JPH0866689A - Advanced treatment of organic sewage - Google Patents
Advanced treatment of organic sewageInfo
- Publication number
- JPH0866689A JPH0866689A JP22739494A JP22739494A JPH0866689A JP H0866689 A JPH0866689 A JP H0866689A JP 22739494 A JP22739494 A JP 22739494A JP 22739494 A JP22739494 A JP 22739494A JP H0866689 A JPH0866689 A JP H0866689A
- Authority
- JP
- Japan
- Prior art keywords
- phosphorus
- water
- filtration
- treated water
- filter layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Removal Of Specific Substances (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、下水、産業廃水などの
有機性汚水を高度に浄化することが出来る技術であり、
特にリンを高度に除去でき、リンを資源として回収でき
る新技術に関するものである。BACKGROUND OF THE INVENTION The present invention is a technology capable of highly purifying organic wastewater such as sewage and industrial wastewater.
In particular, it relates to a new technology capable of highly removing phosphorus and recovering phosphorus as a resource.
【0002】[0002]
【従来の技術】従来の代表的リン除去方法は凝集沈殿法
である。この方法は、汚水の生物処理水に硫酸アルミニ
ウム、ポリ塩化アルミニウム、塩化第2鉄、ポリ硫酸第
2鉄(ポリ鉄)の何れかの凝集剤を添加しフロック(リ
ンと凝集剤とのSS)を形成させた後、沈降分離して該
フロック除去、すなわちリン、SSを凝集除去するもの
である。しかし、凝集沈殿法は以下のような大きな欠点
があった。すなわち、沈澱性の悪い難脱水性汚泥が多量
に発生し汚泥処理が著しく困難になることに加え、リン
を資源として回収できないということである。また、ア
ンスラサイトなどの粒状ろ材ろ過層に原水を流入させな
がら前記凝集沈殿法で用いるような凝集剤を注入しフロ
ックを形成させ、フロックをろ過する凝集ろ過法も知ら
れているが、バルキーなフロックが多量にろ過層内に生
成するため、ろ過層の目詰まりが短時間に起きてしまい
実用的でなかった。凝集ろ過法においてもやはり沈澱性
の悪い難脱水性汚泥が多量に発生することに加え、リン
を資源として回収できないという欠点がある。2. Description of the Related Art A typical conventional phosphorus removal method is a coagulation sedimentation method. In this method, floc (SS between phosphorus and coagulant) is added to biologically treated water of wastewater by adding flocculant of any of aluminum sulfate, polyaluminum chloride, ferric chloride, and ferric polysulfate (polyiron). After the formation of the above, the flocs are removed by sedimentation, that is, phosphorus and SS are aggregated and removed. However, the coagulation-sedimentation method has the following major drawbacks. That is, a large amount of non-dewatering sludge with poor sedimentation is generated, making sludge treatment extremely difficult, and phosphorus cannot be recovered as a resource. Further, a flocculation filtration method is also known in which floc is formed by injecting a flocculant such as used in the flocculation-precipitation method while injecting raw water into a granular filter medium filtration layer such as anthracite, and flocs are filtered, which is bulky. Since a large amount of flocs are generated in the filtration layer, clogging of the filtration layer occurs in a short time, which is not practical. The coagulation filtration method also has a drawback that a large amount of non-dewatering sludge with poor sedimentation is generated and phosphorus cannot be recovered as a resource.
【0003】また、有機性汚水を生物処理したあとの処
理水からリンを除去する方法として、活性アルミナの充
填層にリンを含有する処理水を通過させる方法も知られ
ているが、活性アルミナのリン飽和吸着量が小さいため
頻繁な再生が必要であり維持管理が面倒であるばかり
か、活性アルミナが高価であるためランニングコストも
高かった。また、リン鉱石粒状物の充填層に、消石灰を
注入した原水を通過させる晶析脱リン法は、前処理とし
て脱炭酸が必要であり、リン鉱石の肥大に伴う交換作業
など維持管理が煩雑なため実用的な方法でなかった。As a method of removing phosphorus from the treated water after biological treatment of organic wastewater, a method of passing treated water containing phosphorus through a packed bed of activated alumina is known. Since the saturated adsorption amount of phosphorus is small, frequent regeneration is necessary and maintenance is troublesome, and the running cost is high because activated alumina is expensive. In addition, the crystallization dephosphorization method in which raw water infused with slaked lime is passed through a packed bed of phosphate rock granules requires decarboxylation as a pretreatment, and maintenance work such as replacement work accompanying the expansion of phosphate rock is complicated. So it was not a practical method.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、難濃
縮脱水性の汚泥が全く発生しない新規リン除去方法であ
ると共に、回収されたリンが資源として回収できる高度
処理方法を提供することである。また、本発明の目的
は、リン除去とリン除去剤のろ過が同一装置内で高除去
率で行なえる高度処理方法を提供することである。更に
また、本発明の目的は、処理装置の維持管理が容易であ
り、ランニングコストが安価であり、装置がコンパクト
である有機性汚水の高度処理方法を提供することであ
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a novel phosphorus removal method in which hardly concentrated and dehydratable sludge is generated, and an advanced treatment method in which recovered phosphorus can be recovered as a resource. is there. Another object of the present invention is to provide an advanced treatment method capable of performing removal of phosphorus and filtration of the phosphorus removing agent in the same device at a high removal rate. Furthermore, an object of the present invention is to provide an advanced method for treating organic wastewater, in which maintenance and management of the treatment equipment is easy, running cost is low, and the equipment is compact.
【0005】[0005]
【課題を解決するための手段】前記の課題を解決するた
め鋭意研究した結果、次の知見を得て本発明に到達し
た。即ち、水酸化アルミニウム又は水酸化鉄の微粒子
を、有機性汚水の生物処理水(本発明の生物処理水と
は、活性汚泥や生物膜など由来のSS分を膜分離、遠心
濃縮あるいは沈澱などの手段によって除去したものをい
う。)に添加した後、粒状ろ材ろ過層に供給すると生物
処理水中のリンを高速度で除去でき、長時間のろ過が可
能で、難脱水性の汚泥が発生せず、かつリンの回収資源
化ができることを見出した。なお、本発明で言う水酸化
鉄、水酸化アルミニウムはそれぞれ酸化鉄(Fe2 O3
・nH2 O)、酸化アルミニウム(Al2 O3 ・nH2
O)も含む意味で用いている。この知見に基づいて本発
明の課題は次のように達成できる。すなわち、有機性汚
水の生物処理水に水酸化鉄微粒子もしくは水酸化アルミ
ニウム微粒子を添加して粒状ろ材ろ過層を通過させてリ
ンを除去し、前記ろ過層の洗浄排水にNaOHを添加し
て洗浄排水中のSSからリンを溶出させた後、固液分離
し、リン不溶化剤を分離水に添加してリンを固形物とし
て回収する一方、リンが溶出したSSをろ過層への流入
水に返送し再度リン吸収に利用することを特徴とする有
機性汚水の高度処理方法である。Means for Solving the Problems As a result of intensive research to solve the above problems, the present invention has been achieved by obtaining the following findings. That is, fine particles of aluminum hydroxide or iron hydroxide are treated as biologically treated water of organic wastewater (the biologically treated water of the present invention means that SS components derived from activated sludge and biological membranes are subjected to membrane separation, centrifugal concentration, precipitation, etc. After being added to the granular filter medium filtration layer, phosphorus in the biologically treated water can be removed at a high speed, long-term filtration is possible, and non-dehydrating sludge is not generated. Moreover, it was found that phosphorus can be recovered as a resource. In the present invention, iron hydroxide and aluminum hydroxide are iron oxides (Fe 2 O 3
・ NH 2 O), aluminum oxide (Al 2 O 3・ nH 2
It is also used to include O). Based on this finding, the object of the present invention can be achieved as follows. That is, iron hydroxide fine particles or aluminum hydroxide fine particles are added to biologically treated water of organic sewage to pass through a granular filter medium filter layer to remove phosphorus, and NaOH is added to the cleaning drainage of the filter layer to wash the drainage. After the phosphorus was eluted from the SS inside, solid-liquid separation was performed, and the phosphorus insolubilizing agent was added to the separated water to recover phosphorus as a solid matter, while the SS in which phosphorus was eluted was returned to the inflow water to the filtration layer. It is a high-level treatment method for organic wastewater, which is characterized by reused for phosphorus absorption.
【0006】本発明において、有機性汚水とは、家庭か
らの下水、し尿や工場廃水などの有機性物質を含有して
いる汚水を対象としている。なお、本発明においては対
象とする有機性汚水を生物処理した後の、好ましくはさ
らにSSを除去した後の処理水を対象とするものであ
る。In the present invention, the term "organic wastewater" refers to wastewater containing organic substances such as domestic sewage, human waste and industrial wastewater. In the present invention, treated water after biological treatment of the target organic wastewater, preferably after further removal of SS, is targeted.
【0007】本発明に使用するリン吸着力の大きな水酸
化鉄及び水酸化アルミニウムの微粒子は、例えば次のよ
うにして作ることが出来る。すなわち、鉄塩又はアルミ
ニウム塩の酸性水溶液にNaOH以外のアルカリ性のM
g塩又はCa塩を添加してpH5〜7に中和すれば反応
がゆっくりと進行して、沈降性、ろ過性、濃縮性、脱水
性の良い緻密でリン吸着力の大きな水酸化鉄及び水酸化
アルミニウムの微粒子が得られる。本発明に於て、リン
吸着性、ろ過性、濃縮性、脱水性の良い水酸化鉄又は水
酸化アルミニウムの微粒子を作る手段として最も好まし
い例は、鉄又はアルミニウムの硫酸塩を水酸化マグネシ
ウム、炭酸カルシウム、石灰等のカセイソーダ以外のア
ルカリ性塩で中和する方法である。この方法によって作
られる水酸化鉄、水酸化アルミニウムはSVI値が30
位以下の緻密な粒子であるのに対し、従来の凝集沈澱
法、凝集ろ過法で生成されるフロックのSVI値は通常
200以上のバルキーな粒子となってしまう。ここでS
VI値(Sludge Volume Index )とは、スラリーの沈降
濃縮性の評価の尺度で、メスシリンダー中にスラリーを
満たし、30分間静置後に1gの固形物が占める汚泥の
容積をミリリットル単位で示した値によって指標され
る。The iron hydroxide and aluminum hydroxide fine particles having a large phosphorus adsorption force used in the present invention can be produced, for example, as follows. That is, alkaline M other than NaOH is added to an acidic aqueous solution of iron salt or aluminum salt.
If g salt or Ca salt is added to neutralize to pH 5 to 7, the reaction will proceed slowly, and iron hydroxide and water with good sedimentation, filterability, concentration, dehydration and high phosphorus adsorption will be obtained. Fine particles of aluminum oxide are obtained. In the present invention, the most preferable example of the means for producing fine particles of iron hydroxide or aluminum hydroxide having good phosphorus adsorption, filterability, concentration, and dehydration is iron or aluminum sulfate with magnesium hydroxide or carbonate. This is a method of neutralizing with an alkaline salt other than caustic soda, such as calcium or lime. Iron hydroxide and aluminum hydroxide produced by this method have an SVI value of 30.
While the fine particles are not more than the order of magnitude, the SVI value of the flocs produced by the conventional coagulation-sedimentation method and coagulation filtration method is usually 200 or more and bulky particles. Where S
The VI value (Sludge Volume Index) is a scale for evaluating the sedimentation concentration of the slurry, and is a value indicating the volume of sludge occupied by 1 g of solid matter after the slurry is filled in a graduated cylinder and allowed to stand for 30 minutes in milliliters. Indexed by.
【0008】本発明では、生物処理水に前記したような
SVI値が30位以下の緻密な水酸化鉄、水酸化アルミ
ニウムの微粒子を添加してろ過することに特徴がある。
水酸化鉄及び水酸化アルミニウム微粒子の添加量は、リ
ン1mg当たり、5〜20mg程度、好ましくは8〜1
5mgである。この範囲より少ないとリンを十分吸着す
ることができず、また、この範囲より多いと沈澱物が必
要以上に多くなる。 本発明に用いる水酸化鉄、水酸化
アルミニウム微粒子は、濃縮脱水性が良い他に次のよう
な利点がある。 リン吸着速度が活性アルミナなどの粒状吸着剤(粒径
2〜4mm程度)をカラムに充填する方式に比べて著し
く大きい。 粒子が緻密なので、ろ過層のSS捕捉容量が大きい。
従ってろ過持続時間を長くできる。 これに対し、従来の凝集沈澱法、凝集ろ過法では、原水
(例えば下水の活性汚泥処理水)に対して凝集剤を添加
し攪拌することにより、急激に原水の水酸イオン、リン
酸イオンとの反応が進み、水酸化鉄、リン酸鉄もしくは
水酸化アルミニウム、リン酸アルミニウムのバルキーフ
ロックが生成してしまい濃縮脱水性が悪い汚泥が多量に
発生してしまう。The present invention is characterized by adding fine iron hydroxide and aluminum hydroxide fine particles having an SVI value of 30 or less as described above to biologically treated water and filtering.
The addition amount of iron hydroxide and aluminum hydroxide fine particles is about 5 to 20 mg, preferably 8 to 1 per 1 mg of phosphorus.
It is 5 mg. If it is less than this range, phosphorus cannot be sufficiently adsorbed, and if it is more than this range, the amount of precipitates becomes unnecessarily large. The iron hydroxide and aluminum hydroxide fine particles used in the present invention have the following advantages in addition to good concentration and dehydration properties. The phosphorus adsorption rate is significantly higher than that of a system in which a column is packed with a granular adsorbent such as activated alumina (particle size is about 2 to 4 mm). Since the particles are dense, the SS trapping capacity of the filtration layer is large.
Therefore, the filtration duration can be lengthened. On the other hand, in the conventional coagulation sedimentation method and coagulation filtration method, a flocculant is rapidly added to raw water (for example, activated sludge treated water of sewage) by adding a coagulant and stirring. The reaction proceeds, and bulky flocs of iron hydroxide, iron phosphate or aluminum hydroxide, and aluminum phosphate are generated, and a large amount of sludge having poor concentration / dehydration property is generated.
【0009】本発明において、原水中のSSをさらに減
少させる場合には、2段にSS分離手段、例えばろ過層
を設けてもよい。この時、第1次ろ過層と第2次ろ過層
は装置として分離したものであっても、同一装置内に組
込まれていても良いが、全体として装置がコンパクトで
あることが好ましく、その意味ではろ過層は同一装置内
に組込まれていることが好ましい。この時、有機性汚水
の生物処理水をろ過する第1次ろ過、および第1次ろ過
水にリン除去剤を添加した後に行う第2次ろ過は共に、
被処理水をろ過層の下部から導入し、上向流でろ過を行
うのが好ましい。上向流で行うと、ろ過層の洗浄のとき
ろ材に付着したSSなどの固形物を洗浄し易くなる。さ
らにこの時、生物処理水の第1次ろ過層と、リン除去を
行う第2次ろ過層は同一槽内の上下に配置するのが設置
面積が少なくでき、合理的である。In the present invention, when the SS in the raw water is further reduced, SS separation means such as a filtration layer may be provided in two stages. At this time, the primary filtration layer and the secondary filtration layer may be separate devices or may be incorporated in the same device, but it is preferable that the device is compact as a whole. Then, it is preferable that the filtration layer is incorporated in the same device. At this time, the primary filtration for filtering the biologically treated water of the organic wastewater and the secondary filtration performed after adding the phosphorus removing agent to the primary filtered water are both
It is preferable to introduce the water to be treated from the lower part of the filtration layer and perform the filtration in an upward flow. When the upward flow is used, it becomes easy to wash solid substances such as SS attached to the filter medium when washing the filter layer. Further, at this time, it is rational that the primary filtration layer of the biologically treated water and the secondary filtration layer for removing phosphorus are arranged in the upper and lower parts in the same tank because the installation area can be reduced.
【0010】[0010]
【作用】本発明は、リンを含む有機性汚水を処理するに
あたり、前記のような構成であるため、以下のような作
用を生じる。 (i) 先ず生物処理し、生物処理では除去されなかったリ
ンを、流出活性汚泥や剥離生物膜由来のSSを含む生物
処理水と共にろ過し(第1次ろ過)、先ずSSを数pp
m以下に除去した後にリン除去剤を用いてリンが吸着除
去される。(原水中のSSはリン除去時にはほとんど存
在しない。) (ii)リン除去剤としてSVI値が30位以下の水酸化鉄
及び水酸化アルミニウム微粒子を使用ため、バルキーな
SSが発生せず、従って吸着処理水からろ過(第2次ろ
過)によってSSを除去したとき、ろ過層のSS捕捉容
量が大きく、ろ過持続時間が長くできる。 (iii) リンを吸着した、第2次ろ過のSSから、アルカ
リ剤添加によりリンを脱着させ、リン除去剤を再生使用
すると共に、リン脱着液からリンが回収できる。さらに
再生されたリン除去剤は第1次ろ過層によるろ過水中に
添加されリサイクルして使用することができる。The present invention has the above-described structure when treating the organic wastewater containing phosphorus, and therefore has the following effects. (i) First, biological treatment was performed, and phosphorus that was not removed by biological treatment was filtered together with biologically treated water containing SS derived from effluent activated sludge and exfoliated biofilm (primary filtration), and SS was first adjusted to several pp.
After removal to m or less, phosphorus is adsorbed and removed using a phosphorus removing agent. (SS in raw water hardly exists at the time of removing phosphorus.) (Ii) Since iron hydroxide and aluminum hydroxide fine particles having an SVI value of 30 or less are used as a phosphorus removing agent, bulky SS does not occur and therefore adsorption When SS is removed from the treated water by filtration (secondary filtration), the SS trapping capacity of the filtration layer is large and the filtration duration can be extended. (iii) Phosphorus can be desorbed from the SS of the secondary filtration having adsorbed phosphorus by addition of an alkaline agent, the phosphorus removing agent can be regenerated and reused, and the phosphorus can be recovered from the phosphorus desorption solution. Furthermore, the regenerated phosphorus removing agent can be added to the filtered water of the primary filtration layer and recycled for use.
【0011】さらに本発明の作用を、より具体的に実施
態様と共に図1に基づいて以下に説明する。下水の活性
汚泥処理などの生物処理工程を経た、流出活性汚泥や剥
離生物膜由来のSSやリンを含んでいる処理水(原水)
1をろ過装置2に流入させ、ろ過層BにおいてSSを除
去する。その後、緻密な水酸化鉄、もしくは水酸化アル
ミニウムの微粒子4(ポリ鉄または硫酸アルミを水酸化
マグネシウムで中和したリン除去剤)を注入管17から
注入し、微粒子4を注入した処理水を上向流でろ過層A
を通過させ、その過程でリンを高速度で吸着除去し、清
澄な高度処理水3を得る。The operation of the present invention will be described more specifically below with reference to the embodiment with reference to FIG. Treated water (raw water) containing SS and phosphorus derived from effluent activated sludge and exfoliated biofilm that has undergone a biological treatment process such as sewage activated sludge treatment
1 is flowed into the filtration device 2 to remove SS in the filtration layer B. After that, fine iron hydroxide or aluminum hydroxide fine particles 4 (a phosphorus removing agent obtained by neutralizing polyiron or aluminum sulfate with magnesium hydroxide) is injected through an injection pipe 17, and the treated water in which the fine particles 4 are injected is treated as above. Countercurrent filtration layer A
Through which the phosphorus is adsorbed and removed at a high speed in the process to obtain clear highly treated water 3.
【0012】ろ過層Bおよびろ過層Aのろ材には、粒状
のウレタンフォームスポンジ、球状の発泡ポリスチレン
を適用するとSS捕捉容量が多く、好適である。その他
のろ過材としては、ポリプロピレン、アンスラサイト、
活性炭などが挙げられる。処理を続けるにしたがって、
ろ過層AのSS捕捉量が限界に達し、ろ過抵抗が限界値
になるのでこの時点でろ過層Aの洗浄を行なう。ろ過層
Aの洗浄は原水1を止め、ろ過層の下から空気を送り込
みながらバルブ6を開け、排水するこによって効果的に
行われる。ろ過層Bの洗浄はろ過層Aの洗浄が終わった
後、空気洗浄を行いながら弁15をあけて、排水管16
からドレーンすればよい。If a granular urethane foam sponge or spherical expanded polystyrene is applied to the filter material of the filtration layers B and A, it has a large SS trapping capacity and is suitable. Other filter materials include polypropylene, anthracite,
Activated carbon etc. are mentioned. As the process continues,
Since the SS trapping amount of the filtration layer A reaches the limit and the filtration resistance reaches the limit value, the filtration layer A is washed at this point. The washing of the filtration layer A is effectively performed by stopping the raw water 1, opening the valve 6 while feeding air from under the filtration layer, and draining the water. The washing of the filtration layer B is performed after the washing of the filtration layer A is finished, and the valve 15 is opened while performing the air washing to remove the drain pipe 16
Just drain from.
【0013】この結果、洗浄排水貯槽7にはリンを吸着
した水酸化鉄微粒子もしくは水酸化アルミニウム微粒子
のリン除去剤を高濃度に含んだろ過層Aの洗浄排水が流
入する。この貯槽にNaOH水溶液8を添加し攪拌して
pH11以上に調整するとリン除去剤からリンが溶出す
る。その後、攪拌を止め静置し、リン除去剤を次の洗浄
までの間の時間を利用して通常3〜4時間沈澱させる。
リンの溶出の効率性をあげるため、pHを11〜13と
するのが好ましい。その後、攪拌を止め静置しリン除去
剤を次の洗浄までの間(通常12〜24時間)沈殿させ
る。沈殿汚泥9は、リン吸着能力が再生されている(リ
ン溶出SSとよぶ)のでリン除去剤(リン吸着性微粒子
など)4として前段の生物処理槽に返送されリン除去に
再利用される。上澄み液10は高濃度のリンを含んでい
るのでリン不溶化剤11(Ca又はMgイオン)を添加
し攪拌することにより、リンがリン酸カルシウム、ヒド
ロキシアパタイトまたはリン酸マグネシウム、リン酸マ
グネシウムアンモニウムの沈殿として生成される。この
沈澱物は沈殿槽12において沈降分離されリン酸カルシ
ウムやリン酸マグネシウム等の不溶性リン化合物として
リン資源13が回収される。上澄み液14は前段の生物
処理槽に返送される。以上の方法によって、有機性汚水
の生物処理水からSS,リンを一挙にしかも高度に除去
することが可能になる。更に本発明の方法では、発生す
る汚泥は脱水性がよく処理し易く、更に再利用できるの
で不要な汚泥が一切発生しない。As a result, the cleaning drainage of the filtration layer A containing a high concentration phosphorus removal agent for iron hydroxide fine particles or aluminum hydroxide fine particles adsorbing phosphorus flows into the cleaning drainage storage tank 7. When the aqueous NaOH solution 8 is added to this storage tank and stirred to adjust the pH to 11 or more, phosphorus is eluted from the phosphorus removing agent. After that, the stirring is stopped and the mixture is left to stand, and the phosphorus removing agent is usually precipitated for 3 to 4 hours by utilizing the time until the next washing.
The pH is preferably set to 11 to 13 in order to improve the efficiency of phosphorus elution. Then, the stirring is stopped and the mixture is left to stand to precipitate the phosphorus removing agent until the next washing (usually 12 to 24 hours). The settled sludge 9 has its phosphorus adsorption capacity regenerated (called phosphorus-eluting SS), and thus is returned to the biological treatment tank at the previous stage as a phosphorus removing agent (such as phosphorus-adsorbing fine particles) 4 and reused for phosphorus removal. Since the supernatant 10 contains a high concentration of phosphorus, phosphorus is produced as a precipitate of calcium phosphate, hydroxyapatite or magnesium phosphate, magnesium ammonium phosphate by adding and stirring the phosphorus insolubilizing agent 11 (Ca or Mg ion). To be done. This precipitate is separated by settling in a settling tank 12, and a phosphorus resource 13 is recovered as an insoluble phosphorus compound such as calcium phosphate or magnesium phosphate. The supernatant liquid 14 is returned to the biological treatment tank at the previous stage. By the above method, it becomes possible to remove SS and phosphorus from the biologically treated water of organic wastewater all at once and to a high degree. Further, according to the method of the present invention, the generated sludge has good dewatering property, is easy to treat, and can be reused, so that unnecessary sludge is not generated at all.
【0014】[0014]
【実施例】以下に図1のフローチャートにしたがって行
なった具体的な実施例を示す。 実施例1 下水の活性汚泥処理水(処理水中にSS21mg/リッ
トル、P2.5mg/リットルを含む。)をポリウレタ
ンフォーム角状粒状物(粒径5×10×10mm)を充
填したろ過層B(層厚1m)にろ過速度200m/dで
供給した。ろ過層Bからの流出水のSSは2mg/リッ
トルであった。Fe含有率10%のポリ硫酸第2鉄(ポ
リ鉄)を水で10倍希釈し、これに水酸化マグネシウム
を添加しpH5.5に中和したところ、SVI15の緻
密な水酸化鉄微粒子を含むスラリを得た。このスラリを
ろ過層Bの流出水に固形物として25mg/リットル添
加しつつ、粒径2mmの発泡ポリスチロールを充填した
ろ過層A(層厚1m)にろ過速度200m/dで通過さ
せた。この結果、処理水の水質はSS1.0mg/リッ
トル、P0.09mg/リットルと良好な結果が得られ
た。ろ過持続時間は40〜42時間であり、長時間ろ過
可能であった。ろ過層Aの洗浄排水にNaOHを添加し
pH11に調整し30分攪拌し、水酸化鉄からリンを溶
出させた後、3時間静置して水酸化鉄SSを沈澱させ
た。この沈澱SSに硫酸を添加し、pH6に調整しこれ
をリン除去剤4として再利用した。一方上澄みに対しリ
ン不溶化剤として塩化カルシウムを1200mg/リッ
トル添加して攪拌槽で30分攪拌した結果ヒドロキシア
パタイトの沈殿が生成した。これを沈降槽で沈降分離し
リンを資源として回収した。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete embodiment performed according to the flowchart of FIG. 1 will be described below. Example 1 Filtration layer B (layer containing sewage activated sludge treated water (containing 21 mg / liter of SS and 2.5 mg / liter of P in treated water) filled with polyurethane foam horny particles (particle size 5 × 10 × 10 mm) It was supplied at a filtration speed of 200 m / d. SS of outflow water from the filtration layer B was 2 mg / liter. When ferric polysulfate (polyiron) having an Fe content of 10% was diluted 10 times with water and magnesium hydroxide was added thereto to neutralize it to pH 5.5, it contained dense iron hydroxide fine particles of SVI15. Got a slurry. While adding 25 mg / liter of this slurry to the outflow water of the filtration layer B as a solid, it was passed through the filtration layer A (layer thickness 1 m) filled with expanded polystyrene having a particle diameter of 2 mm at a filtration speed of 200 m / d. As a result, the water quality of the treated water was SS 1.0 mg / liter, and P 0.09 mg / liter, which were favorable results. The filtration duration was 40 to 42 hours, and filtration was possible for a long time. NaOH was added to the washing wastewater of the filtration layer A to adjust the pH to 11, and the mixture was stirred for 30 minutes, phosphorus was eluted from the iron hydroxide, and then allowed to stand for 3 hours to precipitate the iron hydroxide SS. Sulfuric acid was added to this precipitated SS to adjust the pH to 6, and this was reused as phosphorus removing agent 4. On the other hand, 1200 mg / liter of calcium chloride as a phosphorus insolubilizing agent was added to the supernatant, and the mixture was stirred for 30 minutes in a stirring tank. As a result, a hydroxyapatite precipitate was formed. This was settled and separated in a settling tank and phosphorus was recovered as a resource.
【0015】実施例2 硫酸アルミニウム水溶液(Al含有率4%)に水酸化マ
グネシウムを添加してpH6に中和したところSVI1
8の緻密な水酸化アルミニウム微粒子を含むスラリが得
られた。これを実験例1と同じ原水に30mg/リット
ル添加しながらろ過した。ろ過層構成、ろ過速度などの
実験条件は実験例1と同じである。この結果処理水水質
はSS1.8mg/リットル、P0.14mg/リット
ルと高度な水質であった。ろ過層Bの洗浄排水にNaO
Hを添加しpH11に調整した後、SSを沈澱させ、上
澄みに塩化マグネシウム、塩化アンモニウムを添加しp
H10に調整した結果、肥料価値の高いリン酸マグネシ
ウムアンモニウムの結晶性沈澱が生成した。Example 2 Magnesium hydroxide was added to an aqueous solution of aluminum sulfate (Al content 4%) to neutralize it to pH 6, and SVI1
A slurry containing 8 fine aluminum hydroxide particles was obtained. This was filtered while adding 30 mg / liter to the same raw water as in Experimental Example 1. The experimental conditions such as the configuration of the filtration layer and the filtration rate are the same as in Experimental Example 1. As a result, the treated water quality was SS 1.8 mg / liter and P 0.14 mg / liter, which were high quality. NaO for cleaning drainage of filter layer B
After adding H to adjust the pH to 11, SS was precipitated, and magnesium chloride and ammonium chloride were added to the supernatant, and p was added.
As a result of adjusting to H10, a crystalline precipitate of magnesium ammonium phosphate having a high fertilizer value was generated.
【0016】比較例(凝集ろ過法) 実験例1と同じろ過層B流出水に対しポリ鉄を150m
g/リットル添加して実験例1と同じろ過層Aにろ過速
度200m/dで通水した結果、処理水水質は実験例
1、2と同等であったがろ過持続時間が5〜6時間しか
得られなかった。この原因は原水にポリ鉄をリン除去に
必要な注入率を添加すると、バルキーなフロックが多量
に生成し、これが短時間にろ過層を閉塞させるためであ
ることが認められた。洗浄排水のSSの脱水性は悪くカ
チオンポリマを固形物当たり2%添加してベルトプレス
脱水機で脱水したが脱水ケーキの水分は86%と高いも
のであった。Comparative Example (Coagulation Filtration Method) Polyiron (150 m) was added to the same outflow water as in the first filtration layer B.
After adding g / l and passing water through the same filtration layer A as in Experimental Example 1 at a filtration rate of 200 m / d, the treated water quality was the same as in Experimental Examples 1 and 2, but the filtration duration was only 5 to 6 hours. I couldn't get it. It was confirmed that the cause was that when polyiron was added to the raw water at an injection rate necessary for phosphorus removal, a large amount of bulky flocs were generated, which blocked the filtration layer in a short time. The SS of the cleaning wastewater had a poor dewatering property, and 2% of the cationic polymer was added to the solid matter for dewatering with a belt press dewatering machine, but the water content of the dewatering cake was as high as 86%.
【0017】[0017]
【発明の効果】本発明は、ろ過性、沈降濃縮性及び脱水
性の良い水酸化鉄又は水酸化アルミニウムの微粒子を用
いることにより、有機性汚水の生物処理水中のリンを高
速度かつ常に高度に除去でき、更に、汚水中のリンを単
に除去するだけでなく資源として回収できる。更に本発
明は、水酸化鉄又は水酸化アルミニウムの微粒子が緻密
な微粒子であるため難脱水性の汚泥が全く発生しないの
で、汚泥処理が著しく容易である。バルキーなフロック
が発生しないのでろ過層の閉塞が少なくろ過持続時間が
長く、また、洗浄排水中のリンを吸着した水酸化鉄、も
しくは水酸化アルミニウムからリンを溶出させた後、生
物処理工程に返送することによってリンの除去に再利用
できる。更に本発明は、処理装置の維持管理が容易であ
り、ランニングコストが安価であり、装置がコンパクト
とすることができる。INDUSTRIAL APPLICABILITY According to the present invention, by using fine particles of iron hydroxide or aluminum hydroxide having good filterability, sedimentation-concentration property, and dehydration property, phosphorus in biologically treated water of organic wastewater can be treated at high speed and always at a high level. Not only can phosphorus be removed, but phosphorus in wastewater can be recovered as a resource. Further, according to the present invention, since the fine particles of iron hydroxide or aluminum hydroxide are dense fine particles, sludge that is hardly dehydrated is not generated at all, and thus sludge treatment is extremely easy. Since bulky flocs do not occur, the filtration layer is not clogged and the filtration duration is long, and after phosphorus is eluted from iron hydroxide or aluminum hydroxide that has adsorbed phosphorus in the cleaning wastewater, it is returned to the biological treatment process. It can be reused for phosphorus removal. Further, according to the present invention, the maintenance of the processing apparatus is easy, the running cost is low, and the apparatus can be made compact.
【図1】本発明の一実施態様である処理のフローチャー
トである。FIG. 1 is a flowchart of a process that is an embodiment of the present invention.
1 原水(生物処理) 2 ろ過装置 3 高度処理水 4 リン除去剤 5 洗浄排水 6 バルブ 7 洗浄排水貯槽 8 NaOH水溶液 9 沈殿汚泥(リン溶出SS) 10 上澄み 11 リン不溶剤 12 沈澱槽 13 回収リン 14 上澄み 15 弁 16 排水管 17 注入管 A ろ過層 B ろ過層 1 Raw water (biological treatment) 2 Filtration device 3 Highly-treated water 4 Phosphorus remover 5 Wash drainage 6 Valve 7 Wash drainage storage tank 8 NaOH aqueous solution 9 Precipitated sludge (phosphorus elution SS) 10 Supernatant 11 Phosphorus non-solvent 12 Precipitation tank 13 Recovered phosphorus 14 Supernatant 15 Valve 16 Drainage pipe 17 Injection pipe A Filtration layer B Filtration layer
Claims (1)
子もしくは水酸化アルミニウム微粒子を添加して粒状ろ
材ろ過層を通過させてリンを除去し、前記ろ過層の洗浄
排水にNaOHを添加して洗浄排水中のSSからリンを
溶出させた後、固液分離し、リン不溶化剤を分離水に添
加してリンを固形物として回収する一方、リンが溶出し
たSSをろ過層への流入水に返送し再度リン吸収に利用
することを特徴とする有機性汚水の高度処理方法。1. Iron hydroxide fine particles or aluminum hydroxide fine particles are added to biologically treated water of organic wastewater to pass through a granular filter medium filter layer to remove phosphorus, and NaOH is added to washing wastewater of the filter layer. After the phosphorus is eluted from the SS in the washing wastewater, solid-liquid separation is performed, and the phosphorus insolubilizer is added to the separated water to recover the phosphorus as a solid matter, while the SS in which the phosphorus is eluted flows into the filtration layer. An advanced method for treating organic wastewater, which comprises returning the wastewater to the factory and reusing it for phosphorus absorption.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22739494A JP3516311B2 (en) | 1994-08-30 | 1994-08-30 | Advanced treatment method and apparatus for organic wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22739494A JP3516311B2 (en) | 1994-08-30 | 1994-08-30 | Advanced treatment method and apparatus for organic wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0866689A true JPH0866689A (en) | 1996-03-12 |
JP3516311B2 JP3516311B2 (en) | 2004-04-05 |
Family
ID=16860141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22739494A Expired - Fee Related JP3516311B2 (en) | 1994-08-30 | 1994-08-30 | Advanced treatment method and apparatus for organic wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3516311B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010757A (en) * | 2014-06-27 | 2016-01-21 | 宇部興産株式会社 | Method for neutralizing acidic water |
CN110508182A (en) * | 2019-09-16 | 2019-11-29 | 奉节县斌旗牲畜饲养有限公司 | A kind of cultivation apparatus with water quality purification function |
CN115072905A (en) * | 2022-07-14 | 2022-09-20 | 国环电池科技(苏州)有限公司 | Treatment method of battery wastewater and method for recycling high-purity iron phosphate from battery wastewater |
CN115385490A (en) * | 2022-09-28 | 2022-11-25 | 王福浩 | Sewage treatment process |
-
1994
- 1994-08-30 JP JP22739494A patent/JP3516311B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010757A (en) * | 2014-06-27 | 2016-01-21 | 宇部興産株式会社 | Method for neutralizing acidic water |
CN110508182A (en) * | 2019-09-16 | 2019-11-29 | 奉节县斌旗牲畜饲养有限公司 | A kind of cultivation apparatus with water quality purification function |
CN115072905A (en) * | 2022-07-14 | 2022-09-20 | 国环电池科技(苏州)有限公司 | Treatment method of battery wastewater and method for recycling high-purity iron phosphate from battery wastewater |
CN115072905B (en) * | 2022-07-14 | 2023-12-19 | 华辰环保能源(广州)有限责任公司 | Treatment method of battery wastewater and method for recycling high-purity ferric phosphate from battery wastewater |
CN115385490A (en) * | 2022-09-28 | 2022-11-25 | 王福浩 | Sewage treatment process |
Also Published As
Publication number | Publication date |
---|---|
JP3516311B2 (en) | 2004-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112028372B (en) | Advanced treatment process for entrained flow coal gasification black water | |
CN105540987A (en) | Water deep purification method | |
JP3767800B2 (en) | Nitrogen-phosphorus-containing wastewater treatment method and apparatus | |
CN103253725A (en) | Method for removing organic matters in reclaimed water by using in situ FeOxHy | |
JP3516311B2 (en) | Advanced treatment method and apparatus for organic wastewater | |
JP2002205077A (en) | Method and apparatus for treating organic sewage | |
JP3373033B2 (en) | How to remove phosphorus from water | |
JP3414511B2 (en) | Advanced treatment method for organic wastewater | |
JP4543481B2 (en) | Method for treating water containing boron and fluorine | |
JP3496773B2 (en) | Advanced treatment method and apparatus for organic wastewater | |
JP3791760B2 (en) | Method and apparatus for removing and recovering phosphorus from water containing SS and phosphorus | |
JP2002086160A (en) | Treatment method of fluorine-containing waste water | |
JPWO2004045740A1 (en) | Purification agent for waste water and sludge water | |
JP3262015B2 (en) | Water treatment method | |
JPS61227840A (en) | Preparation of inorganic adsorbent using sludge of water purifying plant as raw material | |
US9650266B2 (en) | Method of treating suspended solids and heavy metal ions in sewage | |
KR101658502B1 (en) | Organic and inorganic complex adsorbents comprising metal oxide and phosphorus recovery apparatus comprising the same | |
RU2137717C1 (en) | Method of removing copper ions from waste waters | |
JP2003019404A (en) | Arsenic adsorbent and removal treatment method for arsenic using the same | |
JP2001232372A (en) | Treatment process for water containing boron | |
KR101299586B1 (en) | Wastewater disposal apparatus and wastewater disposal method | |
JP2015211941A (en) | Phosphorous recovery system and phosphorous recovery method | |
JPH11207365A (en) | Treatment of selenium-containing waste water | |
JP3420838B2 (en) | Method for treating phosphorus-containing organic wastewater | |
JP2015134328A (en) | Method for removing fluorine compound from fluorine-containing solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040115 |
|
LAPS | Cancellation because of no payment of annual fees |