JPH086804A - Load allocating method - Google Patents

Load allocating method

Info

Publication number
JPH086804A
JPH086804A JP13577394A JP13577394A JPH086804A JP H086804 A JPH086804 A JP H086804A JP 13577394 A JP13577394 A JP 13577394A JP 13577394 A JP13577394 A JP 13577394A JP H086804 A JPH086804 A JP H086804A
Authority
JP
Japan
Prior art keywords
load
capacity
frame
capability
frames
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13577394A
Other languages
Japanese (ja)
Inventor
Toshiyuki Asanoma
利 行 麻野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13577394A priority Critical patent/JPH086804A/en
Publication of JPH086804A publication Critical patent/JPH086804A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Control By Computers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To perform proper allocation even if loads have variance by setting capability frames in stages, classifying the loads into load groups corresponding to the capability frames, one to one, according to the sizes of the loads, and allocating the load groups to the capability frames in decreasing order. CONSTITUTION:Two intermediate-load capability frames 11 are set in a large- load capability frame 10 and two small-load capability frames 12 are further set in each intermediate-load capability frame 11. Thus, the loads are classified into the load groups corresponding to the phased capability frames 10, one to one, and the largest load group is allocated to the load capability frame 10 having the largest capacity. The 2nd large load group is allocated to a load capability frame 11 with 2nd capacity and the smallest load group is allocated to a load capability frame 12 with the smallest capacity lastly, so that all the loads are allocated. At the time of the allocation, the respective capability load frames 10-12 can have allocation priority order, capability priority order, allocation conditions of process intervals, etc., optionally set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工場で複数台の機械を
使用する多種一品生産の工程管理において、工数にばら
つきのある負荷を機械に適切に割り付けられるようにし
た負荷割り付け方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load allocating method capable of appropriately allocating a load having a variation in man-hours to a machine in a process control of a multi-item production using a plurality of machines in a factory.

【0002】[0002]

【従来の技術】工場では、生産活動を合理的かつ効率的
に計画を立てて運用するため、一定の品質と数量の製品
が所定の期日までに完成するように工程管理が行われて
いる。この工程管理の一環として、製品を生産するのに
必要な機械を合理的に割り当て、工程の編成を行ってい
る。一般に、量産の場合では、一種の製品だけで機械各
一台ずつに十分な作業量があるので、各機械を進行統制
や運搬に便利な工程順配置としその製品に専用するライ
ンショップ形工程編成を行っている。
2. Description of the Related Art In factories, in order to plan and operate production activities reasonably and efficiently, process control is performed so that products of a certain quality and quantity are completed by a predetermined date. As part of this process control, the machines necessary for producing the products are rationally assigned and the process is organized. Generally, in the case of mass production, there is a sufficient amount of work for each machine with only one type of product, so each machine is arranged in a process order convenient for progress control and transportation, and a line shop type process organization dedicated to that product It is carried out.

【0003】これに対して、多種少量生産では、どれか
一種の製品だけでは、機械各一台ずつに必要十分な作業
量が足りないので、製品群全体に共通な必要な種類、台
数の機械を着手統制に便利な機能別に配置したジョブシ
ョップ形工程編成をとり、このような工程編成を計算機
プログラム化したものが各種開発されている。
On the other hand, in a variety of small-quantity production, since only one kind of product does not have the necessary and sufficient amount of work for each machine, the machines of the necessary type and number of machines common to the entire product group are provided. Various job-shop-type process organizations that are arranged according to the functions that are convenient for starting control have been developed, and a variety of computer program programs of such process organizations have been developed.

【0004】その場合の一般的な手法は、順序づけの理
論により、全ての仕事が終了するまでの総経過時間を最
少にする計画を見つけることである。この方法では、一
般的な解法が見出されていないため、総当たりで試すと
組み合わせ爆発を起こすことがある。実際には、各々の
仕事がある一定の期間内に入っていればよい場合が多い
ため、組み合わせ爆発が起こらないように、仕事(以
下、負荷という)を次のようにして割り付けている。
The general approach in that case is to use the theory of ordering to find a plan that minimizes the total elapsed time to complete all work. In this method, a general solution has not been found, so if it is tried in a brute force manner, a combination explosion may occur. In reality, it is often the case that each job is within a certain period of time, so jobs (hereinafter referred to as loads) are assigned as follows so that a combination explosion does not occur.

【0005】図5は、従来、一般的に行われている負荷
割り付けの手法の基本的な考え方を説明する図である。
図において、A、B、Cは負荷を割り付ける機械を示
し、横軸は時間を表している。これらの機械A、B、C
を使って3種類の製品を製作する場合を考える。それぞ
れの製品を完成させるための工程が負荷1、負荷2、負
荷3である。例えば、負荷1は、工程1a、1b、1c
の工数3の工程からなり、負荷2は工程2a、2b、2
c、負荷3は工程3a、3b、3cといったように、工
数3の工程からなっている。ここで、小文字a、b、c
はそれぞれ機械A、B、Cを使用して行なう工程である
ことを示している。このような負荷を割付ける場合、同
じ製品の工程が重ならないように、既に割り付けてある
負荷を避けて、目的の機械あるいは人員の空いている時
間帯に割り付けるという手順をとる。
FIG. 5 is a diagram for explaining the basic concept of a conventional load allocation method.
In the figure, A, B, and C indicate machines that allocate loads, and the horizontal axis represents time. These machines A, B, C
Consider the case of manufacturing three types of products using. The processes for completing each product are load 1, load 2, and load 3. For example, load 1 includes steps 1a, 1b, 1c
The load 2 is the process 2a, 2b, 2
c and the load 3 are processes with man-hours 3 such as processes 3a, 3b, and 3c. Where lowercase letters a, b, c
Indicates that the steps are performed using the machines A, B, and C, respectively. When allocating such a load, a procedure of avoiding the load already allocated so that the processes of the same product do not overlap with each other and allocating the load to a target machine or a vacant time zone of the personnel is taken.

【0006】このような負荷割り付けにおいて、図5の
例は、負荷1乃至3の工数は3であり、非常に単純化し
た例である。しかし、一般には割付ける負荷の工数や大
きさにある程度のばらつきがあり、空いている時間が短
く、散らばっていることがむしろ多い。その場合でも、
計画は製品の完成期日から数えたリードタイムが可及的
に短い期間になるのが好ましい。従って、空き時間の間
を詰めることによって、一ヵ所に空き領域を作り出した
り、既に割り付けられた負荷の時間帯を移動(以下、バ
ックトラックという)する必要がある。
In such load allocation, the example of FIG. 5 is a very simplified example in which the man-hours of the loads 1 to 3 are three. However, in general, there are some variations in the man-hours and sizes of the loads to be allocated, and the vacant time is short and rather scattered. Even then,
The plan should have as short a lead time as possible from the product completion date. Therefore, it is necessary to create a vacant area in one place by moving the vacant time or move the time zone of the already allocated load (hereinafter referred to as backtrack).

【0007】[0007]

【発明が解決しようとする課題】図6は、機械A、B、
Cに5種類の工程の負荷を割付けた例を示す。この図で
は、数字1乃至5で同じ製品の負荷を表している。この
図6においても機械Bへの割付けをみると、リードタイ
ムを短くするためには、負荷2はできるだけ図の右側に
寄せて割付けることが好ましい。しかし、機械Cに割付
けた負荷2と重なり合うために図の割付けになる。ま
た、機械Bに割付けた4の負荷も機械Aに割付けた負荷
4と重ならないように割付けるため空き時間ができる。
また、機械Cの負荷3は、機械Bの負荷3と重なるの
で、この場合図に示すようにバックトラックして移動す
る必要がある。このように負荷の種類が多く、負荷の大
きさにばらつきがあり負荷が複数工程に別れているよう
な場合に、適切に割付けようとすると複雑になり、特
に、バックトラックの処理が難しくなるので、その割り
付けに要する時間がかかる欠点がある。そこで、本発明
の目的は、前記従来技術の有する問題点を解消し、負荷
の大きさがばらつく場合でも適切な負荷の割り付けをで
きるようにした負荷割り付け方法を提供することにあ
る。
FIG. 6 shows machines A, B, and
An example in which loads of five types of processes are assigned to C is shown. In this figure, the numbers 1 to 5 represent the loads of the same product. Referring to the allocation to the machine B in FIG. 6 as well, in order to shorten the lead time, it is preferable to allocate the load 2 as close to the right side of the drawing as possible. However, since the load 2 assigned to the machine C overlaps, the assignment is as shown in the figure. Further, since the load of 4 assigned to the machine B is assigned so as not to overlap with the load 4 assigned to the machine A, a free time is left.
Further, since the load 3 of the machine C overlaps the load 3 of the machine B, it is necessary to backtrack and move as shown in the figure in this case. In this way, when there are many types of load and there are variations in the size of the load, and the load is divided into multiple processes, it becomes complicated to allocate properly, especially backtrack processing becomes difficult. However, there is a drawback that the allocation takes time. Therefore, an object of the present invention is to provide a load allocation method that solves the problems of the prior art and enables appropriate load allocation even when the size of the load varies.

【0008】[0008]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明は、負荷を割り付ける対象の能力枠をその
容量の大きさにより複数段階に設定し、割り付ける負荷
をその大きさに応じて前記能力枠の各段階に一対一に対
応する負荷群に分類し、最初に最大の大きさの負荷群を
最大容量の能力枠に割り付け、順次負荷群を対応する容
量の能力枠に昇順に割り付けることを特徴とするもので
ある。
In order to achieve the above-mentioned object, the present invention sets a capacity frame to which a load is allocated in a plurality of stages according to the size of the capacity, and allocates the load according to the size. Then, the load groups corresponding to each stage of the above capacity frame are categorized into one-to-one correspondence, the load group of the largest size is first assigned to the capacity frame of the maximum capacity, and the load groups are sequentially arranged in ascending order to the capacity frame of the corresponding capacity. It is characterized by allocation.

【0009】図1は、例えば3段階に設定した能力枠を
示している。10は大負荷用の能力枠で、この大負荷用
能力枠内で2つの中負荷用枠11を設定し、さらに中負
荷用能力枠11に2つの小負荷用能力枠12を設定す
る。ここで、小負荷用能力枠12の容量をT1 とする
と、中負荷用能力枠11には、小負荷用能力枠12が2
つ入るので、中負荷用能力枠11の容量T2 =2T1 で
あり、同様に大負荷用能力枠10の容量T3 =4T1 で
ある。
FIG. 1 shows a capability frame set in three stages, for example. Reference numeral 10 is a large-load capacity frame. Two medium-load capacity frames 11 are set in the large-load capacity frame, and two small-load capacity frames 12 are set in the medium-load capacity frame 11. Assuming that the capacity of the small-load capacity frame 12 is T1, the medium-load capacity frame 11 has two small-load capacity frames 12.
Therefore, the capacity T2 of the medium capacity capacity frame 11 is 2T1 and the capacity T3 of the large capacity capacity frame 10 is 4T1.

【0010】ここで、大負荷用能力枠10の割り付け可
能条件は、 空き容量E1 >負荷の大きさの総和W1 であることである。割り付け後の大負荷用能力枠10の
空き容量E1 は、 空き容量E1 ’=空き容量E1 −割付けた負荷の総和W
1 となる。
Here, the allocatable condition of the large load capacity frame 10 is that the free space E1> the total sum W1 of the magnitudes of the loads. The free capacity E1 of the large load capacity frame 10 after the allocation is the free capacity E1 '= the free capacity E1−the total W of the allocated loads.
Becomes 1.

【0011】次に、中負荷用能力枠11の割付け可能条
件は、 空き容量E2 >負荷の大きさの総和W2 であり、かつ 中負荷用能力枠11の入っている大負荷
用能力枠10の負荷が割付け可能であること、すなわち 空き容量E1 >負荷の大きさの総和W2 の両条件を満たすことである。負荷を割付けた後は、中
負荷能力枠11、大負荷能力枠10のそれぞれの空き容
量E2'、E1'' は、 空き容量E2'=E2 −W2 空き容量E1'' =E1 −(W1 +W2 ) である。
Next, the allocatable condition of the medium load capacity frame 11 is that the available capacity E2> the sum of the load magnitudes W2, and that the medium load capacity frame 11 contains the large load capacity frame 10. That is, the load can be assigned, that is, the free space E1> the total sum W2 of the magnitudes of the loads is satisfied. After the load is allocated, the free capacity E2 '= E2-W2 of the free capacity E2' = E2-W2 of the medium load capacity frame 11 and the large load capacity frame 10, respectively, the free capacity E1 '= E1- (W1 + W2 ) Is.

【0012】同じように考えて、小負荷用能力枠12の
割付け可能条件は、 空き容量E3 >負荷の大きさの総和W3 であり、かつ 小負荷用能力枠12の入っている中負荷
用枠11、大負荷用能力枠10の負荷が割付け可能であ
ること、すなわち 空き容量E2 >負荷の大きさの総和W3 空き容量E1 >負荷の大きさの総和W3 のすべての条件を満たすことである。負荷を割付けた後
は、小負荷能力枠12、中負荷能力枠11、大負荷能力
枠10のそれぞれの空き容量E3 、E2'' 、E1'''は、 空き容量E3 =E3 −W3 空き容量E2'' =E2 −(W2 +W3 ) 空き容量E1'''=E1 −(W1 +W2 +W3 ) である。このようにして、各能力枠の枠内における割付
け位置を規定しないまま、空き容量の有無を確認するこ
とができる。
[0012] In the same way, the assignable condition of the small load capacity frame 12 is that the empty capacity E3> the sum W3 of the load magnitudes and the small load capacity frame 12 is included. 11. The load of the large load capacity frame 10 can be assigned, that is, all the conditions of free capacity E2> sum W3 of load magnitude> free capacity E1> sum W3 of load magnitude are satisfied. After the load is allocated, the free capacity E3, E2 '', E1 '''of each of the small load capacity frame 12, the medium load capacity frame 11 and the large load capacity frame 10 is the free capacity E3 = E3 -W3 free capacity. E2 ″ = E2− (W2 + W3) Free space E1 ′ ″ = E1− (W1 + W2 + W3). In this way, it is possible to confirm the presence or absence of the free capacity without defining the allocation position within each capacity frame.

【0013】こうして、既割り付け済みの負荷は、各々
の能力枠の中での位置を規定しないため、枠内の空き領
域が細い断片的な空きエリアとして分散されることがな
く、空きエリアがあれば負荷は割り付けられ、空きがな
ければ絶対に割りつかないことが明白となる。
In this way, since the already allocated load does not define the position in each capacity frame, the empty area in the frame is not dispersed as a thin fragmentary empty area, and there is an empty area. It becomes clear that the load is allocated, and if there is no space, it cannot be allocated.

【0014】[0014]

【作用】本発明によれば、段階化した能力枠に一対一に
対応させて負荷を負荷群に分類し、一番大きい負荷群を
一番大きい容量をもった負荷能力枠に割り付ける。次
に、2番目に大きな負荷群を2番目の容量の負荷能力枠
に割り付け、以下も、同様にに3番目、4番目と割り付
けをつづけ、最後に、一番小さな負荷群を最少の容量の
負荷能力枠に割り付けると、全ての負荷を割り付けたこ
とになる。その割り付けの際に、各負荷能力枠では、割
り付け優先順序、能力調整優先順序、工程間隔の割り付
け条件などは任意に設定できる。このように、負荷のば
らつきの度合に合せて、加工能力枠の段階数を最適化す
ることで、様々なばらつきの負荷を適正に割り付けるこ
とができる。
According to the present invention, the loads are classified into load groups in one-to-one correspondence with the graded capacity frames, and the largest load group is assigned to the load capacity frame having the largest capacity. Next, the second largest load group is allocated to the load capacity frame of the second capacity, and so on, and so on. Similarly, the third and fourth allocations are continued, and finally, the smallest load group is allocated to the smallest capacity. When assigned to the load capacity frame, all loads are assigned. At the time of the allocation, in each load capacity frame, allocation priority order, capacity adjustment priority order, process interval allocation conditions, etc. can be arbitrarily set. In this way, by optimizing the number of stages of the processing capacity frame according to the degree of load variation, it is possible to appropriately assign loads of various variations.

【0015】[0015]

【実施例】以下、本発明による負荷割り付け方法の一実
施例について添付の図面を参照して説明する。この実施
例では、加工能力枠の段数を3段として、機械3台を使
用した製品の加工工程について、その割り当てについて
具体例を挙げて説明する。それぞれの機械に負荷を割り
付けるにあたって、あらかじめ段階的な加工能力枠を設
定する。この実施例では、大負荷用枠、中負荷用枠、小
負荷用枠の三段階に設定し、大負荷用枠は最大80時間
の負荷容量を割り当て、中負荷用枠には40時間、小負
荷には20時間の容量を割り当てている。一方、機械
A、B、Cに割り当てる仕事については、表1に工程1
から工程4までの四種類の工程を考える。この場合、例
えば、工程1について説明すれば、機械Aを使用する1
0時間の所要負荷と、機械Bを使用しての所要時間50
時間、40時間の二種類の負荷と、機械Cを使用する所
要時間8時間および5時間の負荷からなる。また、工程
3については、機械Aを使用する負荷は、30時間、機
械Bは3時間の負荷と小さな負荷であり、機械Cでは、
工程1と比べて40時間、10時間、5時間と、機械C
を使用する負荷がかなり大きな工程である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the load allocation method according to the present invention will be described below with reference to the accompanying drawings. In this embodiment, the number of stages of the machining capacity frame is set to three, and the machining process of a product using three machines will be described with reference to a specific example. When assigning the load to each machine, a stepwise machining capacity frame is set in advance. In this embodiment, the load capacity is set to three levels, that is, the heavy load frame, the medium load frame, and the small load frame. The heavy load frame is assigned a load capacity of up to 80 hours, and the medium load frame is assigned 40 hours and a small load capacity. The load is assigned a capacity of 20 hours. On the other hand, regarding the jobs assigned to the machines A, B, and C, the process 1 is shown in Table 1.
Consider four types of processes, from 1 to 4. In this case, for example, if step 1 is explained, the machine A is used 1
0 hour required load and 50 hours using machine B
It consists of two types of loads, that is, 40 hours, and the loads required for using the machine C, that is, 8 hours and 5 hours. Regarding step 3, the load using the machine A is 30 hours, the load of the machine B is 3 hours, which is a small load, and the load of the machine C is
40 hours, 10 hours, 5 hours compared to process 1, machine C
Is a fairly heavy process to use.

【0016】このように各工程を経て製品を完成させる
のに必要な負荷は、それぞれ、表1に挙げた所要時間が
必要とされ、工程間では負荷のそれぞれ大きさにばらつ
きのあるものである。
As described above, the load required to complete the product through each process requires the required time listed in Table 1, and the load varies among the processes. .

【0017】[0017]

【表1】 次に、このようなばらつきのある各負荷は、先に段階的
に設定した加工能力枠に一対一に対応させて、その大き
さに応じて負荷群に分類する。この分類した結果を表2
に示す。
[Table 1] Next, the respective loads having such variations are made to correspond one-to-one to the previously set processing capacity frames, and are classified into load groups according to their sizes. The results of this classification are shown in Table 2.
Shown in

【0018】[0018]

【表2】 ここでは、各負荷を最大容量80時間の大負荷用枠と、
最大容量40時間の中負荷用枠と、最大容量20時間の
小負荷用枠に区分に対応させて分類している。この実施
例の場合、最も大きな負荷群をJOB2として大負荷用
枠に割り付ける負荷群を表し、次に大きな負荷群をJO
B4として分類した負荷群を中負荷用枠に、JOB1、
JOB3、JOB5として分類した小さな負荷群を小負
荷用枠に割り付ける。
[Table 2] Here, each load is a heavy load frame with a maximum capacity of 80 hours,
Frames for medium load with maximum capacity of 40 hours and frames for small load with maximum capacity of 20 hours are classified according to the categories. In the case of this embodiment, the largest load group is designated as JOB2, which represents the load group to be assigned to the heavy load frame, and the next largest load group is JO.
The load group classified as B4 is set as the medium load frame, JOB1,
The small load groups classified as JOB3 and JOB5 are assigned to the small load frame.

【0019】次に、図2は、大負荷用枠にJOB2の負
荷群を割り付けた結果を表し、図3は、JOB4の負荷
群を割り付けた結果を示している。最後に、図4に示す
ように、小負荷用枠にそれぞれJOB1、JOB3、J
OB5を割り当てる。
Next, FIG. 2 shows the result of allocating the load group of JOB2 to the heavy load frame, and FIG. 3 shows the result of allocating the load group of JOB4. Finally, as shown in FIG. 4, JOB1, JOB3, and J are attached to the small-load frames, respectively.
Assign OB5.

【0020】このように大きな負荷群から昇順で順次割
り当てるに当たっては、上述した計算手順に従って、各
加工能力枠に空き領域があるかどうかを判別しながら、
割り付けていく。同じ加工能力枠内では、負荷の割付け
位置は規定してないので、各加工能力枠に空き領域があ
れば、確実に負荷は割り当てられていく。
When sequentially allocating in ascending order from such a large load group, it is determined whether or not there is a free area in each machining capacity frame in accordance with the above-described calculation procedure,
Allocate. Within the same processing capacity frame, the load allocation position is not specified, so if there is an empty area in each processing capacity frame, the load will be allocated reliably.

【0021】[0021]

【発明の効果】以上の説明から明らかなように、本発明
によれば、能力枠を段階的に設定し、負荷の大きさに応
じて能力枠に一対一対応の負荷群に分類し、各負荷群を
大きなものから順に能力枠に割り付けるようにしている
ので、負荷の大きさのばらつきがあっても適切な割り付
けを行うことができる。
As is apparent from the above description, according to the present invention, capacity frames are set in stages, and the capacity frames are classified into load groups corresponding to the capacity frames one by one. Since the load groups are assigned to the capacity frames in descending order, appropriate assignment can be performed even if there are variations in the load magnitude.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による負荷割付け方法における段階的な
能力枠の例を示す説明図。
FIG. 1 is an explanatory diagram showing an example of a stepwise capacity frame in a load allocation method according to the present invention.

【図2】一番大きな能力枠に一番大きな負荷群を割付け
た例の説明図。
FIG. 2 is an explanatory diagram of an example in which the largest load group is assigned to the largest capacity frame.

【図3】次に大きな能力枠に次に大きな負荷群を割付け
た例の説明図。
FIG. 3 is an explanatory diagram of an example in which the next largest load group is assigned to the next largest capacity frame.

【図4】一番小さい能力枠に一番小さな負荷群を割付け
た例の説明図。
FIG. 4 is an explanatory diagram of an example in which the smallest load group is assigned to the smallest capacity frame.

【図5】従来の負荷割付方法の概念説明図。FIG. 5 is a conceptual explanatory view of a conventional load allocation method.

【図6】従来の負荷割付け方法により具体的に負荷を割
付けた例を示す説明図。
FIG. 6 is an explanatory diagram showing an example in which loads are specifically assigned by a conventional load assignment method.

【符号の説明】[Explanation of symbols]

10 大負荷用能力枠 11 中負荷用能力枠 12 小負荷用能力枠 10 Large load capacity frame 11 Medium load capacity frame 12 Small load capacity frame

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負荷を割り付ける対象の能力枠をその容量
の大きさにより複数段階に設定し、 割り付ける負荷をその大きさに応じて前記能力枠の各段
階に一対一に対応する負荷群に分類し、 最初に最大の大きさの負荷群を最大容量の能力枠に割り
付け、順次負荷群を対応する容量の能力枠に昇順に割り
付けることを特徴とする負荷割り付け方法。
1. A capacity frame to which a load is assigned is set in a plurality of stages according to the size of the capacity, and the load to be assigned is classified into a load group corresponding one-to-one to each stage of the capacity frame according to the size. Then, the load allocation method is characterized by first allocating the largest load group to the maximum capacity capacity frame, and then sequentially allocating the load groups to the corresponding capacity capacity frame in ascending order.
JP13577394A 1994-06-17 1994-06-17 Load allocating method Pending JPH086804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13577394A JPH086804A (en) 1994-06-17 1994-06-17 Load allocating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13577394A JPH086804A (en) 1994-06-17 1994-06-17 Load allocating method

Publications (1)

Publication Number Publication Date
JPH086804A true JPH086804A (en) 1996-01-12

Family

ID=15159526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13577394A Pending JPH086804A (en) 1994-06-17 1994-06-17 Load allocating method

Country Status (1)

Country Link
JP (1) JPH086804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955283A (en) * 1988-03-03 1990-09-11 Kabushiki Kaisha Kobe Seiko Sho Hydraulic circuit for cylinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955283A (en) * 1988-03-03 1990-09-11 Kabushiki Kaisha Kobe Seiko Sho Hydraulic circuit for cylinder

Similar Documents

Publication Publication Date Title
JP5929949B2 (en) Work plan creation system
JP4880827B2 (en) Production scheduling method, program for causing computer to execute production scheduling method, and computer-readable recording medium recording program for causing computer to execute production scheduling method
Stecke et al. Heuristics for loading flexible manufacturing systems
JPH086804A (en) Load allocating method
JPH0652178A (en) Assembly line work plan generation support system
JP2008226044A (en) Alternate skill scheduling system, scheduling method and program
JP3526516B2 (en) Production process scheduler
JP2002055710A (en) Process chart editing system
JP2002230110A (en) Shipment allocation program, shipment allocation method and recording medium
JP3034580B2 (en) How to create a schedule
JP2600628B2 (en) Work order determination method considering multiple assignment conditions
JPH10309655A (en) Production planning forming method
JP2957711B2 (en) Scheduling method
JPS63163669A (en) Deciding system for assignment
JP2816021B2 (en) Equipment load equalization scheduling method
JPH0916683A (en) Work allocating system
JPH04177457A (en) Multi-resouce system scheduling system
JP3243058B2 (en) Scheduling apparatus and method
JPH04233074A (en) Unmanned operation work scheduling preparing method
JP2566018B2 (en) Operation plan creation device
JPH0744610A (en) Load calculating method in production control system
JPH08180112A (en) Scheduling method
JPS62156758A (en) Allocation system
JPH04233071A (en) Division/merger work scheduling preparing method
Galvin Automated scheduling by families. Part II: Job shop and flow shop scheduling