JP3399106B2 - Molecular pump - Google Patents

Molecular pump

Info

Publication number
JP3399106B2
JP3399106B2 JP20531094A JP20531094A JP3399106B2 JP 3399106 B2 JP3399106 B2 JP 3399106B2 JP 20531094 A JP20531094 A JP 20531094A JP 20531094 A JP20531094 A JP 20531094A JP 3399106 B2 JP3399106 B2 JP 3399106B2
Authority
JP
Japan
Prior art keywords
pump
molecular pump
exhaust
casing
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20531094A
Other languages
Japanese (ja)
Other versions
JPH0868389A (en
Inventor
修 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP20531094A priority Critical patent/JP3399106B2/en
Publication of JPH0868389A publication Critical patent/JPH0868389A/en
Application granted granted Critical
Publication of JP3399106B2 publication Critical patent/JP3399106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0253Surge control by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、ドライエッチング装
置、スパッタリング装置などガスを排気しながら薄膜を
形成する装置などに使用され、高真空排気、ガス流量制
御を行う分子ポンプに関する。 【0002】 【従来の技術】従来のターボ分子ポンプの一例を図3に
示す。図においてTは従来公知のターボ分子ポンプの断
面図で、20は磁気軸受でホルダ側の永久磁石21、ロ
ータ側の永久磁石22より構成される。23はステータ
翼、24はロータ翼、25はロータ、26はケーシン
グ、27はタッチベアリング、28は回転軸、29はモ
ータ、30はアンギュラ玉軸受、31はベースA、32
はベースB、33は排気口である。このターボ分子ポン
プの作動については、従来より公知のものと同じである
ので説明を省略する。バタフライ弁12は円筒型のケー
シング11内に回転可能に配設されており、外周部に弁
パッキング13を保持している。バタフライ弁12は、
軸方向が吸気方向と直角をなす回転軸14に固定される
とともに、回転軸14の一端がケーシング11を貫通し
て、ケーシング11の外側に設置された回転駆動部(図
示せず)に結合されており、回転軸14を介して回転駆
動部により回転させられて弁開閉動作を行う。バタフラ
イ弁12をポンプ回転軸方向と垂直に設定すると、バタ
フライ弁12の外周部に保持した弁パッキング13がケ
ーシング11の内側に内接して気密シールをし、全閉状
態になり、バタフライ弁12をポンプ回転軸方向と平行
に設定すると全開状態になり排気量は最大になる。バタ
フライ弁12を回転駆動部により全閉と全開の間の任意
の位置に設定することにより排気量を可変制御すること
ができる。11aは配管である。 【0003】以上のような構成においては、バタフライ
弁12が全開時にケーシング11の前後に接続されたタ
ーボ分子ポンプ等と接触しないようにするためポンプ回
転軸方向に沿ってかなり広いスペースが必要となる。そ
のため、ケーシングのポンプ回転軸方向の長さLが大き
くなり、排気コンダクタンスが小さくなる。更に、高真
空における排気コンダクタンスは口径Dの3乗に比例し
て、排気方向の長さLに逆比例するため、口径を大きく
する必要がある。ところがこの構成では排気方向の長さ
Lは口径Dの寸法より大きくする必要があるため、真空
排気装置の小形化に対するユーザーの要求が強くなるな
かで、装置小形化への障害にもなっていた。 【0004】 【発明が解決しようとする課題】この発明は、以上の問
題点を解決したもので、排気量制御部のポンプ回転軸方
向の長さを小さくすることにより排気コンダクタンスを
大きくし、更に、装置の小形化を可能にした分子ポンプ
を提供するものである。 【0005】 【課題を解決するための手段】この発明は、かかる目的
を達成するために、分子ポンプ吸気側のロータ翼(動
翼)の近傍に、ポンプ回転軸と垂直方向に進退可能な複
数の吸気制御板を設置し、この制御板によってポンプ吸
気路のコンダクタンスを可変制御するものである。 【0006】 【作用】複数の吸気制御板をポンプ回転軸と垂直な平面
内で移動させることにより、ロータ翼(動翼)近傍のコ
ンダクタンスを変化させ、排気量を制御する。即ち複数
の吸気制御板をロータ翼(動翼)の近傍に(周辺部に)
移動した場合に排気量が最小になり、これを中心部の方
へ移動させたときは排気量が大きくなる。 【0007】 【実施例】以下、この発明の実施例を図1、2を参照し
て説明する。ターボ分子ポンプのケーシング1内には高
速回転可能にロータ2が配設されるとともに、ロータ2
の外周から突設されるロータ翼(動翼)2aとケーシン
グ1内周に内接した積層形ステータスペーサ3の間から
突設されるステータ翼(静翼)4とが交互に近接して対
向配置されており、両者によって真空排気作用が行われ
る。この排気作用はロータ翼2aの周速度が大きいほど
高く、ポンプ吸気口5において翼部近傍のリング状の排
気スペースSでは排気作用があるが、ロータ翼2aの根
元より内側のスペースでは排気作用はない。このロータ
翼2aの最上部より10〜20mmの位置に4枚の吸気制
御板7が図2に示すように設置され、制御部ケーシング
6の内側に設置されたステッピングモータ8のモータ軸
8aに一端を固定されたアーム9の反対側端に保持され
ている。排気量を制御する場合は、ステッピングモータ
8の所定角度の回転により吸気制御板7をロータ翼近傍
のリング状排気スペースS位置に移動し、必要排気特性
(流量、圧力等)に対応して吸気制御板7により吸気路
のコンダクタンスを変化させる。排気量を最大にする場
合は、図2(b)に図示のように吸気制御板7をロータ
翼2aの根元より内側のスペースに移動させて、リング
状排気スペースSの遮蔽を完全になくす。この動作時に
4枚の吸気制御板7が、移動によりお互いに衝突しない
で重なり合うように高さ位置を異ならしめてあり、ステ
ッピングモータ8の所定角度の回転により吸気制御板7
は吸気路のコンダクタンスを徐々に変えることができる
ので、排気量を微細に変化させて精密な流量制御が可能
になる。 【0008】この吸気制御板の形状は、実施例に示すよ
うにケーシングの内接円に沿った弦月状のじゃま板片と
するのが効率的であるが、写真機の絞り片のようなもの
など各種の形状のものが利用できる。 【0009】又この吸気制御板7の進退は、上記の例の
他に、ポンプ回転中心方向に対して直線運動で行っても
よい。また、この方式はターボ分子ポンプの他に回転す
る円筒もしくは固定側円筒の少なくとも一方にねじ溝を
備えたモレキュラドラッグポンプの場合にも適用でき
る。 【0010】 【発明の効果】この発明は、以上のように排気量制御部
の口径を大きくしてもポンプ回転軸方向の長さが小さく
できるので、吸気のコンダクタンスが大きくとれて装置
の排気能力が向上し、更に、装置の小形化に寄与でき
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for an apparatus for forming a thin film while evacuating a gas, such as a dry etching apparatus and a sputtering apparatus, and performs high vacuum evacuation and gas flow control. To a molecular pump. FIG. 3 shows an example of a conventional turbo-molecular pump. In the drawing, T is a cross-sectional view of a conventionally known turbo-molecular pump, and 20 is a magnetic bearing composed of a permanent magnet 21 on the holder side and a permanent magnet 22 on the rotor side. 23 is a stator blade, 24 is a rotor blade, 25 is a rotor, 26 is a casing, 27 is a touch bearing, 28 is a rotating shaft, 29 is a motor, 30 is an angular ball bearing, 31 is a base A, 32
Denotes a base B, and 33 denotes an exhaust port. The operation of the turbo-molecular pump is the same as that of a conventionally known turbo-molecular pump, and a description thereof will be omitted. The butterfly valve 12 is rotatably disposed in the cylindrical casing 11 and holds a valve packing 13 on an outer peripheral portion. The butterfly valve 12
The axial direction is fixed to the rotating shaft 14 that is perpendicular to the intake direction, and one end of the rotating shaft 14 penetrates the casing 11 and is connected to a rotation driving unit (not shown) installed outside the casing 11. The valve is rotated by a rotation drive unit via a rotation shaft 14 to perform a valve opening / closing operation. When the butterfly valve 12 is set perpendicular to the direction of the pump rotation axis, the valve packing 13 held on the outer peripheral portion of the butterfly valve 12 is insulated inside the casing 11 to form an airtight seal, and is fully closed. When the pump is set parallel to the direction of the pump rotation axis, the pump is fully opened and the displacement is maximized. The displacement can be variably controlled by setting the butterfly valve 12 at an arbitrary position between the fully closed position and the fully opened position by the rotary drive unit. 11a is a pipe. [0003] In the above-described configuration, a considerably large space is required along the direction of the pump rotation axis so that the butterfly valve 12 does not come into contact with a turbo-molecular pump connected before and after the casing 11 when fully opened. . Therefore, the length L of the casing in the pump rotation axis direction increases, and the exhaust conductance decreases. Further, since the exhaust conductance in a high vacuum is proportional to the cube of the diameter D and inversely proportional to the length L in the exhaust direction, it is necessary to increase the diameter. However, in this configuration, since the length L in the evacuation direction needs to be larger than the dimension of the diameter D, it has been an obstacle to the miniaturization of the vacuum evacuation apparatus as the user's demand for the miniaturization of the evacuation apparatus increases. . SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the exhaust gas conductance is increased by reducing the length of the displacement control section in the direction of the pump rotation axis. Another object of the present invention is to provide a molecular pump capable of miniaturizing a device. SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a plurality of pumps which can move back and forth in the direction perpendicular to the pump rotation axis near a rotor blade (moving blade) on the molecular pump suction side. Is provided, and the conductance of the pump intake passage is variably controlled by the control plate. [0006] By moving a plurality of intake control plates in a plane perpendicular to the pump rotation axis, the conductance near the rotor blades (moving blades) is changed to control the displacement. That is, a plurality of intake control plates are placed near (at the periphery) the rotor blades (moving blades).
The displacement is minimized when moved, and the displacement is increased when moved toward the center. An embodiment of the present invention will be described below with reference to FIGS. A rotor 2 is provided in a casing 1 of the turbo-molecular pump so as to be rotatable at a high speed.
Rotor blades (moving blades) 2a protruding from the outer periphery of the rotor and stator blades (stationary vanes) 4 protruding from between the laminated stator spacers 3 inscribed in the inner periphery of the casing 1 alternately close to each other and opposed to each other. They are arranged, and both of them perform an evacuation operation. This exhaust effect is higher as the peripheral speed of the rotor blades 2a is higher, and the pumping port 5 has an exhaust effect in a ring-shaped exhaust space S near the blade portion, but in the space inside the root of the rotor blade 2a, the exhaust effect is lower. Absent. As shown in FIG. 2, four intake control plates 7 are installed at positions 10 to 20 mm from the uppermost portion of the rotor blades 2 a, and one end is attached to a motor shaft 8 a of a stepping motor 8 installed inside the control unit casing 6. Is held at the opposite end of the fixed arm 9. When controlling the exhaust amount, the intake control plate 7 is moved to the position of the ring-shaped exhaust space S near the rotor blades by rotating the stepping motor 8 at a predetermined angle, and the intake air is adjusted according to the required exhaust characteristics (flow rate, pressure, etc.). The control plate 7 changes the conductance of the intake path. In order to maximize the displacement, the intake control plate 7 is moved to a space inside the root of the rotor blade 2a as shown in FIG. 2B to completely eliminate the shielding of the ring-shaped exhaust space S. During this operation, the height positions of the four intake control plates 7 are changed so that they do not collide with each other without moving, and the intake control plates 7 are rotated by a predetermined angle of rotation of the stepping motor 8.
Since the conductance of the intake passage can be gradually changed, precise control of the flow rate becomes possible by minutely changing the exhaust amount. Although the shape of the intake control plate is preferably a lunar shaped baffle piece along the inscribed circle of the casing as shown in the embodiment, it is efficient like a diaphragm piece of a camera. And various shapes. The advancing and retreating of the intake control plate 7 may be performed in a linear motion with respect to the direction of the center of rotation of the pump, in addition to the above example. This method can also be applied to a molecular drag pump having a thread groove in at least one of a rotating cylinder and a fixed cylinder in addition to the turbo molecular pump. As described above, according to the present invention, even if the diameter of the displacement control unit is increased, the length in the pump rotation axis direction can be reduced, so that the conductance of intake air can be increased and the exhaust capacity of the device can be improved. Can be improved, and furthermore, it can contribute to downsizing of the device.

【図面の簡単な説明】 【図1】この発明の実施例のターボ分子ポンプの構成を
示す図。 【図2】この発明の実施例の図1のA−A断面図。 【図3】従来のターボ分子ポンプの構成を示す図。 【符号の説明】 1…ケーシング 2…ロータ 2a…ロータ翼 3…ステータス
ペーサ 4…ステータ翼 6…制御部ケーシ
ング 7…吸気制御板 8…ステッピング
モータ 12…バタフライ弁 13…弁パッキン
グ 14…回転軸 20…磁気軸受 S…排気スペース T…ターボ分子ポ
ンプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of a turbo-molecular pump according to an embodiment of the present invention. FIG. 2 is a sectional view taken along the line AA of FIG. 1 according to the embodiment of the present invention; FIG. 3 is a diagram showing a configuration of a conventional turbo-molecular pump. DESCRIPTION OF SYMBOLS 1 ... Casing 2 ... Rotor 2a ... Rotor blade 3 ... Stator spacer 4 ... Stator blade 6 ... Control unit casing 7 ... Intake control plate 8 ... Stepping motor 12 ... Butterfly valve 13 ... Valve packing 14 ... Rotating shaft 20 ... magnetic bearing S ... exhaust space T ... turbo molecular pump

Claims (1)

(57)【特許請求の範囲】 【請求項1】ロータ翼が高速回転して真空排気を行う分
子ポンプにおいて、ポンプ吸気口のロータ翼の近傍に、
ポンプ回転軸と垂直方向に進退可能な複数の吸気制御板
を設置し、この吸気制御板によってポンプ吸気路のコン
ダクタンスを可変制御することを特徴とする分子ポン
プ。
(57) [Claim 1] In a molecular pump in which a rotor blade rotates at a high speed to evacuate, a pump inlet is provided near the rotor blade.
A molecular pump comprising a plurality of intake control plates capable of moving back and forth in a direction perpendicular to a pump rotation axis, and variably controlling the conductance of a pump intake passage by the intake control plates.
JP20531094A 1994-08-30 1994-08-30 Molecular pump Expired - Fee Related JP3399106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20531094A JP3399106B2 (en) 1994-08-30 1994-08-30 Molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20531094A JP3399106B2 (en) 1994-08-30 1994-08-30 Molecular pump

Publications (2)

Publication Number Publication Date
JPH0868389A JPH0868389A (en) 1996-03-12
JP3399106B2 true JP3399106B2 (en) 2003-04-21

Family

ID=16504839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20531094A Expired - Fee Related JP3399106B2 (en) 1994-08-30 1994-08-30 Molecular pump

Country Status (1)

Country Link
JP (1) JP3399106B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589009B1 (en) 1997-06-27 2003-07-08 Ebara Corporation Turbo-molecular pump
US6332752B2 (en) 1997-06-27 2001-12-25 Ebara Corporation Turbo-molecular pump
JP3415402B2 (en) * 1997-08-15 2003-06-09 株式会社荏原製作所 Turbo molecular pump
JP3452468B2 (en) 1997-08-15 2003-09-29 株式会社荏原製作所 Turbo molecular pump
JP3038432B2 (en) 1998-07-21 2000-05-08 セイコー精機株式会社 Vacuum pump and vacuum device
JP3010529B1 (en) 1998-08-28 2000-02-21 セイコー精機株式会社 Vacuum pump and vacuum device

Also Published As

Publication number Publication date
JPH0868389A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
JPH04209980A (en) Molecular vacuum pump
JPS62291479A (en) Vacuum exhaust device
CN1038060C (en) Swinging rotary compressor
JP3399106B2 (en) Molecular pump
JP2002138987A (en) Vacuum pump
JPH05195957A (en) Vacuum pump
JP2003515037A (en) Radial flow turbo molecular vacuum pump
JPS61145394A (en) Molecular pump
JP3415402B2 (en) Turbo molecular pump
JP2004084545A (en) Variable turbo supercharger
JP3010529B1 (en) Vacuum pump and vacuum device
US6217278B1 (en) Turbomolecular pump
US8287258B2 (en) Positive displacement pump with impeller and method of manufacturing
JP2002168192A (en) Vacuum pump
JPH0538389U (en) Vacuum pump
EP1573206B1 (en) Vacuum pumping arrangement and method of operating same
JP3710584B2 (en) Turbo molecular pump
JP3095338B2 (en) Turbo molecular pump
JPS62218692A (en) Turbo-molecular pump device
JP2532819Y2 (en) Vacuum pump
JPH05141389A (en) Vacuum pump
JPH1193889A (en) Turbo-molecular pump
JP2589865B2 (en) Combined vacuum pump
JP7247824B2 (en) Exhaust system and vacuum pump
JP4317414B2 (en) Vacuum pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees