JPH0864582A - Semiconductor wafer treatment equipment - Google Patents

Semiconductor wafer treatment equipment

Info

Publication number
JPH0864582A
JPH0864582A JP6215299A JP21529994A JPH0864582A JP H0864582 A JPH0864582 A JP H0864582A JP 6215299 A JP6215299 A JP 6215299A JP 21529994 A JP21529994 A JP 21529994A JP H0864582 A JPH0864582 A JP H0864582A
Authority
JP
Japan
Prior art keywords
chamber
gas
wafer
semiconductor wafer
break filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6215299A
Other languages
Japanese (ja)
Other versions
JP3147325B2 (en
Inventor
Shuji Moriya
修司 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP21529994A priority Critical patent/JP3147325B2/en
Priority to TW084108573A priority patent/TW293136B/zh
Priority to KR1019950025281A priority patent/KR0172519B1/en
Priority to US08/516,361 priority patent/US5578129A/en
Publication of JPH0864582A publication Critical patent/JPH0864582A/en
Application granted granted Critical
Publication of JP3147325B2 publication Critical patent/JP3147325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube

Abstract

PURPOSE: To prevent semiconductor wafer contamination due to the swirl of particles in a chamber, by setting a specific break filter made of ceramics, in the gas flowing-out vent of a preliminary chamber in which a treatment equipment for a wafer to be treated is temporarily carried from the outside and held. CONSTITUTION: A wafer W is carried in a preliminary chamber 2. By closing a partition, the inside of the chamber 2 is kept airtight, and then turned into the state of reduced pressure by exhausting the air through a gas exhaust vent 10. The same atmospheric gas as a treatment chamber 1 is introduced in the chamber 2 through a gas flowing-out vent 12 where a break filter made of ceramics is arranged which is stretched and installed in the chamber 2 and has an average thin hole diameter smaller than or equal to 5μm. Thus a gas introducing process for substituting the inside of the preliminary chamber 2 by the gas in the treatment chamber 1 is ended. Since the gas flows into the preliminary chamber 2 through the break filter made of ceramics, the gas flow rate can be finely adjusted, and the semiconductor wafer contamination due to the swirl of particles in the chamber can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体ウエハの各種処理
に使用される半導体ウエハ処理装置に関し、更に詳しく
は、半導体ウエハの処理室と所定のガス排出口及びガス
導入口を有し減圧可能な予備室とからなる半導体ウエハ
処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor wafer processing apparatus used for various kinds of processing of semiconductor wafers, and more specifically, it has a processing chamber for semiconductor wafers, a predetermined gas exhaust port and a gas inlet port, and is capable of depressurizing. The present invention relates to a semiconductor wafer processing apparatus including a preliminary chamber.

【0002】[0002]

【従来の技術】半導体製造工程においては、減圧下や大
気と異なる組成のガス雰囲気下等の各種条件で半導体ウ
エハを処理することが行われる。従来、このような処理
工程では、通常、被処理ウエハを大気中から、先ず、ウ
エハ導入用のロード側予備室内に収納した後、予備室中
のガスを排出して減圧とし、次いで要すれば予備室に処
理雰囲気ガスを導入し、予備室に連続する処理室内とほ
ぼ同一ガス雰囲気下として、その後、ウエハを予備室か
ら処理室に移送して処理するのが一般的である。処理室
で所定に処理された処理ウエハは、処理ウエハの取出用
のアンロード側予備室に移送される。この場合、アンロ
ード側予備室は、被処理ウエハを収納したロード側予備
室をアンロード側予備室として併用するか、またはロー
ド側予備室と同様に処理室に連続して別途設ける等のい
ずれかの方式が採用されている。また、被処理ウエハが
移送され収納するアンロード側予備室は、予め処理室内
の雰囲気条件と同様の雰囲気条件に保持される。最後
に、アンロード側予備室に収納された処理ウエハは、予
備室内が有害雰囲気の場合は予めそれらを排気した後、
大気または窒素ガス等の気体を予備室中に導入して処理
ウエハを取り出している。上記のロード側予備室やアン
ロード側予備室は、一般にロードロックと呼ばれ通常真
空等の減圧下に保持され得るようにされている。上記し
たようにロードロック室即ち予備室内は、被処理ウエハ
を外部から搬入または処理ウエハを外部へ搬出する際
に、外部雰囲気に合わせることになり、通常、予備室に
はガス導入口が設けられており、ガスを導入して真空等
の減圧状態を解除できるようになっている。
2. Description of the Related Art In a semiconductor manufacturing process, a semiconductor wafer is processed under various conditions such as a reduced pressure or a gas atmosphere having a composition different from the atmosphere. Conventionally, in such a processing step, usually, a wafer to be processed is first stored in the atmosphere in the load side preliminary chamber for introducing a wafer, then the gas in the preliminary chamber is discharged to reduce the pressure, and then, if necessary. It is general that a processing atmosphere gas is introduced into the preliminary chamber so that the atmosphere of the processing chamber is substantially the same as that of the processing chamber continuous with the preliminary chamber, and then the wafer is transferred from the preliminary chamber to the processing chamber for processing. The processed wafer that has been processed in the processing chamber is transferred to the unload-side preliminary chamber for taking out the processed wafer. In this case, as the unload-side preliminary chamber, the load-side preliminary chamber accommodating the wafer to be processed is also used as the unload-side preliminary chamber, or it is provided separately from the processing chamber in the same manner as the load-side preliminary chamber. That method is adopted. Further, the unload-side preliminary chamber in which the wafer to be processed is transferred and stored is previously held under the same atmospheric condition as the atmospheric condition in the processing chamber. Finally, the processed wafers stored in the unload side spare chamber are evacuated in advance if the spare chamber has a harmful atmosphere.
Atmosphere or a gas such as nitrogen gas is introduced into the preliminary chamber to take out the processed wafer. The above-mentioned load side preliminary chamber and unload side preliminary chamber are generally called load locks, and can be normally held under reduced pressure such as vacuum. As described above, the load lock chamber, that is, the preliminary chamber, is adjusted to the external atmosphere when the wafer to be processed is carried in from the outside or the processed wafer is carried out to the outside. Normally, the preliminary chamber is provided with a gas introduction port. Therefore, it is possible to release a depressurized state such as a vacuum by introducing gas.

【0003】上記の減圧状態を解除するためのガス導入
はバルブを用いて行い、予備室内での微小な埃等パーテ
ィクルの舞い上げを防止するため、従来、バルブの開操
作をゆっくり行うガス導入速度を小さくするスローベン
ント方式が採られている。しかしながら、いかに注意深
くバルブの開閉を操作しても真空等の減圧状態からバル
ブを開けた瞬間は、圧力の急激な変動がありロードロッ
ク室内にパーティクルを舞い上げてしまい、そのパーテ
ィクルがウエハ表面に付着して汚染するという問題点が
あった。そのため、近年、圧力の緩衝を目的として、ロ
ードロック室の壁面に設けられたガス導入口に、金属製
またはテフロン等の多孔性樹脂膜製のエレメントを装着
して操作するようになっており、このエレメントは一般
的にブレイクフィルタと呼ばれている。
Gas is introduced by means of a valve to release the above depressurized state. In order to prevent particles such as fine dust from flying up in the spare chamber, conventionally, the gas introduction speed is such that the valve is slowly opened. The slow vent method is adopted to reduce the. However, no matter how carefully the valve is opened and closed, at the moment when the valve is opened from the decompressed state such as vacuum, there is a sudden change in the pressure and the particles fly up into the load lock chamber, and the particles adhere to the wafer surface. There was a problem of being polluted. Therefore, in recent years, for the purpose of buffering the pressure, a gas introduction port provided on the wall surface of the load lock chamber, a metal or an element made of a porous resin film such as Teflon is attached and operated. This element is generally called a break filter.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の金属製
やテフロン等の多孔性樹脂膜製のブレイクフィルタを用
いた予備室においても、半導体ウエハのパーティクル汚
染を所望するようには防止することができず、より汚染
の少ない半導体ウエハの処理装置が求められている。本
発明は、半導体ウエハ処理装置における上記問題点を解
消し、特に、予備室での減圧状態解除時のパーティクル
の舞い上がりを抑止し、半導体ウエハの汚染を防止する
ことを目的とする。発明者らは、上記目的のため、予備
室へのガス導入操作について鋭意検討した結果、従来の
金属製やテフロン等の多孔性樹脂膜製のブレイクフィル
タを用いた場合、以下のような問題点を知見した。即
ち、(1)従来の金属製またはテフロン多孔性膜製フィ
ルタの、一般に採用されている気孔径は比較的大きいた
め、圧力緩衝効果が少なく、パーティクルの舞い上げを
完全に防止することができない。 (2)処理室内で腐食性ガスを使用している場合、処理
室から腐食性ガスはロードロック内への拡散を完全に遮
断することは難しく、金属製ブレイクフィルタや、ネジ
等の取付用金属部材が腐食し易い。 (3)ブレイクフィルタは導入口のみに取付けられてお
り、フィルタ有効面積が小さいため、圧力損失が大き
く、外部圧に戻すのに時間がかかる。 (4)特に、テフロン等の樹脂多孔性膜製フィルタで
は、強度的な問題があり、圧力変動を所定以上小さくで
きず、パーティクルの舞い上りが生じていた。発明者ら
は、更に、上記知見に基づき、圧力変動に対し十分な緩
衝効果を有する予備室へのガス導入操作方法の改良を鋭
意検討した結果、本発明を完成するに到った。
However, even in a preparatory chamber using the above-mentioned break filter made of metal or a porous resin film such as Teflon, it is possible to prevent particle contamination of semiconductor wafers as desired. There is a demand for a semiconductor wafer processing apparatus that cannot do so and has less pollution. SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems in a semiconductor wafer processing apparatus, and in particular, to prevent the particles from rising when releasing the depressurized state in the preparatory chamber and prevent the semiconductor wafer from being contaminated. For the above-mentioned purpose, the inventors have diligently studied the gas introduction operation to the preliminary chamber, and when using a break filter made of a conventional metal or a porous resin film such as Teflon, the following problems I found out. That is, (1) Since the pore diameter of the conventional metal or Teflon porous membrane filter that is generally used is relatively large, the pressure buffering effect is small and it is not possible to completely prevent the particles from flying up. (2) When a corrosive gas is used in the processing chamber, it is difficult to completely block the diffusion of the corrosive gas from the processing chamber into the load lock. Therefore, a metal break filter or a mounting metal such as a screw is used. Parts are easily corroded. (3) Since the break filter is attached only to the introduction port and the effective area of the filter is small, pressure loss is large and it takes time to return to the external pressure. (4) In particular, a filter made of a resin porous membrane such as Teflon has a problem in strength, pressure fluctuation cannot be reduced more than a predetermined value, and particles rise up. The inventors have further earnestly studied on the basis of the above findings to improve the method for introducing gas into the auxiliary chamber, which has a sufficient buffering effect against pressure fluctuations, and as a result, have completed the present invention.

【0005】[0005]

【課題を解決するための手段】本発明によれば、半導体
ウエハ処理室と少なくとも1の予備室とが開閉可能な隔
壁を有する連結部により気密に連結されてなり、且つ、
該予備室が開閉可能な隔壁により外部と気密に隔離され
てなると共に、該予備室には少なくともガス排出手段及
びガス導入手段が配備されており、該ガス導入手段が該
予備室の内部空間に伸延された少なくとも1のガス流出
口を有し、該ガス流出口には平均細孔径0.2μm以下
のセラミック層を有するセラミック製ブレイクフィルタ
が配置されてなることを特徴とする半導体ウエハ処理装
置が提供される。
According to the present invention, a semiconductor wafer processing chamber and at least one spare chamber are hermetically connected by a connecting portion having a partition wall that can be opened and closed, and
The spare chamber is airtightly isolated from the outside by a partition that can be opened and closed, and at least a gas discharge means and a gas introducing means are provided in the spare chamber, and the gas introducing means is provided in an internal space of the spare chamber. A semiconductor wafer processing apparatus having at least one extended gas outlet, and a ceramic break filter having a ceramic layer having an average pore diameter of 0.2 μm or less is arranged at the gas outlet. Provided.

【0006】この場合、予備室の大きさにもよるが、通
常、単一または複数のいずれでも、前記ブレイクフィル
タの長さが、総合計で50mm以上であることが好まし
い。また、前記ブレイクフィルタを、前記予備室内に収
納されるウエハ表面に対し平行に配置することが好まし
い。更に、前記予備室内に、導入されるガスが前記ブレ
イクフィルタにより層流状態となるようにするのが好ま
しい。
In this case, although it depends on the size of the preliminary chamber, it is preferable that the length of the break filter is 50 mm or more in total, either in single or in plural. Further, it is preferable that the break filter is arranged in parallel with a surface of a wafer housed in the preliminary chamber. Further, it is preferable that the gas introduced into the preliminary chamber is in a laminar flow state by the break filter.

【0007】[0007]

【作用】本発明は上記のように構成され、半導体ウエハ
の処理室への移送時に、外部から一時的に被処理ウエハ
を搬出入して保持するロードロック室である予備室に、
微細粒径のセラミック製ブレイクフィルタを通じてガス
を流出するため、ガス流速を微小に調整可能であり、圧
力変動の緩衝作用を果たし、室内の埃等のパーティクル
の舞い上がり等を防止でき、半導体ウエハをそれらの汚
染から防護することができる。また、セラミック製ブレ
イクフィルタを所定位置に配置することにより、予備室
内へのガス流出を層流状態とすることができ、同様にパ
ーティクルの舞い上がりを極力抑止でき、半導体ウエハ
の汚染を防止することができる。
The present invention is configured as described above, and when the semiconductor wafer is transferred to the processing chamber, the auxiliary chamber which is a load lock chamber for temporarily carrying in and out the wafer to be processed is held from the outside.
Since the gas flows out through a fine-grain ceramic break filter, the gas flow rate can be adjusted minutely, the pressure fluctuation can be buffered, and the particles such as dust in the room can be prevented from flying up. Can be protected from pollution. Further, by arranging the ceramic break filter at a predetermined position, it is possible to make the gas outflow into the preliminary chamber be in a laminar flow state, similarly to suppress the particle soaring as much as possible and prevent the semiconductor wafer from being contaminated. it can.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面を参照
しながら詳細に説明する。但し、本発明は下記実施例に
より制限されるものでない。図1は、本発明の一実施例
である塩素系ガスを用いる半導体ウエハエッチング処理
装置の一例の概略説明図である。図1の半導体ウエハエ
ッチング処理装置は、処理室1と、その処理室1の両側
に配置された被処理ウエハ搬入用のロード側予備室2及
び処理ウエハ搬出用のアンロード側予備室3からなる2
つのロードロック室を有し、各予備室2及び3は、それ
ぞれ連結部4及び5により処理室1に気密に連結されて
いる。各連結部4及び5には、開閉できる隔壁6及び7
がそれぞれ配置され、隔壁6及び7が開の状態ではロー
ド側及びアンロード側の予備室2及び3がそれぞれ処理
室1に気密に連通し、一方、閉の状態ではそれぞれ処理
室とは気密に隔離される。処理室1は上下端が閉鎖され
た円筒体であって、上部面にはバルブを有する反応ガス
供給管8が、また、下部面には排気管9が設置されてい
る。また、各予備室2及び3には、それぞれガス排出口
10及び11、セラミック製ブレイクフィルタが配置さ
れたガス流出口12及び13が配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. However, the present invention is not limited to the following examples. FIG. 1 is a schematic explanatory view of an example of a semiconductor wafer etching processing apparatus using a chlorine-based gas according to an embodiment of the present invention. The semiconductor wafer etching processing apparatus of FIG. 1 includes a processing chamber 1, a load side preliminary chamber 2 for loading a processing target wafer and unload side preliminary chambers 3 for unloading a processing wafer, which are arranged on both sides of the processing chamber 1. Two
There are two load lock chambers, and the auxiliary chambers 2 and 3 are hermetically connected to the processing chamber 1 by connecting portions 4 and 5, respectively. Partitions 6 and 7 that can be opened and closed are provided on each of the connecting portions 4 and 5.
Are arranged, and when the partition walls 6 and 7 are open, the load side and unload side auxiliary chambers 2 and 3 are in air-tight communication with the processing chamber 1, respectively, while in the closed state, they are in air-tightness with the processing chambers. To be isolated. The processing chamber 1 is a cylindrical body whose upper and lower ends are closed, and a reaction gas supply pipe 8 having a valve is installed on the upper surface and an exhaust pipe 9 is installed on the lower surface. Further, in each of the auxiliary chambers 2 and 3, gas outlets 10 and 11 and gas outlets 12 and 13 in which a break filter made of ceramic is arranged are arranged.

【0009】次ぎに、上記図1に示した半導体ウエハエ
ッチング装置を用いたウエハ処理工程の一例を説明す
る。先ず、ロード側予備室2に設けられた開閉可能な隔
壁(図示せず)を開状態にして外部空間と連通させて、
被処理ウエハWを予備室2内に搬入した後、隔壁を再び
閉鎖して予備室内2を気密に保持した後、予備室2内
を、ガス排出口10を通じて排気して減圧状態とする。
次いで、予備室2内に伸延され設置され、且つセラミッ
ク製ブレイクフィルタが配置されたガス流出口12か
ら、予備室2内に処理室1と同一の雰囲気ガスを導入し
て、予備室2内を処理室1内のガスで置換する第一ガス
導入工程が終了する。上記第一ガス導入工程は、排気減
圧工程と同時に行われてもよいし、また、ガス排出口等
の排気手段を、ロード側予備室2には設置せずに置換用
ガスを導入することによる自然排気のみによって予備室
2内をガス置換してもよい。
Next, an example of a wafer processing step using the semiconductor wafer etching apparatus shown in FIG. 1 will be described. First, an openable / closable partition wall (not shown) provided in the load side auxiliary chamber 2 is opened to communicate with the external space,
After the wafer W to be processed is loaded into the preparatory chamber 2, the partition wall is closed again to keep the preparatory chamber 2 airtight, and then the preparatory chamber 2 is evacuated through the gas exhaust port 10 to a depressurized state.
Then, the same atmosphere gas as that of the processing chamber 1 is introduced into the preliminary chamber 2 from the gas outlet 12 which is extended and installed in the preliminary chamber 2 and in which the ceramic break filter is arranged. The first gas introduction step of substituting the gas in the processing chamber 1 is completed. The first gas introduction step may be performed at the same time as the exhaust gas decompression step, or by introducing the replacement gas without installing an exhaust means such as a gas exhaust port in the load side auxiliary chamber 2. The gas in the auxiliary chamber 2 may be replaced by only natural exhaust.

【0010】次いで、ロード側予備室2と処理室1とを
気密に連結する連結部4に配設された開閉可能の隔壁6
を開放し、ロード側予備室2と処理室1とを連通させて
被処理ウエハWを処理室1内に移送して所定のサセプタ
ー上に載置した後、隔壁6を再び閉鎖してロード側予備
室2及び処理室1をそれぞれ気密に隔離する。その後、
処理室1内に反応ガス供給管8から塩素系ガスを供給
し、ウエハWをエッチング処理する。エッチング処理
後、アンロード側予備室3と処理室1とを連結する連結
部5に配設された開閉可能の隔壁7を開放してアンロー
ド側予備室3と処理室1とを連通させ、エッチング処理
済みの処理ウエハWは、処理室3内の雰囲気ガスと共に
アンロード側予備室3内に移送された後、隔壁7を再び
閉鎖してアンロード側予備室3及び処理室1をそれぞれ
気密に隔離する。次に、アンロード側予備室3を、ガス
排出口11により予備室3内のガスを排気し真空等の減
圧状態とする。その後、要すれば排気しながら、予備室
3内に伸延され設置され、且つセラミック製ブレイクフ
ィルタが配置されたガス流出口13からガス導入し、ア
ンロード側予備室3内を安全雰囲気ガスで置換する第二
ガス導入工程が終了する。最後にアンロード側予備室3
に設けられた開閉可能な隔壁(図示せず)を開放して外
部空間と連通させて、処理ウエハWを外部空間に取り出
した後、隔壁を再び閉鎖する。
Next, an openable / closable partition wall 6 provided in a connecting portion 4 for air-tightly connecting the load side auxiliary chamber 2 and the processing chamber 1
Is opened, the load side preliminary chamber 2 and the process chamber 1 are communicated with each other, the wafer W to be processed is transferred into the process chamber 1 and placed on a predetermined susceptor, and then the partition wall 6 is closed again to load the load side. The preliminary chamber 2 and the processing chamber 1 are airtightly isolated from each other. afterwards,
A chlorine-based gas is supplied from the reaction gas supply pipe 8 into the processing chamber 1 to etch the wafer W. After the etching process, the openable / closable partition wall 7 provided in the connecting portion 5 that connects the unload-side preliminary chamber 3 and the processing chamber 1 is opened to communicate the unload-side preliminary chamber 3 and the processing chamber 1 with each other. The processed wafer W that has been subjected to the etching process is transferred into the unload-side preliminary chamber 3 together with the atmospheric gas in the processing chamber 3, and then the partition wall 7 is closed again to hermetically seal the unload-side preliminary chamber 3 and the processing chamber 1, respectively. Quarantine. Next, the unload-side auxiliary chamber 3 is evacuated from the gas in the auxiliary chamber 3 through the gas discharge port 11 to bring it into a depressurized state such as a vacuum. Thereafter, while evacuation if necessary, gas is introduced from the gas outlet 13 which is extended and installed in the spare chamber 3 and in which a ceramic break filter is arranged, and the inside of the unload side spare chamber 3 is replaced with a safe atmosphere gas. The second gas introduction step is completed. Finally, the unload side spare room 3
An openable and closable partition wall (not shown) provided in the open space is opened to communicate with the external space, the processed wafer W is taken out to the external space, and then the partition wall is closed again.

【0011】図2はアンロード側予備室の概略説明図で
ある。図2において、アンロード側予備室3には、処理
室に連通する開閉可能な隔壁7及び外部空間に連通する
開閉可能な隔壁15が設けられている。室内の上部空間
には室外のガス供給源から連続するガス導入管16が接
続されている。導入管16の開放端にはセラミック製の
円筒状のブレイクフィルタ17が接続配置されている。
この場合、円筒状セラミック製ブレイクフィルタ17の
外径は、通常、直径10mm以上が好ましい。また、ブ
レイクフィルタの形状によらず、ガス流出表面積が15
00mm2 となるようにすることが好ましい。セラミッ
ク製ブレイクフィルタ17の長さは、ブレイクフィルタ
の相当径やガス流出表面積、被処理ウエハの径、処理室
の広さ等によって適宜選択することができる。通常は、
50mm以上の長さを有することが好ましく、より好ま
しくは50mm〜100mmである。また、ブレイクフ
ィルタを複数設置する場合は、複数のブレイクフィルタ
の総合計の長さが50mm以上となるようにするのが好
ましい。セラミック製ブレイクフィルタ17の長さが5
0mm以下では、圧力損失が大きく、雰囲気ガスの置換
に時間がかかると共に、ガスを層流状態でウエハ表面に
供給することができず、パーティクルを舞い上げるため
である。上記円筒状セラミック製ブレイクフィルタ17
は、円筒の外周面の半分、例えば上部半周面を閉塞さ
せ、残りの半周面からのみガスを流出させるようにして
もよい。なお、ロード側予備室も、上記のアンロード側
予備室とほぼ同様に構成することができる。
FIG. 2 is a schematic explanatory view of the unload side spare chamber. In FIG. 2, the unload-side preliminary chamber 3 is provided with an openable / closable partition wall 7 communicating with the processing chamber and an openable / closable partition wall 15 communicating with the external space. A gas introduction pipe 16 continuous from an outdoor gas supply source is connected to the upper space of the room. A cylindrical break filter 17 made of ceramic is connected to the open end of the introduction pipe 16.
In this case, the outer diameter of the cylindrical ceramic break filter 17 is usually preferably 10 mm or more. In addition, the gas outflow surface area is 15 regardless of the shape of the break filter.
It is preferable to set it to 00 mm 2 . The length of the ceramic break filter 17 can be appropriately selected depending on the equivalent diameter of the break filter, the gas outflow surface area, the diameter of the wafer to be processed, the size of the processing chamber, and the like. Normally,
It preferably has a length of 50 mm or more, and more preferably 50 mm to 100 mm. When a plurality of break filters are installed, it is preferable that the total length of the plurality of break filters is 50 mm or more. The length of the ceramic break filter 17 is 5
This is because when the thickness is 0 mm or less, the pressure loss is large, it takes time to replace the atmospheric gas, and the gas cannot be supplied to the wafer surface in a laminar flow state, causing particles to fly up. The cylindrical ceramic break filter 17
May close half of the outer peripheral surface of the cylinder, for example, the upper half peripheral surface, and allow the gas to flow out only from the remaining half peripheral surface. The load side auxiliary chamber can also be configured in substantially the same manner as the above unload side auxiliary chamber.

【0012】本発明においては、ガス流出部の形状や構
造等がいずれにしても、上記のようにブレイクフィルタ
のガス流出部分の全長が、好ましくは50mm以上とな
るようにし、且つ、その部分からはガスが一様に流出す
るような構造で構成させるのが好ましい。複数のブレイ
クフィルタを用いる場合には、各フィルタから流出する
ガスが層流状態となるように配置する。例えば、複数を
それぞれ平行となるよに配置したり、直線状に配置す
る。上記のように構成することにより、予備室内に流出
ガスを層流状態で全方位で導入することができるため、
流出ガスが予備室内に搬入されたウエハ表面をあたかも
箒で掃くように流れパーティクルの舞い上げが極力抑制
される。また、同時に、仮にパーティクルが舞い上って
もウエハ表面にパーティクルが落下付着することを防止
できる。
In the present invention, regardless of the shape and structure of the gas outflow portion, the total length of the gas outflow portion of the break filter is preferably 50 mm or more as described above, and from that portion. Is preferably constructed so that the gas flows out uniformly. When using a plurality of break filters, the gases flowing out from the respective filters are arranged so as to be in a laminar flow state. For example, a plurality of them are arranged so as to be parallel to each other, or arranged in a straight line. By configuring as described above, it is possible to introduce the outflow gas into the auxiliary chamber in a laminar state in all directions,
The outflow gas flows as if sweeping the surface of the wafer carried into the preliminary chamber with a broom, and the soaring of particles is suppressed as much as possible. At the same time, it is possible to prevent the particles from falling and adhering to the wafer surface even if the particles fly up.

【0013】本発明のセラミック製ブレイクフィルタ
は、平均細孔径0.5μm以下、好ましくは0.2μm
以下のセラミック層を有する。セラミック層の平均細孔
径が0.5μmより大きいと、流出ガスが勢いよく噴出
するため、層流状態とならずパーティクルを舞い上げる
ためである。一方、0.1μmより小さい極微小の平均
細孔径では、圧力損失が大きく予備室へガス導入して雰
囲気ガスの置換に長時間要することになり好ましくな
い。しかし、この場合はフィルタ長さや、配置のフィル
タ数を、予備室の大きさ等を勘案しガス流出表面積を調
整することにより、ガス置換に要する時間を調整するこ
とができる。本発明のセラミック製ブレイクフィルタを
構成するセラミックは、平均細孔径を0.5μm以下、
好ましくは0.2μm以下にすることができ、且つ、処
理用のガスに対して耐食性を有し、更に耐熱性を有する
セラミックス材であればよく、公知のセラミックス材か
ら適宜選択することができる。通常、アルミナ、炭化珪
素、石英ガラス等のセラミックス材が好適に用いられ
る。特に、アルミナを用いる場合にはその純度が99%
以上であることが好ましい。
The ceramic break filter of the present invention has an average pore diameter of 0.5 μm or less, preferably 0.2 μm.
It has the following ceramic layers: This is because when the average pore diameter of the ceramic layer is larger than 0.5 μm, the outflow gas is jetted out vigorously, and the particles do not flow in a laminar flow state but rise up. On the other hand, if the average fine pore diameter is smaller than 0.1 μm, the pressure loss is large, and it takes a long time to introduce the gas into the auxiliary chamber and replace the atmosphere gas, which is not preferable. However, in this case, the time required for gas replacement can be adjusted by adjusting the gas outflow surface area in consideration of the filter length, the number of filters arranged, and the size of the preliminary chamber. The ceramic constituting the ceramic break filter of the present invention has an average pore diameter of 0.5 μm or less,
The thickness is preferably 0.2 μm or less, and is a ceramic material having corrosion resistance to the gas for treatment and heat resistance, and can be appropriately selected from known ceramic materials. Usually, ceramic materials such as alumina, silicon carbide and quartz glass are preferably used. Especially when alumina is used, its purity is 99%.
The above is preferable.

【0014】実施例1 (セラミック製ブレイクフィルタの作製)図3は本実施
例に用いた本発明のセラミック製ブレイクフィルタの一
例の一部断面構造説明図である。図3において、直径1
9mm、長さ50mmのアルミナセラミック円筒体の筒
表面に、平均細孔径が0.2μmのアルミナセラミック
層を有するセラミックフィルタ20(東芝セラミックス
(株)製、商品名メンブラロックス)に、その両端にテ
フロン製ガスケット21、21を介してステンレス(S
US316L)製の円盤22、22を配し、両端閉鎖中
空円筒体を形成した。この両端閉鎖中空円筒体に、一方
の閉鎖端から円盤22を貫通して内部の空間にステンレ
ス製パイプ23を挿入した。パイプ23のセラミックフ
ィルタ20の中空部内の端部は閉鎖し、中空部内に位置
するパイプ23周面には約2mmの孔24が軸方向に一
定の間隔を有して6個穿設し、同時に、軸方向に所定間
隔ずれると共に軸の回転方向に90度づつずれた位置の
周面に同様に穿設孔24’が計24個設けた。上記のよ
うに構成して形成したセラミック製ブレイクフィルタ1
7において、パイプ23内に流したガスはパイプの孔2
4、24’からセラミックフィルタ20の中空部内に流
出し、セラミックフィルタ20を介してその外周面から
一様に噴流出させることができた。なお、円盤22やパ
イプ23等の金属部分の腐食をより完全に防止するため
に金属部分にセラミックを溶射する等の防食処理を施し
ても良い。
Example 1 (Fabrication of Ceramic Break Filter) FIG. 3 is a partial cross-sectional structure explanatory view of an example of the ceramic break filter of the present invention used in this example. In FIG. 3, the diameter 1
A ceramic filter 20 (manufactured by Toshiba Ceramics Co., Ltd., trade name Membrane Rocks) having an alumina ceramic layer having an average pore diameter of 0.2 μm on the surface of an alumina ceramic cylinder having a length of 9 mm and a length of 50 mm is provided at both ends thereof. Stainless steel (S
Disks 22 and 22 made of US316L) were arranged to form a hollow cylinder closed at both ends. Into this hollow cylinder closed at both ends, a stainless pipe 23 was inserted into the internal space through the disk 22 from one closed end. The end of the pipe 23 in the hollow portion of the ceramic filter 20 is closed, and the peripheral surface of the pipe 23 located in the hollow portion is provided with 6 holes 24 of about 2 mm at a constant interval in the axial direction. Similarly, a total of 24 holes 24 'are provided on the peripheral surface at positions shifted by a predetermined distance in the axial direction and shifted by 90 degrees in the rotational direction of the shaft. Ceramic break filter 1 configured and formed as described above
7, the gas flowing into the pipe 23 is
It was possible to flow out from Nos. 4 and 24 'into the hollow portion of the ceramic filter 20, and to uniformly jet out from the outer peripheral surface through the ceramic filter 20. Incidentally, in order to more completely prevent the corrosion of the metal parts such as the disk 22 and the pipe 23, the metal parts may be subjected to anticorrosion treatment such as thermal spraying of ceramics.

【0015】(予備室の形成)図4はセラミック製ブレ
イクフィルタを予備室ハウジング内に配置した概念説明
図である。図5は予備室ハウジング内のセラミック製ブ
レイクフィルタと半導体ウエハとの位置関係を示す説明
図である。図4において、上記のようにして形成したセ
ラミック製ブレイクフィルタ17を、予備室ハウジング
30内の上部に、ウエハカセット31上に直径6インチ
のウエハWをセットしたときに、ブレイクフィルタ17
がウエハWの中心直上部に位置するように配置した(図
5参照)。また、バルブV1を介してガス導入管32を
ブレイクフィルタ17のパイプ23に接続し、ハウジン
グ30内とガス排出管33を連絡させ、ガス排出管33
にはバルブV2を配設し、更に、微調整バルブV3をバ
ルブV2をバイパスしてガス排出管33に配設した。ま
た、ハウジング内圧測定圧力計Pを配設した。
(Formation of Preliminary Chamber) FIG. 4 is a conceptual explanatory view in which a ceramic break filter is arranged in the preliminary chamber housing. FIG. 5 is an explanatory diagram showing the positional relationship between the ceramic break filter and the semiconductor wafer in the auxiliary chamber housing. In FIG. 4, when the ceramic break filter 17 formed as described above is set in the upper part of the pre-chamber housing 30, the wafer W having a diameter of 6 inches is set on the wafer cassette 31, the break filter 17
Were arranged so as to be located right above the center of the wafer W (see FIG. 5). Further, the gas introduction pipe 32 is connected to the pipe 23 of the break filter 17 through the valve V1, and the inside of the housing 30 and the gas discharge pipe 33 are connected to each other, and the gas discharge pipe 33 is connected.
A valve V2 is disposed in the gas exhaust pipe 33, and a fine adjustment valve V3 is disposed in the gas exhaust pipe 33 by bypassing the valve V2. Further, a pressure gauge P for measuring the internal pressure of the housing is provided.

【0016】(予備室内の減圧及び昇圧操作)上記のよ
うに形成した予備室ハウジング30内に、直径6インチ
のウエハWをカセット31上にセットした。次いでブレ
イクフィルタ17をウエハの中心直上部になるようにセ
ットした。次いで、ガス排出管33からハウジング30
内を5×10-2Torrの減圧にした。その後、ガス導
入管32からバルブV1を介し高純度窒素ガスをガス流
量を一定にして流通させ、ブレイクフィルタ17からハ
ウジング30内に高純度窒素ガスを流出導入し、大気圧
まで昇圧した。このときのハウジング30内の圧力とガ
ス流量の関係を図6に示した。上記のように操作した
後、ウエハWを取り出しその面上に付着していたパーテ
ィクルの数と大きさをウエハ表面欠陥検査装置で測定し
た。同様に操作を3回行い、その結果の平均値を表1に
示した。
(Depressurizing and Pressurizing Operation in Preparatory Chamber) A wafer W having a diameter of 6 inches was set on a cassette 31 in the preparatory chamber housing 30 formed as described above. Next, the break filter 17 was set so as to be right above the center of the wafer. Next, from the gas exhaust pipe 33 to the housing 30
The inside was evacuated to 5 × 10 -2 Torr. After that, high-purity nitrogen gas was circulated from the gas introduction pipe 32 through the valve V1 at a constant gas flow rate, the high-purity nitrogen gas was introduced from the break filter 17 into the housing 30, and the pressure was increased to atmospheric pressure. The relationship between the pressure in the housing 30 and the gas flow rate at this time is shown in FIG. After the above operation, the wafer W was taken out, and the number and size of particles adhering to the surface of the wafer W were measured by the wafer surface defect inspection apparatus. Similarly, the operation was repeated 3 times, and the average value of the results is shown in Table 1.

【0017】実施例2〜4 フィルタの長さを50mm、200mm、300mmと
した以外は、実施例1と同様にして予備室の操作を行っ
た。ウエハ上のパーティクル付着については、合計数の
み測定し、その結果を表1に示した。
Examples 2 to 4 The preparatory chamber was operated in the same manner as in Example 1 except that the lengths of the filters were 50 mm, 200 mm and 300 mm. Regarding the adhesion of particles on the wafer, only the total number was measured, and the results are shown in Table 1.

【0018】比較例1 ブレイクフィルタ17をガス導入管32に配置しないで
ハウジング30内にガス導入管32端部から直接ガスを
導入した以外は、実施例1と同一に操作した。実施例2
と同様にウエハ上のパーティクル付着の合計数のみ測定
し、その結果を表1に示した。
Comparative Example 1 The same operation as in Example 1 was carried out except that the break filter 17 was not arranged in the gas introduction pipe 32 but the gas was introduced directly into the housing 30 from the end of the gas introduction pipe 32. Example 2
Similarly to the above, only the total number of particles attached on the wafer was measured, and the results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】比較例2 長さ100mmで、平均細孔径が3μm の金属製ブレイ
クフィルタを使用した以外は、実施例1と同一に操作し
た。その結果を表1に示した。
Comparative Example 2 The same operation as in Example 1 was carried out except that a metal break filter having a length of 100 mm and an average pore diameter of 3 μm was used. The results are shown in Table 1.

【0021】実施例5 実施例1と同一の装置を用い、ガス導入管32からバル
ブV1を介し高純度窒素ガスをガス流速が一定となるよ
うに予備室内の昇圧操作を行った以外は、実施例1と同
様に操作した。そのときのハウジング30内の圧力とガ
ス流量の関係を図7に示した。また、ウエハ上のパーテ
ィクル付着について実施例1と同様に測定し、その結果
を表2に示した。
Example 5 The same apparatus as in Example 1 was used, except that the high-purity nitrogen gas was introduced from the gas inlet pipe 32 through the valve V1 so that the pressure in the preparatory chamber was kept constant so that the gas flow rate was constant. The procedure was as in Example 1. The relationship between the pressure in the housing 30 and the gas flow rate at that time is shown in FIG. Further, the particle adhesion on the wafer was measured in the same manner as in Example 1, and the results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例6〜8 フィルタの長さを50mm、200mm、300mmと
した以外は、実施例5と同様にして予備室の操作を行っ
た。ウエハ上のパーティクル付着については、合計数の
み測定し、その結果を表2に示した。
Examples 6 to 8 The preparatory chamber was operated in the same manner as in Example 5 except that the lengths of the filters were 50 mm, 200 mm and 300 mm. Regarding the adhesion of particles on the wafer, only the total number was measured, and the results are shown in Table 2.

【0024】比較例3 ブレイクフィルタ17をガス導入管32に配置しないで
ハウジング30内にガス導入管32端部から直接ガスを
導入した以外は、実施例5と同一に操作した。ウエハ上
のパーティクル付着の合計数のみ測定し、その結果を表
2に示した。
Comparative Example 3 The same operation as in Example 5 was carried out except that the break filter 17 was not arranged in the gas introduction pipe 32 and the gas was introduced directly into the housing 30 from the end of the gas introduction pipe 32. Only the total number of particles deposited on the wafer was measured, and the results are shown in Table 2.

【0025】比較例4 長さ100mmで、平均細孔径が3μm の金属製ブレイ
クフィルタを使用した以外は、実施例5と同一に操作し
た。その結果を表2に示した。
Comparative Example 4 The same operation as in Example 5 was carried out except that a metal break filter having a length of 100 mm and an average pore diameter of 3 μm was used. The results are shown in Table 2.

【0026】実施例9 実施例1と同一の装置を用い、ガス導入管32からバル
ブV1を介し高純度窒素ガスを供給初期から中期におい
て流量が時間とともに比例して増大するように予備室内
の昇圧操作を行った以外は、実施例1と同様に操作し
た。そのときのハウジング30内の圧力とガス流量の関
係を図8に示した。また、ウエハ上のパーティクル付着
結果を表3に示した。
Ninth Embodiment Using the same apparatus as in the first embodiment, the pressure in the spare chamber is increased so that the flow rate increases proportionally with time from the initial stage to the middle stage of supplying high-purity nitrogen gas from the gas introduction pipe 32 through the valve V1. The same operation as in Example 1 was performed except that the operation was performed. The relationship between the pressure in the housing 30 and the gas flow rate at that time is shown in FIG. Table 3 shows the results of particle adhesion on the wafer.

【0027】[0027]

【表3】 [Table 3]

【0028】実施例10〜12 フィルタの長さを50mm、200mm、300mmと
した以外は、実施例9と同様にして予備室の操作を行っ
た。ウエハ上のパーティクル付着については、合計数の
み測定し、その結果を表3に示した。
Examples 10 to 12 The preparatory chamber was operated in the same manner as in Example 9 except that the lengths of the filters were 50 mm, 200 mm and 300 mm. Only the total number of particles deposited on the wafer was measured, and the results are shown in Table 3.

【0029】比較例5 ブレイクフィルタ17をガス導入管32に配置しないで
ハウジング30内にガス導入管32端部から直接ガスを
導入した以外は、実施例9と同一に操作した。ウエハ上
のパーティクル付着については、合計数のみ測定し、そ
の結果を表3に示した。
Comparative Example 5 The same operation as in Example 9 was carried out except that the break filter 17 was not arranged in the gas introduction pipe 32 but the gas was introduced directly into the housing 30 from the end of the gas introduction pipe 32. Only the total number of particles deposited on the wafer was measured, and the results are shown in Table 3.

【0030】比較例6 長さ100mmで、平均細孔径が3μm の金属製ブレイ
クフィルタを使用した以外は、実施例9と同一に操作し
た。その結果を表3に示した。
Comparative Example 6 The same operation as in Example 9 was carried out except that a metal break filter having a length of 100 mm and an average pore diameter of 3 μm was used. Table 3 shows the results.

【0031】上記実施例及び比較例から明らかなよう
に、本発明の微細な平均細孔径を有するセラミック製ブ
レイクフィルタを用いて予備室内の昇圧を行った場合に
は、フィルタ無しの場合は勿論、金属製フィルタに比し
てパーティクルの付着が極めて低減され、パーティクル
の舞い上がりが抑止されていることが分かる。また、セ
ラミック製ブレイクフィルタが長くなる程、パーティク
ルの付着が逓減することも分かる。更に、減圧からガス
を導入して常圧に戻すために要する時間も短く実用的で
ある。
As is clear from the above Examples and Comparative Examples, when the ceramic break filter of the present invention having a fine average pore size is used to boost the pressure in the auxiliary chamber, it goes without saying that no filter is used. It can be seen that the adhesion of particles is extremely reduced as compared with the metal filter, and the rising of particles is suppressed. It can also be seen that the longer the ceramic break filter is, the more gradually the particles are attached. Further, the time required for introducing gas from the reduced pressure and returning it to normal pressure is short and practical.

【0032】[0032]

【発明の効果】本発明の半導体ウエハ処理装置は、外部
から被処理ウエハを一時的に搬出入して保持するロード
ロック室のガス流出口に所定のセラミック製ブレイクフ
ィルタをセットすることにより、圧力変動時の緩衝効果
が発現され、また、層流状態でガスを予備室内に流出さ
せることができため、従来法で問題とされている予備室
内でのパーティクルの舞い上がりによる半導体ウエハ汚
染を防止できる。また、予備室における減圧から昇圧す
るに要する時間も短く、工業的に有用である。
According to the semiconductor wafer processing apparatus of the present invention, a predetermined ceramic break filter is set at the gas outlet of the load lock chamber for temporarily carrying in / out the wafer to be processed from the outside and holding it. Since the buffering effect at the time of fluctuation is exhibited, and the gas can be made to flow into the preliminary chamber in a laminar flow state, it is possible to prevent the semiconductor wafer from being contaminated due to the rising of particles in the preliminary chamber, which is a problem in the conventional method. In addition, the time required to increase the pressure from the reduced pressure in the preliminary chamber is short, which is industrially useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の半導体ウエハエッチング処
理装置の概略説明図である。
FIG. 1 is a schematic explanatory diagram of a semiconductor wafer etching processing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例のアンロード側予備室の概略
説明図である。
FIG. 2 is a schematic explanatory diagram of an unload-side auxiliary chamber according to an embodiment of the present invention.

【図3】本発明の実施例に用いたセラミック製ブレイク
フィルタの一部断面構造説明図である。
FIG. 3 is a partial cross-sectional structural explanatory view of a ceramic break filter used in an example of the present invention.

【図4】本発明のセラミック製ブレイクフィルタを予備
室ハウジング内に配置した概念説明図である。
FIG. 4 is a conceptual explanatory view in which the ceramic break filter of the present invention is arranged in a preliminary chamber housing.

【図5】本発明の予備室ハウジング内のセラミック製ブ
レイクフィルタと半導体ウエハとの位置関係の一例を示
す説明図である。
FIG. 5 is an explanatory diagram showing an example of the positional relationship between the ceramic break filter and the semiconductor wafer in the auxiliary chamber housing of the present invention.

【図6】本発明の一実施例におけるセラミック製ブレイ
クフィルタからガス流量を一定にして流通させて、予備
室ハウジング内を減圧から大気圧まで昇圧したときの圧
力とガス流量の関係図である。
FIG. 6 is a diagram showing a relationship between a pressure and a gas flow rate when a gas flow rate of the ceramic break filter according to an embodiment of the present invention is kept constant and the pressure in the auxiliary chamber housing is increased from a reduced pressure to an atmospheric pressure.

【図7】本発明の一実施例におけるセラミック製ブレイ
クフィルタからガス流速を一定にして流通させて、予備
室ハウジング内を減圧から大気圧まで昇圧したときの圧
力とガス流量の関係図である。
FIG. 7 is a diagram showing a relationship between a pressure and a gas flow rate when a gas flow rate is made to flow from a ceramic break filter in one embodiment of the present invention at a constant flow rate to increase the pressure in the pre-chamber housing from a reduced pressure to an atmospheric pressure.

【図8】本発明の一実施例におけるセラミック製ブレイ
クフィルタから供給初期から中期において流量が時間と
ともに比例して増大するようにして流通させて、予備室
ハウジング内を減圧から大気圧まで昇圧したときの圧力
とガス流量の関係図である。
FIG. 8 is a diagram showing a case in which the ceramic break filter according to an embodiment of the present invention is circulated so that the flow rate increases proportionally with time from the initial stage to the middle stage of supply, and the pressure inside the pre-chamber housing is increased from the reduced pressure to the atmospheric pressure. It is a relationship diagram of the pressure and the gas flow rate.

【符号の説明】[Explanation of symbols]

1 処理室 2 ロード側予備室 3 アンロード側予備室 4、5 連結室 6、7、15 隔壁 8 反応ガス供給管 9 排気管 10、11、33 ガス排出管 12、13 ガス流出口 16、32 ガス導入管 17 セラミック製ブレイクフィルタ 20 セラミックフィルタ 21 ガスケット 22 円盤 23 パイプ 24 孔 30 予備室ハウジング 31 ウエハカセット W ウエハ V1、V2、V3 バルブ P 圧力計 1 Processing Room 2 Load Side Spare Room 3 Unload Side Spare Room 4, 5 Connection Chamber 6, 7, 15 Partition 8 Reaction Gas Supply Pipe 9 Exhaust Pipe 10, 11, 33 Gas Discharge Pipe 12, 13 Gas Outlet 16, 32 Gas introduction pipe 17 Ceramic break filter 20 Ceramic filter 21 Gasket 22 Disc 23 Pipe 24 Hole 30 Preliminary chamber housing 31 Wafer cassette W Wafer V1, V2, V3 Valve P Pressure gauge

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハ処理室と少なくとも1の予
備室とが開閉可能な隔壁を有する連結部により気密に連
結されてなり、且つ、該予備室が開閉可能な隔壁により
外部と気密に隔離されてなると共に、該予備室には少な
くともガス排出手段及びガス導入手段が配備されてお
り、該ガス導入手段が該予備室の内部空間に伸延された
少なくとも1のガス流出口を有し、該ガス流出口には平
均細孔径0.5μm以下のセラミック層を有するセラミ
ック製ブレイクフィルタが配置されてなることを特徴と
する半導体ウエハ処理装置。
1. A semiconductor wafer processing chamber and at least one preliminary chamber are airtightly connected by a connecting portion having a partition wall that can be opened and closed, and the preliminary chamber is airtightly isolated from the outside by an opening and closing partition wall. In addition, at least a gas discharging means and a gas introducing means are provided in the spare chamber, and the gas introducing means has at least one gas outlet extending into the internal space of the spare chamber. A semiconductor wafer processing apparatus, wherein a ceramic break filter having a ceramic layer having an average pore diameter of 0.5 μm or less is arranged at the outlet.
【請求項2】 前記ブレイクフィルタの長さが、総合計
で50mm以上である請求項1記載の半導体ウエハ処理
装置。
2. The semiconductor wafer processing apparatus according to claim 1, wherein the total length of the break filters is 50 mm or more.
【請求項3】 前記ブレイクフィルタが、前記予備室内
に収納されるウエハ表面に対し平行に配置される請求項
1記載の半導体ウエハ処理装置。
3. The semiconductor wafer processing apparatus according to claim 1, wherein the break filter is arranged parallel to a surface of a wafer housed in the preliminary chamber.
【請求項4】 前記予備室内に、前記ブレイクフィルタ
により層流状態でガスが導入される請求項1、2または
3記載の半導体ウエハ処理装置。
4. The semiconductor wafer processing apparatus according to claim 1, wherein gas is introduced into the preliminary chamber in a laminar flow state by the break filter.
JP21529994A 1993-03-17 1994-08-17 Semiconductor wafer processing equipment Expired - Lifetime JP3147325B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21529994A JP3147325B2 (en) 1994-08-17 1994-08-17 Semiconductor wafer processing equipment
TW084108573A TW293136B (en) 1994-08-17 1995-08-16
KR1019950025281A KR0172519B1 (en) 1994-08-17 1995-08-17 Gas supplying head and load lock chamber of semiconductor processing system
US08/516,361 US5578129A (en) 1993-03-17 1995-08-17 Gas supplying head and load lock chamber of semiconductor processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21529994A JP3147325B2 (en) 1994-08-17 1994-08-17 Semiconductor wafer processing equipment

Publications (2)

Publication Number Publication Date
JPH0864582A true JPH0864582A (en) 1996-03-08
JP3147325B2 JP3147325B2 (en) 2001-03-19

Family

ID=16670027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21529994A Expired - Lifetime JP3147325B2 (en) 1993-03-17 1994-08-17 Semiconductor wafer processing equipment

Country Status (3)

Country Link
JP (1) JP3147325B2 (en)
KR (1) KR0172519B1 (en)
TW (1) TW293136B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054927A1 (en) * 1998-04-16 1999-10-28 Tokyo Electron Limited Unprocessed material storing device and carry-in/out stage
KR100427163B1 (en) * 1997-06-11 2004-07-07 동경 엘렉트론 주식회사 Processing system
JP2004228562A (en) * 2002-12-18 2004-08-12 Boc Group Inc:The Load lock purge method and its equipment
KR100621804B1 (en) * 2004-09-22 2006-09-19 삼성전자주식회사 Diffuser and equipment for manufacturing semiconductor device used same
KR200449961Y1 (en) * 2008-05-07 2010-08-25 삼성물산 주식회사 Purge cap
US9150964B2 (en) 2008-06-06 2015-10-06 Hitachi High-Technologies Corporation Vacuum processing apparatus
JP2020081911A (en) * 2018-11-15 2020-06-04 クアーズテック株式会社 Break filter and production method therefor
KR20210003683A (en) * 2019-07-02 2021-01-12 쿠어스택 가부시키가이샤 Diffuser and method of manufacturing diffuser

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489638B1 (en) * 1998-03-12 2005-08-31 삼성전자주식회사 Dry etching equipment of semiconductor device manufacturing equipment
KR100686285B1 (en) * 2005-07-22 2007-02-22 주식회사 래디언테크 Plasma Processing Apparatus and Exhausting Plate
ES2393907T3 (en) 2010-05-17 2012-12-28 Jaxa Networks Vehicle that has variable track width
KR101625014B1 (en) * 2014-03-28 2016-05-27 유니이노 주식회사 Walking type bike

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427163B1 (en) * 1997-06-11 2004-07-07 동경 엘렉트론 주식회사 Processing system
WO1999054927A1 (en) * 1998-04-16 1999-10-28 Tokyo Electron Limited Unprocessed material storing device and carry-in/out stage
EP1075023A1 (en) * 1998-04-16 2001-02-07 Tokyo Electron Limited Unprocessed material storing device and carry-in/out stage
EP1075023A4 (en) * 1998-04-16 2004-11-17 Tokyo Electron Ltd Unprocessed material storing device and carry-in/out stage
JP2004228562A (en) * 2002-12-18 2004-08-12 Boc Group Inc:The Load lock purge method and its equipment
KR100621804B1 (en) * 2004-09-22 2006-09-19 삼성전자주식회사 Diffuser and equipment for manufacturing semiconductor device used same
KR200449961Y1 (en) * 2008-05-07 2010-08-25 삼성물산 주식회사 Purge cap
US9150964B2 (en) 2008-06-06 2015-10-06 Hitachi High-Technologies Corporation Vacuum processing apparatus
JP2020081911A (en) * 2018-11-15 2020-06-04 クアーズテック株式会社 Break filter and production method therefor
KR20210003683A (en) * 2019-07-02 2021-01-12 쿠어스택 가부시키가이샤 Diffuser and method of manufacturing diffuser
US11264243B2 (en) 2019-07-02 2022-03-01 Coorstek Kk Conductive diffuser and manufacturing method of the same

Also Published As

Publication number Publication date
KR0172519B1 (en) 1999-03-30
JP3147325B2 (en) 2001-03-19
KR960009100A (en) 1996-03-22
TW293136B (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US6296716B1 (en) Process for cleaning ceramic articles
US5578129A (en) Gas supplying head and load lock chamber of semiconductor processing system
JPH0864582A (en) Semiconductor wafer treatment equipment
US20090258148A1 (en) Method of producing ceramic spray-coated member, program for conducting the method, storage medium and ceramic spray-coated member
US20060065194A1 (en) Diffuser and semiconductor device manufacturing equipment having the same
WO1999054927A1 (en) Unprocessed material storing device and carry-in/out stage
EP1314188B1 (en) Process for cleaning semiconductor processing components
JPWO2002029877A1 (en) Vacuum processing equipment
JP3118737B2 (en) Processing method of the object
JP2772835B2 (en) Substrate processing apparatus and vacuum processing method
JP3153323B2 (en) Apparatus and method for restoring normal pressure in an airtight chamber
JPS6042831A (en) Semiconductor manufacturing device
JP2010112392A (en) Pressure reducing exhaust valve, and pressure reducing device using pressure reducing exhaust mechanism including the same
JP2002231783A (en) Semiconductor manufacturing apparatus
JP3173681B2 (en) Evacuation apparatus and method
JP3851154B2 (en) Substrate transport method and apparatus for load lock device
JP3525039B2 (en) Decompression processing equipment
JP2001070781A (en) Vacuum treatment device
JPH11181568A (en) Gas introducing device into treating space and gas exhaust system from treating space
JPH11214477A (en) Pre-vacuum chamber for semiconductor manufacturing apparatus
JP2002198411A (en) Pressure control method, transfer apparatus, and cluster tool
JPH0598434A (en) Multichamber type sputtering apparatus
JPH02184333A (en) Load locker
JP2000256083A (en) Porous body for semiconductor wafer treating device
JPH0250619B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term