JPH0864879A - Metal oxide material superconducting junction element and substrate for superconducting element using the same material - Google Patents

Metal oxide material superconducting junction element and substrate for superconducting element using the same material

Info

Publication number
JPH0864879A
JPH0864879A JP6222704A JP22270494A JPH0864879A JP H0864879 A JPH0864879 A JP H0864879A JP 6222704 A JP6222704 A JP 6222704A JP 22270494 A JP22270494 A JP 22270494A JP H0864879 A JPH0864879 A JP H0864879A
Authority
JP
Japan
Prior art keywords
superconducting
metal oxide
oxide material
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6222704A
Other languages
Japanese (ja)
Other versions
JP3258824B2 (en
Inventor
Tamaki Kobayashi
玉樹 小林
Toru Den
透 田
Norio Kaneko
典夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22270494A priority Critical patent/JP3258824B2/en
Publication of JPH0864879A publication Critical patent/JPH0864879A/en
Application granted granted Critical
Publication of JP3258824B2 publication Critical patent/JP3258824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To obtain metal oxide material useful as the composing material of a tunnel barrier layer, a buffer layer, a substrate, etc., of a superconductor mainly having a T' structure by using a metal oxide of CeCuPd containing a specific composition and metal. CONSTITUTION: A metal oxide material used for a superconducting junction element and a substrate for a superconducting element has a composition formula of Ln2a Cea Cu1b Pdb O4-c , 0<=a<=0.2, 0.25<=b<=0.5 and 0<=c<=0.1, and Ln is one or more types of elements or atomic groups selected from an element group consisting of La, Pr, Nd, Sm, Eu and Gd. When this copper oxide material is used for a tunnel barrier layer, a first superconducting layer 2, a barrier layer 3, and a second superconducting layer 4 are sequentially formed on an SrTiO6 board by a magnetron sputtering method. The laminated layer structure of the first superconducting layer 2, the barrier layer 3 and the second superconducting layer 4 formed in this manner forms a laminated Josephson element by lithography technology.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に銅の酸化物超伝導
材料と組み合わせて使用する金属酸化物材料に関し、特
に、超伝導電子素子を作製する際の超伝導素子用基板、
若しくは基板と超伝導体との間のバッファー層、或いは
超伝導体と金属又は超伝導体の間の絶縁層として有用な
金属酸化物材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide material which is mainly used in combination with a copper oxide superconducting material, and more particularly, to a substrate for a superconducting element used for producing a superconducting electronic element,
Alternatively, the present invention relates to a metal oxide material useful as a buffer layer between a substrate and a superconductor or an insulating layer between a superconductor and a metal or a superconductor.

【0002】[0002]

【従来の技術】近年、相次いで発見された銅を含む酸化
物超伝導体は、従来知られていたニオブ系などの超伝導
臨界温度(Tc)を大きく上回るTcを持つ為、多くの
分野で応用研究が進められている。超伝導エレクトロニ
クスの分野においても、その実用化への期待は大きく、
多くの研究報告が既に発表されている。超伝導電子素子
に用いられる超伝導体は、薄膜作製技術により達成され
るのが一般的であるが、素子を形成する為には超伝導体
だけではなく、それと共に用いられるトンネルバリア層
やバッファー層、更には基板等の材料も適切なものでな
ければならない。
2. Description of the Related Art In recent years, copper-containing oxide superconductors, which have been discovered one after another, have a Tc that greatly exceeds the conventionally known superconducting critical temperature (Tc) of niobium and the like. Applied research is underway. In the field of superconducting electronics, there are great expectations for its practical application.
Many research reports have already been published. A superconductor used in a superconducting electronic device is generally achieved by a thin film manufacturing technique. However, in order to form a device, not only a superconductor but also a tunnel barrier layer or a buffer used together with it. The materials of the layers, as well as the substrate, must be suitable.

【0003】これらの材料を選ぶ場合には、超伝導体と
良好な界面を得ることが重大なポイントであるが、その
為には超伝導体の格子定数とそれに接合するトンネルバ
リア層やバッファー層、基板等の格子定数が一致してい
ることが望ましい。又、両者の熱膨張係数も近いことが
望ましい。更には、高温中で成膜する場合や高温中のプ
ロセスを経る場合には、両者の元素が夫々の層中に拡散
することが多いが、この拡散が起こりにくい材料、若し
くは拡散が起こっても素子に影響が少ない材料を選ぶこ
とが必要である。
When selecting these materials, it is an important point to obtain a good interface with the superconductor. For that purpose, the lattice constant of the superconductor and the tunnel barrier layer or the buffer layer that joins to it are important. It is desirable that the lattice constants of the substrate, etc. are the same. Further, it is desirable that the thermal expansion coefficients of both are similar. Furthermore, when a film is formed at a high temperature or when a process is performed at a high temperature, both elements are often diffused into each layer. It is necessary to select a material that has a small effect on the device.

【0004】この様な素子としては、超伝導体YBa2
Cu3yに、これと同じ構造を持つPrBa2Cu3y
をトンネルバリア層材料として組み合わせた酸化物超伝
導層−酸化物層−酸化物超伝導層のSISタイプ素子が
提案されている。又、超伝導体としてLn2-xCexCu
y(Ln=Pr、Nd、Sm、Eu、Gd)等のキャ
リアがnタイプである銅酸化物を利用しようとした場合
には、トンネルバリア層に用いる材料として、半導体で
あるCeを含まないLn2CuO4(Ln=Pr、Nd、
Sm、Eu、Gd)等が候補として挙げられる。
As such an element, a superconductor YBa 2
Cu 3 in O y, PrBa 2 Cu 3 O y having the same structure as this
Has been proposed as an SIS type element of oxide superconducting layer-oxide layer-oxide superconducting layer in which is combined as a tunnel barrier layer material. Also, as a superconductor, Ln 2-x Ce x Cu
When a copper oxide such as O y (Ln = Pr, Nd, Sm, Eu, Gd) whose carrier is n type is used, the material used for the tunnel barrier layer does not include Ce which is a semiconductor. Ln 2 CuO 4 (Ln = Pr, Nd,
Sm, Eu, Gd) and the like are listed as candidates.

【0005】[0005]

【発明が解決しようとしている問題点】しかしながら、
例えば、Nd2-xCexCuOyに対してNd2CuO4
トンネルバリア層に使用した場合、合成温度等の条件が
両者ともほぼ等しいか、或いはNd2CuO4の方が若干
低い為に、超伝導層からはCeイオン等が、或いはトン
ネルバリア層からはNdイオン等が拡散し易いという問
題があった。これは、トンネルバリア層にCeイオンが
拡散した場合にはトンネルバリア層の特性が金属的なも
のとなってしまい、逆に、超伝導層にNdイオンが拡散
した場合には、Ceの相対濃度が低下して超伝導特性を
劣化させる原因となることを意味している。
[Problems to be solved by the invention] However,
For example, the Nd 2 CuO 4 with respect to Nd 2-x Ce x CuO y when used in the tunnel barrier layer, or conditions such as synthesis temperature is substantially equal to both, or Nd 2 CuO to 4/5 is for slightly lower However, there is a problem that Ce ions and the like are easily diffused from the superconducting layer and Nd ions and the like are easily diffused from the tunnel barrier layer. This is because the characteristics of the tunnel barrier layer become metallic when Ce ions diffuse into the tunnel barrier layer, and conversely, when Nd ions diffuse into the superconducting layer, the relative concentration of Ce. Is deteriorated, which causes deterioration of superconducting properties.

【0006】これに対し、Nd2-xCexCuOyに対し
て、より合成温度の高いLa2CuO4をトンネルバリア
層に使用しようとする場合は、両者の格子定数を比較す
ると、a(b)軸長において前者は正方晶、即ちa=b
で、3.96Åであるのに対し、後者は斜方晶であり、
方位を統一する為にa、b軸長の平方根で記述すると、
夫々3.79Å、3.82Åであり、上記のNd2-x
xCuOyに比べて格子定数が4〜5%小さく、エピタ
キシャルに結晶成長させるには内部応力が大きくなり、
その結果結晶に欠陥が入り、素子として機能しなくなっ
てしまうという問題がある。
On the other hand, when La 2 CuO 4 having a higher synthesis temperature is used for the tunnel barrier layer in comparison with Nd 2-x Ce x CuO y , the lattice constants of both are a ( b) In the axial length, the former is tetragonal, that is, a = b
And 3.96Å, while the latter is orthorhombic,
To describe the azimuth in terms of the square root of the a and b axes,
They are 3.79Å and 3.82Å respectively, and the above Nd 2−x C
The lattice constant is 4 to 5% smaller than that of e x CuO y , and the internal stress becomes large for epitaxial crystal growth.
As a result, there is a problem in that the crystal becomes defective and does not function as an element.

【0007】従って、本発明の目的は、超伝導体として
主にT´構造を有するLn2-xCexCuOy(Ln=P
r、Nd、Sm、Eu、Gd)を利用した場合におい
て、トンネルバリア層やバッファー層、或いは基板等の
構成材料として有用な金属酸化物材料を提供すること、
更に、それを用いた超伝導接合素子及び超伝導素子用基
板を提供することにある。
Therefore, an object of the present invention is to use Ln 2-x Ce x CuO y (Ln = P) having a T'structure as a superconductor.
When r, Nd, Sm, Eu, Gd) is used, a metal oxide material useful as a constituent material of a tunnel barrier layer, a buffer layer, a substrate, or the like is provided.
Another object is to provide a superconducting junction element and a superconducting element substrate using the same.

【0008】[0008]

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、組成式がLn
2-aCeaCu1-bPdb4-cと表される金属酸化物材料
において、0≦a≦0.2、0.025≦b≦0.5及
び0≦c≦0.1であり、且つLnがLa、Pr、N
d、Sm、Eu及びGdからなる元素群から選ばれた1
種類以上の元素又は原子団であることを特徴とする金属
酸化物材料、及び該金属酸化物材料を用いた超伝導接合
素子及び超伝導素子用基板である。
The above object can be achieved by the present invention described below. That is, in the present invention, the composition formula is Ln.
In a metal oxide material represented by 2-a Ce a Cu 1-b Pd b O 4-c , 0 ≦ a ≦ 0.2, 0.025 ≦ b ≦ 0.5 and 0 ≦ c ≦ 0.1 And Ln is La, Pr, N
1 selected from the group of elements consisting of d, Sm, Eu and Gd
It is a metal oxide material characterized by being an element or atomic group of more than one kind, and a superconducting junction element and a substrate for a superconducting element using the metal oxide material.

【0009】[0009]

【作用】本発明の金属酸化物材料を構成する元素は、従
来公知の銅酸化物超伝導体であるLn2-xCexCuOy
(Ln=Pr、Nd、Sm、Eu、Gd)を構成してい
る元素とPd元素とからなる。つまり従来と異なる点
は、Cuの一部をPdで部分的に置換している点のみで
あり、組成比を含め従来とほぼ同様である。本発明にお
いては、Cuの一部をPd元素で部分的に置換すること
による効果の一つは、金属酸化物材料の合成温度を上昇
させ、更に超伝導特性を消失させることにある。ここ
で、合成温度の上昇の割合はPd元素の量にもよるが、
例えば、Cuの半分をPd元素で置換することにより合
成温度は100℃程度上昇する。即ち、この様に、本発
明の金属酸化物材料の合成温度を超伝導体よりも高く出
来ることは、超伝導体からトンネルバリア層等へのイオ
ンの拡散若しくは逆の拡散を小さくし、超伝導特性にあ
まり影響を与えないことを意味する。
The elements constituting the metal oxide material of the present invention are Ln 2-x Ce x CuO y which is a conventionally known copper oxide superconductor.
(Ln = Pr, Nd, Sm, Eu, Gd) and the Pd element. In other words, the point different from the conventional one is that a part of Cu is partially replaced with Pd, and the composition ratio is almost the same as the conventional one. In the present invention, one of the effects of substituting a part of Cu with the Pd element is to raise the synthesis temperature of the metal oxide material and further eliminate the superconducting property. Here, the rate of increase in the synthesis temperature depends on the amount of Pd element,
For example, replacing half of Cu with the Pd element raises the synthesis temperature by about 100 ° C. That is, as described above, the fact that the synthesis temperature of the metal oxide material of the present invention can be made higher than that of the superconductor reduces diffusion of ions from the superconductor to the tunnel barrier layer or the like and reduces the superconductivity. This means that the characteristics are not significantly affected.

【0010】又、本発明の金属酸化物材料の格子定数
(a)は、超伝導体であるLn2-x CexCuOy(Ln
=Pr、Nd、Sm、Eu、Gd)と、Cuを除くその
他の元素を組成比を含めほぼ一定にした場合に、Pdの
量により変化し、3.9Å〜3.99Åとなる。この値
は上記超伝導体とほぼ同じ格子定数である為、超伝導体
との界面の整合性がよくなり、素子として非常に有利に
なる。即ち、本発明の金属酸化物材料を、該金属酸化物
材料と格子定数が近似し、且つ拡散の影響が少ないか或
いは無視することが出来る超伝導材料と組み合わせるこ
とにより、良好な接合を有する素子の形成が可能とな
る。
In addition, the lattice constant (a) of the metal oxide material of the present invention is Ln 2-x Ce x CuO y (Ln
= Pr, Nd, Sm, Eu, Gd) and other elements except Cu, including the composition ratio, are substantially constant, and change depending on the amount of Pd to be 3.9Å to 3.99Å. Since this value has almost the same lattice constant as that of the above-mentioned superconductor, the interface matching with the superconductor is improved, which is very advantageous as an element. That is, by combining the metal oxide material of the present invention with a superconducting material having a lattice constant similar to that of the metal oxide material and having little or no influence of diffusion, an element having a good junction can be obtained. Can be formed.

【0011】[0011]

【好ましい実施態様】以下、好ましい実施態様を挙げ
て、本発明を更に詳しく説明する。本発明の金属酸化物
材料は、組成式がLn2-aCeaCu1-bPdb4-cと表
され、組成式中、0≦a≦0.2、0.025≦b≦
0.5及び0≦c≦0.1であり、且つLnがLa、P
r、Nd、Sm、Eu及びGdからなる元素群から選ば
れた1種類以上の元素又は原子団であることを特徴とす
る。即ち、これ以外の組成であると、単一な組成の、即
ち単相な試料を合成することが出来なかったり、或いは
半導体的な特性のものが得られず、本発明の優れた効果
が得られない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below with reference to preferred embodiments. The composition formula of the metal oxide material of the present invention is represented as Ln 2-a Ce a Cu 1-b Pd b O 4-c, and in the composition formula, 0 ≦ a ≦ 0.2, 0.025 ≦ b ≦
0.5 and 0 ≦ c ≦ 0.1, and Ln is La, P
It is characterized by being one or more kinds of elements or atomic groups selected from the group of elements consisting of r, Nd, Sm, Eu and Gd. That is, if it is a composition other than this, it is not possible to synthesize a single composition, that is, a single-phase sample, or it is not possible to obtain a semiconductor-like characteristic, and the excellent effect of the present invention is obtained. I can't.

【0012】本発明の金属酸化物材料は、上記の組成を
有する限り何れのものでもよいが、本発明において好適
な材料は、結晶構造がLn2CuO4(LnはPr、N
d、Sm、Eu、Gdの元素群から選ばれた一種類以上
の元素又は原子団)と同じT´構造を有する金属酸化物
材料である。
The metal oxide material of the present invention may be any material as long as it has the above composition, but a material suitable in the present invention has a crystal structure of Ln 2 CuO 4 (Ln is Pr, N
It is a metal oxide material having the same T ′ structure as one or more elements or atomic groups selected from the group of elements d, Sm, Eu, and Gd.

【0013】上記の様な本発明の銅酸化物材料を作製す
る方法としては、所謂セラミックス材料で一般に使われ
ている様な、原料粉末からの加熱による反応及び焼結法
を、何れも使用することが可能である。この様な方法の
例は、Material Research Bull
etin第8巻777頁(1973年)、Solid
State Communication 第17巻2
7頁(1975年)、Physical Review
Letters 第58巻第9号908頁(1987
年)等に示されており、これらの方法は現在では定性的
には極めて一般的な方法として知られている。
As the method for producing the copper oxide material of the present invention as described above, any reaction and sintering method by heating from raw material powder, which is generally used for so-called ceramic materials, is used. It is possible. An example of such a method is the Material Research Bull
etin Vol.8, p.777 (1973), Solid
State Communication Volume 17 2
Page 7 (1975), Physical Review
Letters Vol. 58, No. 9, p. 908 (1987)
, Etc., and these methods are now qualitatively known as extremely general methods.

【0014】特に本発明の銅酸化物材料をトンネルバリ
ア層やバッファー層に用いる場合には、原料を含むター
ゲットを用いた高周波スパッタリングやマグネトロンス
パッタリング等のスパッタリング法、電子ビーム蒸着、
MBE法、その他の真空蒸着法或いはクラスターイオン
ビーム法や、原料にガスを使うCVD法又はプラズマC
VD法等を使って、基板上、若しくは超伝導薄膜上に本
発明の材料を薄膜状に形成することが出来る。
Particularly when the copper oxide material of the present invention is used for a tunnel barrier layer or a buffer layer, a sputtering method such as high frequency sputtering or magnetron sputtering using a target containing raw materials, electron beam evaporation,
MBE method, other vacuum deposition method or cluster ion beam method, CVD method using gas as a raw material, or plasma C
The material of the present invention can be formed into a thin film on a substrate or a superconducting thin film by using the VD method or the like.

【0015】この様にして得られた本発明の銅酸化物材
料は、液体窒素温度以下では、超伝導転移や金属的振る
舞いを見せず半導体的特性を示す。特に、液体ヘリウム
温度では十分高い電気抵抗率を持つ為、トンネルバリア
層として有効である。又、本発明で使用する原料は全て
安価なものであり、原料コストを低く抑えることが出来
る為、本発明の金属酸化物材料は安価に提供することが
可能である。又、本発明の金属酸化物材料は、空気中に
おいて比較的安定で劣化も少なく、更に原料に重金属等
の毒性の高いものを使用していないので、安全性が高
い。
The thus-obtained copper oxide material of the present invention exhibits semiconductor-like characteristics without showing superconducting transition or metallic behavior below the temperature of liquid nitrogen. In particular, since it has a sufficiently high electric resistivity at the temperature of liquid helium, it is effective as a tunnel barrier layer. In addition, since the raw materials used in the present invention are all inexpensive and the raw material cost can be kept low, the metal oxide material of the present invention can be provided at a low cost. In addition, the metal oxide material of the present invention is relatively stable in air and has little deterioration, and since it does not use a highly toxic material such as a heavy metal as a raw material, it is highly safe.

【0016】[0016]

【実施例】次に実施例を挙げて本発明を更に具体的に説
明する。 実施例1〜実施例10及び比較例1〜比較例4 原料としてLa23、Pr611、Nd23、Sm
23、Eu23、Gd23、Dy23、CeO2 及びC
uOの各酸化物を用い、これらを下記の表1及び表2に
示す組成比に夫々秤量した後、乾式混合した。得られた
混合物を、φ10mm、厚み1mmのペレット状に夫々
加圧成型した後、成型物をアルミナボート上で、100
0〜1350℃の空気中若しくは窒素中、或いは両者の
混合ガス雰囲気中で反応及び燒結させ、本発明の実施例
1〜10及び比較例1〜4の銅酸化物を夫々調製した。
尚、本実施例において使用した雰囲気ガスは、容易に入
手可能であるという理由のみで上記種類のものを使用し
たにすぎず、特に上記ガスである必要はなく、例えば、
酸素、ヘリウム等のガスでも何ら問題はない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. Examples 1 to 10 and Comparative Examples 1 4 La 2 O 3 as raw materials, Pr 6 O 11, Nd 2 O 3, Sm
2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Dy 2 O 3 , CeO 2 and C
uO oxides were used, and these were weighed at the composition ratios shown in Tables 1 and 2 below, and then dry mixed. The obtained mixture was pressure-molded into pellets each having a diameter of 10 mm and a thickness of 1 mm, and the molded product was molded on an alumina boat at 100 mm.
Copper oxides of Examples 1 to 10 and Comparative Examples 1 to 4 of the present invention were prepared by reacting and sintering in air or nitrogen at 0 to 1350 ° C. or in a mixed gas atmosphere of the both.
The atmosphere gas used in this example is only the above-mentioned ones only because it is easily available, and does not need to be the above-mentioned gas.
There is no problem even if a gas such as oxygen or helium is used.

【0017】下記の表1に実施例の組成比を示し、表2
に比較例の組成比を夫々示す。尚、ここで、組成比はE
PMAで測定したので、酸素の量に関しては20%程度
の誤差がある。
Table 1 below shows the composition ratios of the examples, and Table 2
The composition ratios of the comparative examples are shown in each. Here, the composition ratio is E
Since it is measured by PMA, there is an error of about 20% in the amount of oxygen.

【0018】表1 実施例1〜10の金属酸化物材料の
組成
Table 1 Compositions of metal oxide materials of Examples 1 to 10

【0019】表2 比較例1〜4の金属酸化物材料の組
Table 2 Compositions of metal oxide materials of Comparative Examples 1 to 4

【0020】図1に、実施例2で得られた金属酸化物材
料のX線回折パターンを示す。この図から、実施例2の
サンプルは、a=b=3.961Å、c=12.12Å
の格子定数を持った正方晶形の結晶構造を有するること
がわかる。この格子定数の値は、例えば、優れた超伝導
特性を有し、且つ実施例2で得られたサンプルとCu及
びPdを除いたその他の元素の組成比がほぼ一致する銅
酸化物超伝導材料であるNd1.85Ce0.15CuO4-y
比較して、a(b)軸においては0.13%未満、c軸
においては0.10%未満の差異しかない。従って、実
施例2で得られた金属酸化物材料は、この様な超伝導体
との界面の整合性がよく、該超伝導体のトンネルバリア
層やバッファー層、基板として有効であることがわか
る。尚、実施例2の組成比の混合物は、上記超伝導体N
1.85Ce0.15CuO4-yと同一条件で合成したとして
も超伝導特性は示さず、半導体的な振る舞いを示す。こ
のことを明らかにする為に、実施例2で得られた金属酸
化物材料の電気抵抗率の温度依存性のグラフを図2に示
す。
FIG. 1 shows the X-ray diffraction pattern of the metal oxide material obtained in Example 2. From this figure, the sample of Example 2 has a = b = 3.961Å, c = 12.12Å
It has a tetragonal crystal structure with a lattice constant of. The value of this lattice constant is, for example, a copper oxide superconducting material which has excellent superconducting properties and in which the composition ratio of other elements except Cu and Pd is almost the same as the sample obtained in Example 2. Compared with Nd 1.85 Ce 0.15 CuO 4-y , the difference is less than 0.13% on the a (b) axis and less than 0.10% on the c axis. Therefore, it is understood that the metal oxide material obtained in Example 2 has good interface matching with such a superconductor and is effective as a tunnel barrier layer, a buffer layer or a substrate of the superconductor. . The mixture having the composition ratio of Example 2 was the same as the superconductor N
Even when synthesized with d 1.85 Ce 0.15 CuO 4-y under the same conditions, it does not exhibit superconducting properties but exhibits semiconductor-like behavior. In order to clarify this, a graph of temperature dependence of electric resistivity of the metal oxide material obtained in Example 2 is shown in FIG.

【0021】又、実施例2で得られた金属酸化物材料
は、融点に対応する分解温度も超伝導体Nd1.85Ce
0.15CuO4-yに比べて高く、Nd1.85Ce0.15CuO
4-yが分解を始める温度においても結晶構造を保ってい
ることが、合成温度を変化させることによりX線回折パ
ターンから確認された。このことは、本発明の銅酸化物
材料をトンネルバリア層として使用した場合に、上記し
た様な超伝導体からのイオンの拡散若しくは逆の拡散を
小さくすることが出来、超伝導特性にあまり影響を与え
ない点で有利であることを示している。
The metal oxide material obtained in Example 2 also has a decomposition temperature corresponding to the melting point of the superconductor Nd 1.85 Ce.
Higher than 0.15 CuO 4-y , Nd 1.85 Ce 0.15 CuO
It was confirmed from the X-ray diffraction pattern that the crystal structure was maintained even at the temperature at which 4-y started to decompose by changing the synthesis temperature. This means that when the copper oxide material of the present invention is used as a tunnel barrier layer, it is possible to reduce the diffusion of ions or the reverse diffusion from the superconductor as described above, and the superconducting properties are not so affected. It is shown that there is an advantage in not giving

【0022】実施例2以外の他の実施例の銅酸化物材料
も、同様の結晶構造及び同様の電気抵抗率を示すことが
確認された。ここで、PdはCuと結晶学的に等しい場
所に、ある存在確率で占めているが、Pdの量が増加す
るに従って、格子定数が緩やかに増加する。又、分解を
開始する温度もPdの量が増加とともに上昇し、例え
ば、実施例8で得られる銅酸化物材料は、1350℃で
も結晶構造を保つことが確認された。これに対し、表2
に示した本発明の比較例1〜4の組成比を有する銅酸化
物材料では、単一な組成を持つ、即ち単相な試料を合成
できないか、或いは、半導体的な特性を得られない等の
理由により、特性の悪いものであった。
It was confirmed that the copper oxide materials of Examples other than Example 2 also showed a similar crystal structure and a similar electrical resistivity. Here, Pd occupies a position crystallographically equal to Cu with a certain existence probability, but the lattice constant gradually increases as the amount of Pd increases. It was also confirmed that the temperature at which decomposition started also increased with an increase in the amount of Pd, and for example, the copper oxide material obtained in Example 8 maintained its crystal structure even at 1350 ° C. On the other hand, Table 2
With the copper oxide materials having the composition ratios of Comparative Examples 1 to 4 of the present invention shown in FIG. 2, a single composition, that is, a single-phase sample cannot be synthesized, or semiconductor characteristics cannot be obtained. Therefore, the characteristics were poor.

【0023】実施例11 酸化物超伝導体であるNd1.85Ce0.15CuO4-y を第
一及び第二の超伝導層として用い、実施例1〜10と同
様にして得られた本発明の銅酸化物材料であるNd1.85
Ce0.15Cu0.9Pd0.14 をトンネルバリア層として
用いた。図3に本実施例の積層型ジョセフソン素子の概
略図を示す。図中、1はSrTiO3 基板、2は第一の
超伝導層、3はバリア層、4は第二の超伝導層である。
先ず、マグネトロンスパッタ法で第一の超伝導層2が膜
厚4000Å、バリア層3が膜厚25Å、第二の超伝導
層が膜厚3000Åとなる様に形成した。次に、この様
にして作成した第一の超伝導層2/バリア層3/第二の
超伝導層4の積層薄膜に対して、通常のフォトリソグラ
フィー技術を用いて加工を行い、図3に示す様な積層型
ジョセフソン素子を作成した。
Example 11 Copper of the present invention obtained in the same manner as in Examples 1 to 10 using Nd 1.85 Ce 0.15 CuO 4-y , which is an oxide superconductor, as the first and second superconducting layers. Nd 1.85 which is an oxide material
Ce 0.15 Cu 0.9 Pd 0.1 O 4 was used as the tunnel barrier layer. FIG. 3 shows a schematic view of the laminated Josephson device of this embodiment. In the figure, 1 is a SrTiO 3 substrate, 2 is a first superconducting layer, 3 is a barrier layer, and 4 is a second superconducting layer.
First, the magnetron sputtering method was used to form the first superconducting layer 2 with a film thickness of 4000 Å, the barrier layer 3 with a film thickness of 25 Å, and the second superconducting layer with a film thickness of 3000 Å. Next, the laminated thin film of the first superconducting layer 2 / the barrier layer 3 / the second superconducting layer 4 formed in this way is processed by using an ordinary photolithography technique. A laminated Josephson device as shown was created.

【0024】上記の様にして作成された素子は、15K
で図4に示す様な電流−電圧特性を示し、ジョセフソン
素子として良好に動作することが確認された。このこと
からもわかる様に、本発明の銅酸化物材料は、格子定数
が超伝導体のそれに近く超伝導体との整合性がよく、及
び超伝導体からのイオンの拡散等が少なく超伝導特性に
影響が少なく、極めて良好な非超伝導体金属酸化物材料
であることがわかる。尚、本実施例において組み合わせ
た超伝導層とバリア層の組み合わせ以外にも、本発明の
他の金属酸化物材料をバリア層として用いることによっ
ても同様の結果が得られた。
The element manufactured as described above is 15K
Then, the current-voltage characteristics as shown in FIG. 4 were exhibited, and it was confirmed that the Josephson element operates well. As can be seen from this, the copper oxide material of the present invention has a lattice constant close to that of a superconductor, good compatibility with the superconductor, and little diffusion of ions from the superconductor. It can be seen that it is a very good non-superconductor metal oxide material with little influence on the characteristics. In addition to the combination of the superconducting layer and the barrier layer combined in this example, similar results were obtained by using other metal oxide materials of the present invention as the barrier layer.

【0025】実施例12 SrTiO3 を基体として用い、その上に本発明の金属
酸化物材料である格子定数(a)が3.90Åで、Gd
2Cu0.9Pd0.14 の組成を有する材料を膜厚500
Åに形成し、更にその上に、銅酸化物超伝導体であり1
23構造を有するNdBa2Cu3yを膜厚4000Å
に形成した。このNdBa2Cu3yは斜方晶であり、
格子定数はa、b夫々が、3.89Å、3.91Åであ
る。尚、夫々の膜の形成には実施例11と同様に、マグ
ネトロンスパッタ法を使用した。
Example 12 SrTiO 3 was used as a substrate, and the metal oxide material of the present invention had a lattice constant (a) of 3.90Å and Gd.
A film having a composition of 2 Cu 0.9 Pd 0.1 O 4 and a film thickness of 500
Å formed, and on top of it is a copper oxide superconductor
NdBa 2 Cu 3 O y having a 23 structure has a film thickness of 4000 Å
Formed. This NdBa 2 Cu 3 O y is an orthorhombic crystal,
The lattice constants a and b are 3.89Å and 3.91Å, respectively. The magnetron sputtering method was used for forming the respective films, as in Example 11.

【0026】この様にして作製した超伝導膜を、電気抵
抗率の温度変化により、超伝導特性を評価したところ、
約90Kで電気抵抗が消失し、鋭い超伝導転移が観測さ
れた。又、X線回折法によって観察したところ、本発明
の金属酸化物材料であるGd2Cu0.9Pd0.14上に、
銅酸化物超伝導体であるNdBa2Cu3y がc軸方向
に配向して形成されていることが確認された以上の結果
より、本発明の金属酸化物材料が超伝導素子用基板のバ
ッファー層として優れていることがわかる。又、基体と
してAl23 等を用いても同様の結果が得られた。更
に、上記と異なる本発明の他の金属酸化物材料を用いた
場合も、それと接合させる銅酸化物超伝導体を、その格
子定数及び融点を考慮した上で適切に選ぶことにより同
様の結果が得られた。
The superconducting film thus prepared was evaluated for superconducting properties by changing the electric resistivity with temperature.
The electric resistance disappeared at about 90 K, and a sharp superconducting transition was observed. Also, when observed by an X-ray diffraction method, it was found that on the metal oxide material of the present invention, Gd 2 Cu 0.9 Pd 0.1 O 4 ,
It was confirmed that NdBa 2 Cu 3 O y, which is a copper oxide superconductor, was formed oriented in the c-axis direction. From the above results, the metal oxide material of the present invention was used as a substrate for a superconducting device. It can be seen that it is excellent as a buffer layer. Similar results were obtained even when Al 2 O 3 or the like was used as the substrate. Further, when other metal oxide materials of the present invention different from the above are used, similar results can be obtained by appropriately selecting the copper oxide superconductor to be joined with the metal oxide material in consideration of its lattice constant and melting point. Was obtained.

【0027】実施例13 本発明の金属酸化物材料である格子定数(a)が3.9
0Åで、Gd2Cu0.9Pd0.14 の組成を有する材料
を、一軸性加圧装置により加圧成型し、焼結してc軸方
向に配向した多結晶体を作成し、これを基体として準備
した。次にこの基体上に、実施例12と同様に、銅酸化
物超伝導体であるNdBa2Cu3yを膜厚4000Å
に積層させた。上記の様にして作成した超伝導膜につい
て、電気抵抗率の温度変化により超伝導特性を評価した
ところ、約89Kで電気抵抗が消失し、鋭い超伝導転移
が観測された。又、X線回折により評価したところ、N
dBa2Cu3y がc軸方向に配向して形成されている
ことが確認された。以上の結果より、本実施例の金属酸
化物材料が超伝導素子用基板として優れていることがわ
かる。更に、上記と異なる本発明の他の金属酸化物材料
を用いた場合も、それと接合させる銅酸化物超伝導体
を、その格子定数及び融点を考慮した上で適切に選ぶこ
とにより同様の結果が得られた。
Example 13 The metal oxide material of the present invention has a lattice constant (a) of 3.9.
A material having a composition of Gd 2 Cu 0.9 Pd 0.1 O 4 at 0Å was pressure-molded by a uniaxial pressure device and sintered to form a polycrystal oriented in the c-axis direction, which was used as a substrate. Got ready. Then, in the same manner as in Example 12, NdBa 2 Cu 3 O y , which is a copper oxide superconductor, was deposited on this substrate to a thickness of 4000 Å.
Were laminated. When the superconducting film of the superconducting film prepared as described above was evaluated for superconducting properties by changing the electric resistivity with temperature, the electric resistance disappeared at about 89 K and a sharp superconducting transition was observed. Also, when evaluated by X-ray diffraction, N
It was confirmed that dBa 2 Cu 3 O y was formed in the c-axis direction. From the above results, it can be seen that the metal oxide material of this example is excellent as a substrate for a superconducting element. Further, when another metal oxide material of the present invention different from the above is used, the same result can be obtained by appropriately selecting the copper oxide superconductor to be joined to the copper oxide superconductor in consideration of its lattice constant and melting point. Was obtained.

【0028】[0028]

【効果】上記説明した様に、本発明によれば、以下に挙
げる優れた効果が得られる。 (1)本発明の金属酸化物材料は、新規な組成比を有
し、格子定数が超伝導体であるLn2-xCexCuO
y(Ln=Pr、Nd、Sm、Eu、Gd)とほぼ同じ
でり、且つ電気伝導特性が、液体窒素温度以下では半導
体的特性を示し、液体ヘリウム温度では十分高い電気低
効率を有する為、トンネルバリア層として特に好適であ
る。 (2)本発明の金属酸化物材料に用いられる元素は、超
伝導体であるLn2-xCexCuOy(Ln=Pr、N
d、Sm、Eu、Gd)とほぼ同じであり、且つ分解温
度が超伝導体よりも高い為に、両者を接合した場合の元
素の夫々の層への拡散が少なく、超伝導特性への影響が
極めて少ない。 (3)本発明の金属酸化物材料と超伝導体であるLn
2-xCexCuOy(Ln=Pr、Nd、Sm、Eu、G
d)の接合性は良好であり、これにより優れた特性を有
するジョセフソン素子等の超伝導接合素子の提供が可能
となる。 (4)本発明の金属酸化物材料を超伝導素子用基板のバ
ッファー層、或いは基板として利用することにより、優
れた超伝導特性を有する超伝導素子の提供が可能とな
る。
As described above, according to the present invention, the following excellent effects can be obtained. (1) The metal oxide material of the present invention has a novel composition ratio and has a lattice constant of superconductor Ln 2−x Ce x CuO.
y (Ln = Pr, Nd, Sm, Eu, Gd) is almost the same, and the electric conduction characteristics are semiconductor characteristics below the liquid nitrogen temperature, and have sufficiently high electric low efficiency at the liquid helium temperature. It is particularly suitable as a tunnel barrier layer. (2) The element used in the metal oxide material of the present invention is a superconductor Ln 2−x Ce x CuO y (Ln = Pr, N
d, Sm, Eu, Gd) and the decomposition temperature is higher than that of the superconductor, the diffusion of elements into the respective layers is small when the two are joined, and the influence on the superconducting properties Is extremely small. (3) The metal oxide material of the present invention and Ln that is a superconductor
2-x Ce x CuO y (Ln = Pr, Nd, Sm, Eu, G
The bondability of d) is good, which makes it possible to provide a superconducting junction element such as a Josephson element having excellent characteristics. (4) By using the metal oxide material of the present invention as a buffer layer of a substrate for a superconducting device or a substrate, it becomes possible to provide a superconducting device having excellent superconducting properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2のNd1.85Ce0.15Cu0.9Pd0.1
4 のX線回折パターンを示す。測定に使用したX線源は
CuKα線である。
FIG. 1 Nd 1.85 Ce 0.15 Cu 0.9 Pd 0.1 O of Example 2
4 shows the X-ray diffraction pattern of 4 . The X-ray source used for the measurement is CuKα ray.

【図2】実施例2のNd1.85Ce0.15Cu0.9Pd0.1
4 の電気抵抗率の温度依存性のグラフである
FIG. 2 Nd 1.85 Ce 0.15 Cu 0.9 Pd 0.1 O of Example 2
It is a graph of the temperature dependence of the electrical resistivity of 4.

【図3】実施例11で得られた本発明の超伝導接合素子
の一例を示す積層型ジョセフソン素子を示す概略図であ
る。
FIG. 3 is a schematic view showing a laminated Josephson element showing an example of the superconducting junction element of the present invention obtained in Example 11.

【図4】実施例11で得られた本発明の超伝導接合素子
の一例を示す積層型ジョセフソン素子の電流−電圧特性
の一例である。
4 is an example of current-voltage characteristics of a laminated Josephson element showing an example of the superconducting junction element of the present invention obtained in Example 11. FIG.

【符号の説明】[Explanation of symbols]

1:SrTiO3 基板 2:第一の超伝導層 3:バリア層 4:第二の超伝導層1: SrTiO 3 substrate 2: first superconducting layer 3: barrier layer 4: second superconducting layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/22 501 M 9261−4G H01B 12/06 ZAA 13/00 565 D H01L 39/22 ZAA A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C30B 29/22 501 M 9261-4G H01B 12/06 ZAA 13/00 565 D H01L 39/22 ZAA A

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 組成式がLn2-aCeaCu1-bPdb
4-Cと表される金属酸化物材料において、0≦a≦0.
2、0.025≦b≦0.5及び0≦c≦0.1であ
り、且つLnがLa、Pr、Nd、Sm、Eu及びGd
からなる元素群から選ばれた1種類以上の元素又は原子
団であることを特徴とする金属酸化物材料。
1. The composition formula is Ln 2-a Ce a Cu 1-b Pd b O.
In the metal oxide material represented by 4-C , 0 ≦ a ≦ 0.
2, 0.025 ≦ b ≦ 0.5 and 0 ≦ c ≦ 0.1, and Ln is La, Pr, Nd, Sm, Eu and Gd.
A metal oxide material comprising one or more elements or atomic groups selected from the group consisting of
【請求項2】 結晶構造がLn2CuO4(LnはPr、
Nd、Sm、Eu及びGdからなる元素群から選ばれた
1種類以上の元素又は原子団)と同じT´構造を有する
請求項1に記載の金属酸化物材料。
2. A crystal structure of Ln 2 CuO 4 (Ln is Pr,
The metal oxide material according to claim 1, which has the same T ′ structure as one or more elements or atomic groups selected from the group of elements consisting of Nd, Sm, Eu, and Gd.
【請求項3】 T´構造を有する超伝導体と、非超伝導
体である請求項1又は請求項2に記載の金属酸化物材料
とを接合して得られることを特徴とする超伝導接合素
子。
3. A superconducting junction obtained by joining a superconductor having a T ′ structure and a metal oxide material according to claim 1 or 2, which is a non-superconductor. element.
【請求項4】 任意の基体上に請求項1又は請求項2に
記載の金属酸化物材料を形成し、該金属酸化物材料上に
銅酸化物超伝導体を用いた超伝導素子の形成を可能とし
たことを特徴とする超伝導素子用基板。
4. Forming the metal oxide material according to claim 1 or 2 on an arbitrary substrate, and forming a superconducting element using a copper oxide superconductor on the metal oxide material. A substrate for a superconducting device, which has been made possible.
【請求項5】 請求項1又は請求項2に記載の金属酸化
物材料の単結晶或いは成型体を所望の形状にし、該金属
酸化物材料上に銅酸化物超伝導材料を用いた超伝導素子
の形成を可能にしたことを特徴とする超伝導素子用基
板。
5. A superconducting device using the single crystal or molded body of the metal oxide material according to claim 1 or 2 in a desired shape and using a copper oxide superconducting material on the metal oxide material. A substrate for a superconducting device, which is capable of forming a.
JP22270494A 1994-08-25 1994-08-25 Metal oxide material, superconducting junction element using the same, and substrate for superconducting element Expired - Fee Related JP3258824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22270494A JP3258824B2 (en) 1994-08-25 1994-08-25 Metal oxide material, superconducting junction element using the same, and substrate for superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22270494A JP3258824B2 (en) 1994-08-25 1994-08-25 Metal oxide material, superconducting junction element using the same, and substrate for superconducting element

Publications (2)

Publication Number Publication Date
JPH0864879A true JPH0864879A (en) 1996-03-08
JP3258824B2 JP3258824B2 (en) 2002-02-18

Family

ID=16786605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22270494A Expired - Fee Related JP3258824B2 (en) 1994-08-25 1994-08-25 Metal oxide material, superconducting junction element using the same, and substrate for superconducting element

Country Status (1)

Country Link
JP (1) JP3258824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001884A1 (en) * 2009-06-30 2011-01-06 北興化学工業株式会社 Method for synthesizing compound and catalyst for synthesis reaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001884A1 (en) * 2009-06-30 2011-01-06 北興化学工業株式会社 Method for synthesizing compound and catalyst for synthesis reaction
JP2011011999A (en) * 2009-06-30 2011-01-20 Hokko Chem Ind Co Ltd Method for synthesizing compound and synthetic reaction catalyst

Also Published As

Publication number Publication date
JP3258824B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
EP0301525B1 (en) Superconductor structure
JPH07106883B2 (en) Superconductor structure
JP2933225B2 (en) Metal oxide material
US5179070A (en) Semiconductor substrate having a superconducting thin film with a buffer layer in between
EP0321184B1 (en) Metal oxide material
EP0443827B1 (en) Rare earth substituted thallium-based superconductors
AU614606B2 (en) Semiconductor substrate having a superconducting thin film, and a process for producing the same
JP2950422B2 (en) Metal oxide material
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
CN1018311B (en) Method for film forming of bismuth system complex oxide superconductive film
JP2517085B2 (en) Superconducting thin film
US5512542A (en) Metallic oxide with boron and process for manufacturing the same
JP2519337B2 (en) Substrate material for producing oxide superconductor and method for producing oxide superconductor
JP2555505B2 (en) Metal oxide material
JP3059464B2 (en) Oxide material
JP3045705B2 (en) Oxide-based superconducting material, method for producing the same, and apparatus using the same
JP3284010B2 (en) Metal oxide material and superconducting device using the same
JP2801806B2 (en) Metal oxide material
JPH01290530A (en) Multiple oxides superconducting material and production thereof
Akimitsu et al. Sr 2 (Bi 1-a Pba) x Cu y O z metal oxide material
JPH10178220A (en) Tunnel-type superconducting junction element
JPH01105416A (en) Manufacture of thin film superconductor
JPH04292415A (en) Metal oxide material
JPH0543397A (en) Substrate crystal for oxide superconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees