JPH0867553A - Alumina-based sintered compact for electron gun - Google Patents

Alumina-based sintered compact for electron gun

Info

Publication number
JPH0867553A
JPH0867553A JP6203426A JP20342694A JPH0867553A JP H0867553 A JPH0867553 A JP H0867553A JP 6203426 A JP6203426 A JP 6203426A JP 20342694 A JP20342694 A JP 20342694A JP H0867553 A JPH0867553 A JP H0867553A
Authority
JP
Japan
Prior art keywords
oxide
alumina
volume resistivity
electron gun
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6203426A
Other languages
Japanese (ja)
Inventor
Masaki Hayashi
林  正樹
Tsuneo Muchi
常雄 鞭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Sony Corp
Original Assignee
Kyocera Corp
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Sony Corp filed Critical Kyocera Corp
Priority to JP6203426A priority Critical patent/JPH0867553A/en
Priority to US08/424,782 priority patent/US5830819A/en
Priority to GB9508071A priority patent/GB2288597B/en
Priority to KR1019950009315A priority patent/KR100368474B1/en
Publication of JPH0867553A publication Critical patent/JPH0867553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To make the potential gradient across respective cylindrical electrodes gentle by connecting the respective cylindrical electrodes of an electron gun with a sintered compact having a composition consisting essentially of alumina and a specific oxide added thereto. CONSTITUTION: This alumina-based sintered compact for an electron gun comprises 70-96wt.% alumina, 1-20wt.% titanium oxide, 0.1-1.0wt.% vanadium pentoxide and at least one (preferably 3.0-20.0wt.%) of calcium oxide, chromium oxide, cobalt oxide, magnesium oxide, silica, manganese oxide and iron oxide as the remainder. The sintered compact has 1×10<17> to 1×10<13> Ωcm volume resistivity within the temperature range of 25-75 deg.C and further <=1.8%/ deg.C absolute value of the temperature coefficient of the volume resistivity in applying a high voltage thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミナを主成分とす
る電子銃用アルミナ質焼結体に関し、例えば、投射型や
反射型のプロジェクター、民生用テレビやディスプレー
などのTV,インデックス方式TVなどに使用されるC
RTの電子銃用アルミナ質焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina-based sintered body containing alumina as a main component for an electron gun, for example, projection type or reflection type projectors, TVs for consumer televisions and displays, index type TVs, etc. Used in C
The present invention relates to an alumina-based sintered body for an RT electron gun.

【0002】[0002]

【従来技術】従来、投射型や反射型のプロジェクター、
民生用テレビやディスプレーなどのTV,インデックス
方式TVなどに使用されるCRTには電子銃が搭載され
ており、この電子銃は、図2に示すように、複数の円筒
状電極を軸長方向に所定間隔をおいて配置して構成され
ている。図2において、符号1はカソードであり、2〜
6は円筒状電極(G1〜G5)である。
2. Description of the Related Art Conventionally, projection type or reflection type projectors,
An electron gun is mounted on a CRT used in a TV for consumer use, a TV such as a display, an index TV, and the like. As shown in FIG. 2, this electron gun has a plurality of cylindrical electrodes in the axial direction. It is arranged with a predetermined interval. In FIG. 2, reference numeral 1 is a cathode,
Reference numeral 6 is a cylindrical electrode (G1 to G5).

【0003】そして、円筒状電極3,4と円筒状電極6
が電気的に接続され、プラスの電圧が印加され、また円
筒状電極5には、円筒状電極3,4,6よりも低い電圧
が印加されており、円筒状電極3〜6の内部には電子線
を屈曲させるレンズが形成されている。
The cylindrical electrodes 3 and 4 and the cylindrical electrode 6
Are electrically connected, a positive voltage is applied, and a voltage lower than that of the cylindrical electrodes 3, 4, 6 is applied to the cylindrical electrode 5, and the inside of the cylindrical electrodes 3 to 6 is A lens that bends the electron beam is formed.

【0004】このような電子銃では、各電極間に高電圧
が印加され、カソード1から電子線が円筒状電極2〜6
内に照射され、円筒状電極2〜6内を通過する際に電子
線が屈曲され、この電子線がブラウン管表面に到達す
る。
In such an electron gun, a high voltage is applied between the electrodes, and an electron beam is emitted from the cathode 1 to the cylindrical electrodes 2 to 6.
The electron beam is bent when being irradiated inside and passing through the cylindrical electrodes 2 to 6, and reaches the surface of the cathode ray tube.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、従来
の電子銃では、円筒状電極2〜6が真空中に所定間隔を
おいて配置され、各電極間2〜6は絶縁状態であったた
め、図2のグラフに示すように円筒状電極4と円筒状電
極5、円筒状電極5と円筒状電極6の間には、急激な電
位勾配が生じ、円筒状電極3〜5内に形成されるレンズ
の球面収差が大きくなるという問題があった。この結
果、ブラウン管表面のvisual spotsize
(以下VSSと記す)が未だ大きく、鮮明度が不十分で
あるという問題があった。
However, in the conventional electron gun, the cylindrical electrodes 2 to 6 are arranged at a predetermined interval in a vacuum, and the electrodes 2 to 6 are insulated from each other. As shown in the graph of FIG. 2, a sharp potential gradient is generated between the cylindrical electrode 4 and the cylindrical electrode 5, and between the cylindrical electrode 5 and the cylindrical electrode 6, and the lenses formed in the cylindrical electrodes 3 to 5 are formed. However, there is a problem that the spherical aberration of becomes large. As a result, the visual spotsize on the surface of the cathode ray tube
(Hereinafter referred to as VSS) is still large, and there is a problem that the sharpness is insufficient.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記の
ような問題点について鋭意検討した結果、電子銃の各円
筒状電極を、特定の組成を有する電子銃用アルミナ質焼
結体で連結することにより、各円筒状電極間の電位勾配
を緩やかにすることができることを見出し、本発明に至
った。
Means for Solving the Problems The inventors of the present invention have made earnest studies on the above-mentioned problems, and as a result, made each of the cylindrical electrodes of the electron gun an alumina sintered body for an electron gun having a specific composition. It was found that the potential gradient between the respective cylindrical electrodes can be made gentle by connecting with each other, and the present invention has been completed.

【0007】即ち、本発明の電子銃用アルミナ質焼結体
は、アルミナを70〜96重量%と、酸化チタンを1〜
20重量%と、5酸化バナジウムを0.1〜1.0重量
%と、残部が酸化カルシウム,酸化クロム,酸化コバル
ト,酸化マグネシウム,シリカ,酸化マンガン,酸化鉄
のうち少なくとも一種からなるものである。また、高電
圧印加時において25〜75℃の温度範囲内で、1×1
7 〜1×1013Ωcmの体積固有抵抗を有するととも
に、体積固有抵抗の温度係数の絶対値が1.8%/℃以
下である電子銃用アルミナ質焼結体である。
That is, the alumina-based sintered body for an electron gun of the present invention contains 70 to 96% by weight of alumina and 1 to 1 of titanium oxide.
20% by weight, 0.1 to 1.0% by weight of vanadium pentoxide, and the balance being at least one of calcium oxide, chromium oxide, cobalt oxide, magnesium oxide, silica, manganese oxide, and iron oxide. . Further, when a high voltage is applied, it is 1 × 1 within a temperature range of 25 to 75 ° C.
The alumina sintered body for an electron gun has a volume resistivity of 0 7 to 1 × 10 13 Ωcm and an absolute value of the temperature coefficient of the volume resistivity of 1.8% / ° C. or less.

【0008】本発明において、アルミナを70〜96重
量%含有したのは、アルミナが70重量%よりも少ない
と、体積固有抵抗が1×107 Ωcmよりも小さくなり
導電体に近づくからであり、電子銃の各円筒状電極を接
続する抵抗セラミックスとして用いた場合には各円筒状
電極が導通するからである。また、96重量%よりも多
い場合には体積固有抵抗が1×1013Ωcmよりも大き
くなり絶縁体に近づき、電子銃の各円筒状電極を接続す
る抵抗セラミックスとして用いた場合には帯電して各円
筒状電極間の電位が不安定となるからである。
In the present invention, 70 to 96% by weight of alumina is contained because when the amount of alumina is less than 70% by weight, the volume resistivity becomes smaller than 1 × 10 7 Ωcm and approaches the conductor. This is because when used as a resistance ceramics for connecting the cylindrical electrodes of the electron gun, the cylindrical electrodes conduct. Further, when it is more than 96% by weight, the volume resistivity becomes larger than 1 × 10 13 Ωcm and approaches an insulator, and when it is used as a resistance ceramics for connecting each cylindrical electrode of the electron gun, it is charged. This is because the potential between the cylindrical electrodes becomes unstable.

【0009】また、酸化チタンを1〜20重量%含有し
たのは、酸化チタンが1重量%よりも少ない場合には、
体積固有抵抗が1×1013Ωcmよりも大きくなり絶縁
体に近づくからであり、20重量%よりも多い場合に
は、体積固有抵抗が1×107Ωcmよりも小さくなり
導電体に近づくからである。
Further, the content of titanium oxide of 1 to 20% by weight means that when the amount of titanium oxide is less than 1% by weight,
This is because the volume resistivity becomes larger than 1 × 10 13 Ωcm and approaches the insulator. When it is more than 20% by weight, the volume resistivity becomes smaller than 1 × 10 7 Ωcm and approaches the conductor. is there.

【0010】さらに、5酸化バナジウムを0.1〜1.
0重量%と含有したのは、5酸化バナジウムが0.1重
量%よりも少ない場合には体積固有抵抗の温度係数が−
1.8%/℃を越え、温度に対する体積固有抵抗が大き
くなり、電子銃の各電極を接続する抵抗セラミックスと
して用いた場合には、温度差によりレンズの球面収差が
変化するからである。また、1.0重量%を越えると、
体積固有抵抗が1×107 Ωcmよりも小さくなるから
である。
Further, vanadium pentoxide is added to 0.1 to 1.
The content of 0% by weight means that the temperature coefficient of volume resistivity is − when vanadium pentoxide is less than 0.1% by weight.
This is because the volume specific resistance with respect to temperature becomes larger than 1.8% / ° C., and when it is used as a resistance ceramics for connecting each electrode of the electron gun, the spherical aberration of the lens changes due to the temperature difference. Further, when it exceeds 1.0% by weight,
This is because the volume resistivity is smaller than 1 × 10 7 Ωcm.

【0011】また、残部を酸化カルシウム,酸化クロ
ム,酸化コバルト,酸化マグネシウム,シリカ,酸化マ
ンガン,酸化鉄のうち少なくとも一種から構成したの
は、これらの化合物の添加により焼成温度を制御するこ
とができるからである。
The balance is made of at least one of calcium oxide, chromium oxide, cobalt oxide, magnesium oxide, silica, manganese oxide, and iron oxide. The firing temperature can be controlled by adding these compounds. Because.

【0012】本発明の電子銃用アルミナ質焼結体では、
アルミナが75〜85重量%、酸化チタンが3.0〜1
5.0重量%、5酸化バナジウムが0.2〜0.3重量
%、酸化カルシウム,酸化クロム,酸化コバルト,酸化
マグネシウム,シリカ,酸化マンガン,酸化鉄のうち少
なくとも一種の含有量が3.0〜20.0重量%含有す
ることが望ましい。
In the alumina-based sintered body for an electron gun of the present invention,
Alumina 75-85% by weight, titanium oxide 3.0-1
5.0% by weight, 0.2 to 0.3% by weight of vanadium oxide, and a content of at least one of calcium oxide, chromium oxide, cobalt oxide, magnesium oxide, silica, manganese oxide, and iron oxide is 3.0. It is desirable that the content is up to 20.0% by weight.

【0013】このような電子銃用アルミナ質焼結体は、
例えば、アルミナ粉末、酸化チタン粉末、5酸化バナジ
ウム粉末、酸化カルシウム粉末、酸化クロム粉末,酸化
コバルト粉末、酸化マグネシウム粉末、シリカ粉末,酸
化マンガン粉末,酸化鉄粉末を用い、或いは、焼成中に
これらの材料に変化しうる、前記材料の水酸化物粉末、
炭酸化物粉末を用い、これらを混合した後、所望の成形
手段により所定形状に成形し、酸化性雰囲気において1
300〜1600℃で1〜3時間焼成することにより得
られる。原料粉末の混合は乾式で行って良いが、湿式で
混合した場合にはスプレードライ等で造粒し、成形す
る。
Such an alumina-based sintered body for an electron gun is
For example, alumina powder, titanium oxide powder, vanadium pentoxide powder, calcium oxide powder, chromium oxide powder, cobalt oxide powder, magnesium oxide powder, silica powder, manganese oxide powder, iron oxide powder are used, or these are used during firing. Hydroxide powder of said material, which can be changed into a material,
After using the carbonate oxide powder and mixing them, it is molded into a predetermined shape by a desired molding means,
It is obtained by firing at 300 to 1600 ° C. for 1 to 3 hours. The raw material powders may be mixed by a dry method, but when they are mixed by a wet method, they are granulated by spray drying or the like and molded.

【0014】尚、ボールミル等で粉砕混合する場合に
は、ボールより酸化カルシウム,酸化クロム,酸化コバ
ルト,酸化マグネシウム,シリカ,酸化マンガン,酸化
鉄が混入する場合があるが、前記組成を満足する範囲内
であれば、何ら問題はない。
In the case of pulverizing and mixing with a ball mill or the like, calcium oxide, chromium oxide, cobalt oxide, magnesium oxide, silica, manganese oxide, iron oxide may be mixed from the balls, but in the range satisfying the above composition. If it is inside, there is no problem.

【0015】[0015]

【作用】本発明の電子銃用アルミナ質焼結体は、主にア
ルミナ含有量と酸化チタン含有量を制御することにより
体積固有抵抗を制御し、5酸化バナジウム含有量を制御
することにより体積固有抵抗の温度係数を制御し、高電
圧印加時における25〜75℃の温度範囲内で、1×1
7 〜1×1013Ωcm程度の体積固有抵抗を有すると
ともに、体積固有抵抗の温度係数の絶対値を1.8%/
℃以下とすることが可能となる。
The alumina-based sintered body for an electron gun of the present invention mainly controls the alumina content and the titanium oxide content to control the volume resistivity, and the vanadium pentoxide content to control the volume specific resistance. The temperature coefficient of resistance is controlled, and within the temperature range of 25 to 75 ° C. when high voltage is applied, 1 × 1
It has a volume resistivity of about 0 7 to 1 × 10 13 Ωcm and an absolute value of the temperature coefficient of the volume resistivity of 1.8% /
It is possible to keep the temperature below ℃.

【0016】このような電子銃用アルミナ質焼結体によ
り電子銃の各円筒状電極同士を接続することにより、各
円筒状電極間の電位勾配を緩やかにすることが可能とな
り、ブラウン管表面のVSSを小さくすることが可能と
なる。
By connecting the cylindrical electrodes of the electron gun to each other by such an alumina-based sintered body for an electron gun, the potential gradient between the cylindrical electrodes can be made gentle, and the VSS on the surface of the cathode ray tube can be reduced. Can be reduced.

【0017】[0017]

【実施例】先ず、アルミナ粉末、酸化チタン粉末、5酸
化バナジウム粉末、炭酸カルシウム粉末、酸化クロム粉
末,酸化コバルト粉末、炭酸マグネシウム粉末、シリカ
粉末,酸化マンガン粉末,酸化鉄粉末を用意し、焼結体
の組成が表1に示すような割合となるように秤量後、回
転ミルにて湿式混合した。混合後のスラリーをスプレー
ドライにて乾燥して焼結用原料とした。これをプレス成
形し、大気中において1400〜1600℃で2時間焼
成し、直径60mm厚み3mmの円板状の焼結体を得
た。そして、これの両端を研磨して試料の厚みを2mm
とした。
EXAMPLE First, alumina powder, titanium oxide powder, vanadium pentoxide powder, calcium carbonate powder, chromium oxide powder, cobalt oxide powder, magnesium carbonate powder, silica powder, manganese oxide powder, iron oxide powder were prepared and sintered. The composition of the body was weighed so as to have the ratio shown in Table 1, and wet-mixed with a rotary mill. The mixed slurry was dried by spray drying to obtain a raw material for sintering. This was press-molded and fired in the atmosphere at 1400 to 1600 ° C. for 2 hours to obtain a disk-shaped sintered body having a diameter of 60 mm and a thickness of 3 mm. Then, polish both ends of the sample so that the thickness of the sample is 2 mm.
And

【0018】[0018]

【表1】 [Table 1]

【0019】次に、この試料を、JIS C 2141
に定められた絶縁抵抗の測定方法に基づき、試料を恒温
恒湿槽中(湿度35%)に収容し、試料の両面の電極に
直流電源と電流計を接続し、恒温恒湿槽中が25℃、5
0℃、75℃のうちの所望の温度に到達後10分間放置
した後、試料に5KVを5分間印加した時の漏れ電流を
読み取った。漏れ電流と印加電圧からオームの法則によ
り抵抗値を求め、この抵抗値から体積固有抵抗を算出
し、体積固有抵抗の温度係数を求めた。体積固有抵抗
は、JIS C 2141に定められるように、R=r
×S/t(R:体積固有抵抗、r:抵抗値、S:電極面
積、t:試料厚み)により求めた。また、体積固有抵抗
の温度係数TCR(%/℃)は、TCR(%/℃)=
〔(R25−R75)/(R25×50)〕×100で求め
た。ここで、R25は25℃における体積固有抵抗であ
り、R75は75℃における体積固有抵抗である。この結
果を表2に示す。
Next, this sample was tested according to JIS C 2141.
Based on the insulation resistance measurement method specified in, the sample is placed in a thermo-hygrostat (humidity: 35%), and a DC power supply and ammeter are connected to the electrodes on both sides of the sample. ℃, 5
After reaching a desired temperature of 0 ° C. and 75 ° C. and leaving it for 10 minutes, the leakage current when 5 KV was applied to the sample for 5 minutes was read. The resistance value was calculated from the leakage current and the applied voltage by Ohm's law, the volume specific resistance was calculated from this resistance value, and the temperature coefficient of the volume specific resistance was calculated. The volume resistivity is R = r as defined in JIS C 2141.
× S / t (R: volume resistivity, r: resistance value, S: electrode area, t: sample thickness). The temperature coefficient of volume resistivity TCR (% / ° C) is TCR (% / ° C) =
It was determined by [(R 25 −R 75 ) / (R 25 × 50)] × 100. Here, R 25 is the volume resistivity at 25 ° C., and R 75 is the volume resistivity at 75 ° C. The results are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】この表2より、本発明の電子銃用アルミナ
質焼結体では、高電圧印加時における25〜75℃の温
度範囲内で、1×107 〜1×1013Ωcmの体積固有
抵抗を有するとともに、体積固有抵抗の温度係数の絶対
値が1.8%/℃以下となることが判る。一方、本発明
の範囲外の試料、例えば、試料No.9,10,15,1
6は、25〜75℃の温度範囲内で1×107 〜1×1
13Ωcmを有しておらず、また、試料No.8は、25
〜75℃の温度範囲内で体積固有抵抗の温度係数が−
1.9%/℃近くになっている。
From Table 2, the alumina-based sintered body for an electron gun of the present invention has a volume resistivity of 1 × 10 7 to 1 × 10 13 Ωcm within a temperature range of 25 to 75 ° C. when a high voltage is applied. It can be seen that the absolute value of the temperature coefficient of the volume resistivity is 1.8% / ° C. or less. On the other hand, samples outside the scope of the present invention, for example, samples No. 9, 10, 15, 1
6 is 1 × 10 7 to 1 × 1 within the temperature range of 25 to 75 ° C.
0 13 does not have a [Omega] cm, In Sample No.8 is 25
Temperature coefficient of volume resistivity within the temperature range of ~ 75 ℃
It is close to 1.9% / ° C.

【0022】また、本発明者等は、試料No.3につい
て、6KV,8KVの印加電圧を5分間印加した時の抵
抗値を求め、上記と同様にして体積固有抵抗を算出し、
体積固有抵抗の温度係数を求めた。この結果、体積固有
抵抗は、6KVでR25が17.8×1010Ωcm、R75
が2.0×1010Ωcm、8KVでR25が17.6×1
10Ωcm、R75が1.9×1010Ωcmであり、温度
係数は6KVで−1.78%/℃、8KVでも−1.7
8%/℃であった。
Further, the present inventors found the resistance value of the sample No. 3 when applying the applied voltage of 6 KV and 8 KV for 5 minutes, and calculated the volume resistivity in the same manner as above.
The temperature coefficient of volume resistivity was determined. As a result, the volume resistivity was 6 KV, R 25 was 17.8 × 10 10 Ωcm, R 75
Is 2.0 × 10 10 Ωcm, R 25 is 17.6 × 1 at 8KV
0 10 Ωcm, R 75 is 1.9 × 10 10 Ωcm, and temperature coefficient is −1.78% / ° C. at 6 KV and −1.7 even at 8 KV.
It was 8% / ° C.

【0023】次に、本発明者等は、本発明のアルミナ質
焼結体を図1に示すような電子銃の抵抗セラミックス1
7,19として用いた。ここで図1の電子銃を説明する
と、符号11は電子線が照射されるカソードを示してい
る。電子線が照射される方向には、複数の円筒状電極
(12,13,14,15)が軸長方向に所定間隔をお
いて配置されている。円筒状電極13と円筒状電極1
4,円筒状電極14と円筒状電極15は、アルミナ質焼
結体からなる円筒状の抵抗セラミックス17,19によ
りそれぞれ接続されている。この抵抗セラミックス17
の両端部に円筒状電極13,14がそれぞれ嵌入され、
抵抗セラミックス19の両端部に円筒状電極14,15
が嵌入され、円筒状電極13と円筒状電極14,円筒状
電極14と円筒状電極15が接続されている。
Next, the inventors of the present invention applied the alumina sintered body of the present invention to the resistance ceramics 1 of the electron gun as shown in FIG.
It was used as 7,19. Here, the electron gun of FIG. 1 will be described. Reference numeral 11 indicates a cathode irradiated with an electron beam. A plurality of cylindrical electrodes (12, 13, 14, 15) are arranged at predetermined intervals in the axial direction in the direction in which the electron beam is irradiated. Cylindrical electrode 13 and cylindrical electrode 1
4, the cylindrical electrode 14 and the cylindrical electrode 15 are connected by cylindrical resistive ceramics 17 and 19 made of an alumina sintered body, respectively. This resistance ceramics 17
Cylindrical electrodes 13 and 14 are fitted into both ends of
Cylindrical electrodes 14 and 15 are provided on both ends of the resistance ceramics 19.
Are inserted, and the cylindrical electrode 13 and the cylindrical electrode 14 and the cylindrical electrode 14 and the cylindrical electrode 15 are connected.

【0024】図1をモデル化したのが図3である。図3
において、符号13,14,15が図1と同様に円筒状
電極であり、17,19が抵抗セラミックスである。
FIG. 3 is a model of FIG. FIG.
1, reference numerals 13, 14 and 15 are cylindrical electrodes, and 17 and 19 are resistance ceramics, as in FIG.

【0025】また、図4は、図3を等価回路に置き換え
たもので、R1 ,R2 が抵抗セラミックス17,19に
相当する。陽極電圧HVとフォーカス電圧FVとの間の
合成抵抗Zは、1/Z=(1/R1 )+(1/R2 )と
いう関係を有する。
Further, FIG. 4 is obtained by replacing the circuit shown in FIG. 3 with an equivalent circuit, and R 1 and R 2 correspond to the resistance ceramics 17 and 19, respectively. The combined resistance Z between the anode voltage HV and the focus voltage FV has a relationship of 1 / Z = (1 / R 1 ) + (1 / R 2 ).

【0026】図5に合成抵抗と抵抗セラミックスの温度
との関係を示す。抵抗セラミックス温度は、CRT外気
雰囲気、CRT動作による発熱(偏向ヨークを含む)及
びCRTからの放射等の熱伝導、熱放射により熱平衡に
達した温度である。
FIG. 5 shows the relationship between the combined resistance and the temperature of the resistance ceramics. The resistance ceramics temperature is a temperature at which a thermal equilibrium is reached by the atmosphere outside the CRT, heat generated by the CRT operation (including the deflection yoke), heat conduction such as radiation from the CRT, and heat radiation.

【0027】陽極電圧HV=33KV、フォーカス電圧
FV=9KVのときΔHV=HV−FV=24KVで、
Z抵抗を0℃で400×109 Ωに設計した時、抵抗セ
ラミックスの温度を上げるとZ抵抗は図5に示すように
なる。この図5のグラフで示されたデータの一部を表3
に記す。
When the anode voltage HV = 33 KV and the focus voltage FV = 9 KV, ΔHV = HV-FV = 24 KV,
When the Z resistance is designed to be 400 × 10 9 Ω at 0 ° C., the Z resistance becomes as shown in FIG. 5 when the temperature of the resistance ceramics is increased. Table 3 shows a part of the data shown in the graph of FIG.
Note.

【0028】[0028]

【表3】 [Table 3]

【0029】この表3より、抵抗セラミックスの体積固
有抵抗の温度係数TCRが−1.8%/℃、−1.5%
/℃の場合、75℃のZ抵抗が10×109 Ω、41×
109 Ωとなる。抵抗セラミックスの温度上昇により、
体積固有抵抗が下がり、フォーカスパック回路に流れる
電流が増加し、フォーカス電位が上昇し、抵抗セラミッ
クスのTCRが−1.8%/℃、−1.5%/℃の場
合、75℃のフォーカス電位が60V、14Vとなるこ
とが判る。即ち、TCRが小さいほどフォーカス電位変
動(ΔFV)が小さいことから当該セラミックスのTC
Rが重要な特性となる。
From Table 3, the temperature coefficient TCR of the volume resistivity of the resistance ceramics is -1.8% / ° C, -1.5%.
/ ° C, Z resistance at 75 ° C is 10 × 10 9 Ω, 41 ×
It becomes 10 9 Ω. Due to the temperature rise of the resistive ceramics,
When the volume resistivity decreases, the current flowing through the focus pack circuit increases, the focus potential increases, and the TCR of the resistance ceramics is -1.8% / ° C and -1.5% / ° C, the focus potential of 75 ° C. It turns out that the voltage becomes 60V and 14V. That is, the smaller the TCR is, the smaller the focus potential fluctuation (ΔFV) is.
R is an important property.

【0030】そして、フォーカス電位の変動によるvi
sual spot size(VSS)の関係は図6
に示すようになるが、この図6から、フォーカス電位変
動(ΔFV)が60V以下であると、フォーカス電位の
変動がVSSに与える影響が小さく許容され得ることを
見出した。即ち、フォーカス電位変動(ΔFV)が60
V以下である場合にはVSSを充分に小さくすることが
できる。
Then, vi due to the fluctuation of the focus potential
Fig. 6 shows the relationship between the dual spot size (VSS).
As shown in FIG. 6, it has been found from FIG. 6 that when the focus potential fluctuation (ΔFV) is 60 V or less, the influence of the fluctuation of the focus potential on VSS can be allowed to be small. That is, the focus potential fluctuation (ΔFV) is 60
When it is V or less, VSS can be made sufficiently small.

【0031】これは、円筒状電極13と円筒状電極1
4,円筒状電極14と円筒状電極15を、アルミナ、酸
化チタン、5酸化バナジウム等を含む特定の組成からな
る抵抗セラミックス17により接続することにより、円
筒状電極13と円筒状電極14,円筒状電極14と円筒
状電極15の間の電位勾配を図1のグラフに示したよう
に緩やかにすることができ、また、本発明のアルミナ質
焼結体は、TCRの絶対値が1.8%/℃以下であるこ
とから、フォーカス電位変動(ΔFV)が60V以下と
なり、フォーカス電位の変動がVSSに与える影響を小
さくすることができ、ブラウン管表面のVSSを小さく
することができる。
This is a cylindrical electrode 13 and a cylindrical electrode 1.
4, the cylindrical electrode 14 and the cylindrical electrode 15 are connected by the resistance ceramics 17 having a specific composition including alumina, titanium oxide, vanadium oxide, etc., so that the cylindrical electrode 13 and the cylindrical electrode 14, The potential gradient between the electrode 14 and the cylindrical electrode 15 can be made gentle as shown in the graph of FIG. 1, and the alumina-based sintered body of the present invention has an absolute TCR value of 1.8%. Since / C or less, the focus potential fluctuation (ΔFV) becomes 60 V or less, the influence of the focus potential fluctuation on VSS can be reduced, and the VSS on the surface of the cathode ray tube can be reduced.

【0032】従って、TCRの絶対値が1.8%/℃以
下である本発明の電子銃用アルミナ質焼結を電子銃に組
み込んだ場合には、従来のTCRの絶対値が1.8%/
℃よりも大きいセラミックス(試料No.8,18)を用
いた場合よりもVSSを小さくできることが判る。
Therefore, when the alumina-based sintered material for an electron gun of the present invention having an absolute TCR value of 1.8% / ° C. or less is incorporated into an electron gun, the conventional absolute TCR value is 1.8%. /
It can be seen that VSS can be made smaller than in the case of using ceramics (sample No. 8 and 18) having a temperature higher than ° C.

【0033】[0033]

【発明の効果】以上詳述した通り、本発明の電子銃用ア
ルミナ質焼結体では、高電圧印加時における25〜75
℃の温度範囲内で、1×107 〜1×1013Ωcm程度
の体積固有抵抗を有するとともに、体積固有抵抗の温度
係数の絶対値が1.8%/℃以下となり、絶縁体と導電
体の中間位の体積固有抵抗を有するとともに、焼結体の
温度によって体積固有抵抗が変動する幅が大幅に低減さ
れ、所望の体積固有抵抗を容易に得ることができる。
As described above in detail, the alumina-based sintered body for an electron gun of the present invention has a thickness of 25 to 75 when a high voltage is applied.
Within the temperature range of ℃, it has a volume resistivity of about 1 × 10 7 to 1 × 10 13 Ωcm, and the absolute value of the temperature coefficient of the volume resistivity is 1.8% / ° C. or less. In addition to having a volume resistivity in the middle, the width of variation of the volume resistivity depending on the temperature of the sintered body is significantly reduced, and a desired volume resistivity can be easily obtained.

【0034】また、本発明の電子銃用アルミナ質焼結体
により電子銃の各円筒状電極同士を接続することによ
り、各円筒状電極間の電位勾配を緩やかにすることがで
き、ブラウン管表面のvisual spot siz
eを小さくすることができ、これにより、輝度や鮮明度
を大幅に向上することができる。
By connecting the cylindrical electrodes of the electron gun to each other using the alumina-based sintered body for an electron gun of the present invention, the potential gradient between the cylindrical electrodes can be made gentle, and the surface of the cathode ray tube can be reduced. visual spot siz
It is possible to make e small, and it is possible to greatly improve the brightness and the sharpness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子銃用アルミナ質焼結体を用いた電
子銃を説明する説明図である。
FIG. 1 is an explanatory view illustrating an electron gun using the alumina-based sintered body for an electron gun of the present invention.

【図2】従来の電子銃を説明する説明図である。FIG. 2 is an explanatory diagram illustrating a conventional electron gun.

【図3】図1の電子銃をモデル化した図である。FIG. 3 is a modeled view of the electron gun of FIG.

【図4】図1の電子銃を等価回路に置き換えた図であ
る。
FIG. 4 is a diagram in which the electron gun of FIG. 1 is replaced with an equivalent circuit.

【図5】合成抵抗と抵抗セラミックスの温度との関係を
示すグラフである。
FIG. 5 is a graph showing the relationship between the combined resistance and the temperature of the resistance ceramics.

【図6】visual spot size(VSS)
とフォーカス電位変動(ΔFV)との関係を示すグラフ
である。
FIG. 6 is a visual spot size (VSS).
7 is a graph showing a relationship between the focus potential fluctuation (ΔFV) and.

【符号の説明】[Explanation of symbols]

11・・・カソード 12〜15・・・円筒状電極 17,19・・・抵抗セラミックス 11 ... Cathode 12-15 ... Cylindrical electrode 17, 19 ... Resistive ceramics

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年9月8日[Submission date] September 8, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】さらに、5酸化バナジウムを0.1〜1.
0重量%と含有したのは、5酸化バナジウムが0.1重
量%よりも少ない場合には体積固有抵抗の温度係数の絶
対値が1.8%/℃を越え、温度に対する体積固有抵抗
が大きくなり、電子銃の各電極を接続する抵抗セラミッ
クスとして用いた場合には、温度差によりレンズの球面
収差が変化するからである。また、1.0重量%を越え
ると、体積固有抵抗が1×107 Ωcmよりも小さくな
るからである。
Further, vanadium pentoxide is added to 0.1 to 1.
The content of 0% by weight means that when vanadium pentoxide is less than 0.1% by weight, the absolute value of the temperature coefficient of volume resistivity exceeds 1.8% / ° C, and the volume resistivity is large with respect to temperature. This is because the spherical aberration of the lens changes due to the temperature difference when it is used as a resistance ceramic for connecting the electrodes of the electron gun. On the other hand, if it exceeds 1.0% by weight, the volume resistivity becomes smaller than 1 × 10 7 Ωcm.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】次に、この試料を、JIS C 2141
に定められた絶縁抵抗の測定方法に基づき、試料を恒温
恒湿槽中(湿度35%)に収容し、試料の両面の電極に
直流電源と電流計を接続し、恒温恒湿槽中が25℃、5
0℃、75℃のうちの所望の温度に到達後10分間放置
した後、試料に5KVを5分間印加した時の漏れ電流を
読み取った。漏れ電流と印加電圧からオームの法則によ
り抵抗値を求め、この抵抗値から体積固有抵抗を算出
し、体積固有抵抗の温度係数の絶対値を求めた。体積固
有抵抗は、JIS C 2141に定められるように、
R=r×S×t(R:体積固有抵抗、r:抵抗値、S:
電極面積、t:試料厚み)により求めた。また、体積固
有抵抗の温度係数TCR(%/℃)は、TCR(%/
℃)=〔(R25−R75)/(R25×50)〕×100で
求めた。ここで、R25は25℃における体積固有抵抗で
あり、R75は75℃における体積固有抵抗である。この
結果を表2に示す。
Next, this sample was tested according to JIS C 2141.
Based on the insulation resistance measurement method specified in, the sample is placed in a thermo-hygrostat (humidity: 35%), and a DC power supply and ammeter are connected to the electrodes on both sides of the sample. ℃, 5
After reaching a desired temperature of 0 ° C. and 75 ° C. and leaving it for 10 minutes, the leakage current when 5 KV was applied to the sample for 5 minutes was read. The resistance value was calculated from the leakage current and the applied voltage by Ohm's law, the volume specific resistance was calculated from this resistance value, and the absolute value of the temperature coefficient of the volume specific resistance was calculated. The volume resistivity is as specified in JIS C 2141,
R = r × S × t (R: volume resistivity, r: resistance value, S:
It was determined by the electrode area, t: sample thickness). The temperature coefficient of volume resistivity TCR (% / ° C) is TCR (% /
C.) = [(R 25 −R 75 ) / (R 25 × 50)] × 100. Here, R 25 is the volume resistivity at 25 ° C., and R 75 is the volume resistivity at 75 ° C. The results are shown in Table 2.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【表2】 [Table 2]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】この表2より、本発明の電子銃用アルミナ
質焼結体では、高電圧印加時における25〜75℃の温
度範囲内で、1×107 〜1×1013Ωcmの体積固有
抵抗を有するとともに、体積固有抵抗の温度係数の絶対
値が1.8%/℃以下となることが判る。一方、本発明
の範囲外の試料、例えば、試料No.9,10,15,1
6は、25〜75℃の温度範囲内で1×107 〜1×1
13Ωcmを有しておらず、また、試料No.8は、25
〜75℃の温度範囲内で体積固有抵抗の温度係数の絶対
値が1.9%/℃近くになっている。
From Table 2, the alumina-based sintered body for an electron gun of the present invention has a volume resistivity of 1 × 10 7 to 1 × 10 13 Ωcm within a temperature range of 25 to 75 ° C. when a high voltage is applied. It can be seen that the absolute value of the temperature coefficient of the volume resistivity is 1.8% / ° C. or less. On the other hand, samples outside the scope of the present invention, for example, samples No. 9, 10, 15, 1
6 is 1 × 10 7 to 1 × 1 within the temperature range of 25 to 75 ° C.
0 13 does not have a [Omega] cm, In Sample No.8 is 25
Within the temperature range of ˜75 ° C., the absolute value of the temperature coefficient of volume resistivity is close to 1.9% / ° C.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】また、本発明者等は、試料No.3につい
て、6KV,8KVの印加電圧を5分間印加した時の抵
抗値を求め、上記と同様にして体積固有抵抗を算出し、
体積固有抵抗の温度係数の絶対値を求めた。この結果、
体積固有抵抗は、6KVでR25が17.8×1010Ωc
m、R75が2.0×1010Ωcm、8KVでR25が1
7.6×1010Ωcm、R75が1.9×1010Ωcmで
あり、体積固有抵抗の温度係数の絶対値は6KVで1.
78%/℃、8KVでも1.78%/℃であった。
Further, the present inventors found the resistance value of the sample No. 3 when applying the applied voltage of 6 KV and 8 KV for 5 minutes, and calculated the volume resistivity in the same manner as above.
The absolute value of the temperature coefficient of volume resistivity was determined. As a result,
The volume resistivity is 6 KV and R 25 is 17.8 × 10 10 Ωc.
m, R 75 is 2.0 × 10 10 Ωcm, R 25 is 1 at 8 KV
7.6 × 10 10 Ωcm, R 75 is 1.9 × 10 10 Ωcm, and the absolute value of the temperature coefficient of volume resistivity is 6 KV.
At 78% / ° C and 8 KV, it was 1.78% / ° C.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】[0028]

【表3】 [Table 3]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】この表3より、抵抗セラミックスの体積固
有抵抗の温度係数TCRの絶対値が1.8%/℃、1.
5%/℃の場合、75℃のZ抵抗が10×109 Ω、4
1×109 Ωとなる。抵抗セラミックスの温度上昇によ
り、体積固有抵抗が下がり、フォーカスパック回路に流
れる電流が増加し、フォーカス電位が上昇し、体積固有
抵抗の温度係数TCRの絶対値が1.8%/℃、1.5
%/℃の場合、75℃のフォーカス電位が60V、14
Vとなることが判る。即ち、TCRが小さいほどフォー
カス電位変動(ΔFV)が小さいことから当該セラミッ
クスのTCRが重要な特性となる。
From Table 3, the absolute value of the temperature coefficient TCR of the volume resistivity of the resistance ceramics is 1.8% / ° C.
In case of 5% / ℃, Z resistance at 75 ℃ is 10 × 10 9 Ω, 4
It becomes 1 × 10 9 Ω. Due to the temperature rise of the resistive ceramics, the volume resistivity decreases, the current flowing through the focus pack circuit increases, the focus potential increases, and the absolute value of the temperature coefficient TCR of the volume resistivity is 1.8% / ° C., 1.5.
% / ° C, the focus potential at 75 ° C is 60V, 14
It turns out that it becomes V. That is, the smaller the TCR, the smaller the focus potential fluctuation (ΔFV), so the TCR of the ceramic becomes an important characteristic.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミナを70〜96重量%と、酸化チタ
ンを1〜20重量%と、5酸化バナジウムを0.1〜
1.0重量%と、残部が酸化カルシウム,酸化クロム,
酸化コバルト,酸化マグネシウム,シリカ,酸化マンガ
ン,酸化鉄のうち少なくとも一種からなることを特徴と
する電子銃用アルミナ質焼結体。
1. Alumina 70 to 96% by weight, titanium oxide 1 to 20% by weight, and vanadium pentoxide 0.1 to 0.1% by weight.
1.0% by weight, with the balance being calcium oxide, chromium oxide,
An alumina-based sintered body for an electron gun, comprising at least one of cobalt oxide, magnesium oxide, silica, manganese oxide, and iron oxide.
【請求項2】高電圧印加時において25〜75℃の温度
範囲内で、1×107 〜1×1013Ωcmの体積固有抵
抗を有するとともに、体積固有抵抗の温度係数の絶対値
が1.8%/℃以下である請求項1記載の電子銃用アル
ミナ質焼結体。
2. When a high voltage is applied, it has a volume resistivity of 1 × 10 7 to 1 × 10 13 Ωcm within a temperature range of 25 to 75 ° C., and the absolute value of the temperature coefficient of the volume resistivity is 1. The alumina-based sintered body for an electron gun according to claim 1, which is 8% / ° C. or less.
JP6203426A 1994-04-20 1994-08-29 Alumina-based sintered compact for electron gun Pending JPH0867553A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6203426A JPH0867553A (en) 1994-08-29 1994-08-29 Alumina-based sintered compact for electron gun
US08/424,782 US5830819A (en) 1994-04-20 1995-04-19 Alumina sintered product
GB9508071A GB2288597B (en) 1994-04-20 1995-04-20 Alumina sintered product
KR1019950009315A KR100368474B1 (en) 1994-04-20 1995-04-20 Alumina Sintered Body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6203426A JPH0867553A (en) 1994-08-29 1994-08-29 Alumina-based sintered compact for electron gun

Publications (1)

Publication Number Publication Date
JPH0867553A true JPH0867553A (en) 1996-03-12

Family

ID=16473890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6203426A Pending JPH0867553A (en) 1994-04-20 1994-08-29 Alumina-based sintered compact for electron gun

Country Status (1)

Country Link
JP (1) JPH0867553A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383963B1 (en) 1997-06-26 2002-05-07 Ngk Spark Plug Co., Ltd Sintered alumina-based ceramics and process for producing same
WO2004074207A1 (en) * 2003-02-24 2004-09-02 Showa Denko K.K. Alumina-based ceramic material and production method thereof
EP1538132A1 (en) * 2002-09-12 2005-06-08 Sodick Co., Ltd. Ceramic and method for production thereof
JP2008262713A (en) * 2007-04-10 2008-10-30 Hitachi High-Technologies Corp Charged particle beam device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383963B1 (en) 1997-06-26 2002-05-07 Ngk Spark Plug Co., Ltd Sintered alumina-based ceramics and process for producing same
EP1538132A1 (en) * 2002-09-12 2005-06-08 Sodick Co., Ltd. Ceramic and method for production thereof
US7091146B2 (en) * 2002-09-12 2006-08-15 Sodick Co., Ltd. Enhanced ceramic material for precision alignment mechanism
EP1538132A4 (en) * 2002-09-12 2009-09-02 Sodick Co Ltd Ceramic and method for production thereof
WO2004074207A1 (en) * 2003-02-24 2004-09-02 Showa Denko K.K. Alumina-based ceramic material and production method thereof
JP2008262713A (en) * 2007-04-10 2008-10-30 Hitachi High-Technologies Corp Charged particle beam device

Similar Documents

Publication Publication Date Title
KR100368474B1 (en) Alumina Sintered Body
US4920328A (en) Material for resistor body and non-linear resistor made thereof
US3729575A (en) High voltage insulator having a thick film resistive coating
JPH0867553A (en) Alumina-based sintered compact for electron gun
JPH0628968A (en) Cathode containing solid body
US5914559A (en) Resistance element and cathode ray tube
US1822742A (en) Discharge device and resistance material
CN110168695A (en) Electrical insulator based on aluminium oxide ceramics, the method for manufacturing the insulator and the vacuum tube including the insulator
JP7451277B2 (en) Thermistor sintered body and temperature sensor element
KR102341611B1 (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
JPH0234137B2 (en)
JPS604561B2 (en) Ceramic electrical resistor with non-linear voltage dependent characteristics and its manufacturing method
JP2005123141A (en) Conductive paste and piezoelectric ceramic electronic component
JPH0552021B2 (en)
US5373129A (en) Power circuit breaker and power resistor
JP4302487B2 (en) Sintered body for thermistor, thermistor element, and temperature sensor
US20210225564A1 (en) Thermistor sintered body and temperature sensor element
JPH0682540B2 (en) Thick film resistance element and electron tube incorporating the same
JP2019091646A (en) Spark plug
JP2008205384A (en) Thermistor composition and thermistor element
JPS60124340A (en) Resistor built in cathode ray tube
US6048244A (en) Method for providing a resistive lens structure for an electron beam device
JPH11189458A (en) Semiconductive ceramic and its production
Muchi et al. High resolution ceramic gun for projection CRT
JPH04192302A (en) Thin film thermistor element