997-08-15 2000-05-16 Ebara Corporation Turbomolecular pump
US6220831B1 (en) 1997-08-15 2001-04-24 Ebara Corporation Turbomolecular pump
US6454524B1 (en) 1998-07-21 2002-09-24 Seiko Instruments Inc. Vacuum pump and vacuum apparatus
US6589009B1 (en) 1997-06-27 2003-07-08 Ebara Corporation Turbo-molecular pump
US6607365B1 (en) 1998-08-28 2003-08-19 Seiko Seki Kabushiki Kaisha Vacuum pump and vacuum apparatus
US6953317B2 (en) 1997-06-27 2005-10-11 Ebara Corporation Turbo-molecular pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589009B1 (en) 1997-06-27 2003-07-08 Ebara Corporation Turbo-molecular pump
US6953317B2 (en) 1997-06-27 2005-10-11 Ebara Corporation Turbo-molecular pump
US6062810A (en) * 1997-08-15 2000-05-16 Ebara Corporation Turbomolecular pump
US6220831B1 (en) 1997-08-15 2001-04-24 Ebara Corporation Turbomolecular pump
US6454524B1 (en) 1998-07-21 2002-09-24 Seiko Instruments Inc. Vacuum pump and vacuum apparatus
US6607365B1 (en) 1998-08-28 2003-08-19 Seiko Seki Kabushiki Kaisha Vacuum pump and vacuum apparatus

Also Published As

Publication number Publication date
JP3399106B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
CN1038060C (en) Swinging rotary compressor
JPH03149364A (en) Low temperature pumping device using gas flow control valve
JPH0868389A (en) Molecular pump
JPH05195957A (en) Vacuum pump
JP2002138987A (en) Vacuum pump
US6220831B1 (en) Turbomolecular pump
JP3415402B2 (en) Turbo molecular pump
JP4044392B2 (en) Variable turbocharger
EP0893604A1 (en) Turbomolecular pump
JP2011069407A (en) Conductance valve and vacuum pump
KR20000017624A (en) Vacuum pump and vacuum apparatus
JP2002168192A (en) Vacuum pump
JPH1193889A (en) Turbo-molecular pump
JP4407262B2 (en) Supercharger compressor with surge suppression means
JPH0810604A (en) Vacuum device
JP3095338B2 (en) Turbo molecular pump
EP0067884B1 (en) A fluid deflecting arrangement
JPH088152A (en) Evacuation device
JPS58205000A (en) Air flow regulator for blower
JP2532819Y2 (en) Vacuum pump
JPH05141389A (en) Vacuum pump
JPH05272488A (en) Turbo-molecular pump
JP7247824B2 (en) Exhaust system and vacuum pump
JPS6321371A (en) Cryopump
JP2543628Y2 (en) Pneumatic machine inlet guide vane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees