JPH0864444A - High-pressure control circuit - Google Patents

High-pressure control circuit

Info

Publication number
JPH0864444A
JPH0864444A JP21951994A JP21951994A JPH0864444A JP H0864444 A JPH0864444 A JP H0864444A JP 21951994 A JP21951994 A JP 21951994A JP 21951994 A JP21951994 A JP 21951994A JP H0864444 A JPH0864444 A JP H0864444A
Authority
JP
Japan
Prior art keywords
voltage
circuit
dividing resistor
control circuit
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21951994A
Other languages
Japanese (ja)
Inventor
Shigeru Kashiwagi
茂 柏木
Yoji Hirosue
庸治 広末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP21951994A priority Critical patent/JPH0864444A/en
Publication of JPH0864444A publication Critical patent/JPH0864444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Television Scanning (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE: To provide a high-voltage control circuit which can control a high- voltage at a rapid response, has a small size and a low cost, high reliability even in the case of discharge in a tube, can constitute a circuit having small unevenness and drift, and has small danger of unnecessary oscillation of the circuit. CONSTITUTION: A reference voltage Eref generated from the tap point (d) of a voltage dividing resistor 11 provided in parallel with a focusing voltage dividing resistor 4 is compared with a reference voltage Es. The result is applied to a voltage control circuit 7. In this case, a DC feedback resistor 12 is provided between the inverting input voltage and the output terminal of an operational amplifier 6, and the gain as a comparator is intentionally lowered. When the resistance value Rn of the resistor 12 is set to the low value of the degree of Rn<10Ri with respect to the equivalent resistance value Ri in which the resistor 11 side is seen from the point (d), the constant operation of the intermediate voltage EV is weakened, and the characteristics have a negative gradient, while the high voltage HV has no positive gradient, and can be substantially constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、テレビジョン受像機等
における受像管の陽極電圧を安定化するための高圧制御
回路に係り、特に、応答の速い高圧制御ができ、小型、
低コストで、管内放電に対しても信頼性の高く、バラツ
キ、ドリフトの少ない回路を構成することが可能とな
り、回路の不要な発振の危険も少ない高圧制御回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-voltage control circuit for stabilizing the anode voltage of a picture tube in a television receiver, etc.
The present invention relates to a high-voltage control circuit that is low in cost, highly reliable with respect to discharge in a tube, can be configured with less variation and drift, and has less risk of unnecessary oscillation of the circuit.

【0002】[0002]

【従来の技術】図3に従来の高圧制御回路の一例を示
す。図3において、1は水平出力回路であって、図示し
ない前段からの水平偏向周期の励振波形Vhが加わるこ
とによって、その出力には水平偏向周期のパルスVpを
発生する。次いで、2はフライバックトランスであっ
て、その1次巻線2aの一端に前述のパルスVpが加え
られ、他の一端には直流電圧Eboが加えられる。
2. Description of the Related Art FIG. 3 shows an example of a conventional high voltage control circuit. In FIG. 3, reference numeral 1 denotes a horizontal output circuit, which generates a pulse Vp having a horizontal deflection period at its output by adding an excitation waveform Vh having a horizontal deflection period from a preceding stage (not shown). Next, 2 is a flyback transformer, to which the above-mentioned pulse Vp is applied to one end of the primary winding 2a, and the DC voltage Ebo is applied to the other end.

【0003】また、フライバックトランス2の2次側に
は、複数個の2次巻線群2b-1 ,2b-2 ,2b-3 ,2b-
4 ,2b-5 が巻回され、これらの巻線群の各個と直列に
高圧整流ダイオード3-1,3-2,3-3,3-4,3-5が接
続されている。各2次巻線には1次パルスVpが昇圧さ
れて発生するので、これらの巻線群と高圧整流ダイオー
ドとの組みの最もホットエンドの組みの一端には高圧H
Vが発生し、図示されない受像管の陽極であるa点に導
かれる。
On the secondary side of the flyback transformer 2, a plurality of secondary winding groups 2b-1, 2b-2, 2b-3, 2b- are provided.
4, 2b-5 are wound, and high voltage rectifying diodes 3-1, 3-2, 3-3, 3-4, 3-5 are connected in series with each of these winding groups. Since the primary pulse Vp is generated by being boosted in each secondary winding, a high voltage H is applied to one end of the hottest end of the group of these winding groups and the high voltage rectifying diode.
V is generated and guided to a point a which is an anode of a picture tube not shown.

【0004】また、2次巻線と高圧ダイオードの組みの
コールドエンド側の幾つかの組みの一端からは、高圧H
Vより低い電圧値の中圧FVが得られ、ここから分圧抵
抗器4を通して調整可能な電圧が得られる。例えば、図
3に示す回路においては、その1つを前述受像管のフォ
ーカス電極fに、他の1つをスクリーン電極gに加え
て、その動作用電圧としている。
Further, from one end of several sets on the cold end side of the set of the secondary winding and the high voltage diode, a high voltage H
An intermediate voltage FV with a voltage value lower than V is obtained, from which an adjustable voltage is obtained through the voltage dividing resistor 4. For example, in the circuit shown in FIG. 3, one of them is added to the focus electrode f of the above-mentioned picture tube and the other one is added to the screen electrode g to be its operating voltage.

【0005】一方、高圧HVは分圧抵抗器5が接続さ
れ、その分圧点bには高圧HVに比例した参照電圧Ere
f が生じる。この参照電圧Eref は次の演算増幅器6の
入力の1つに加えられ、他の1つの入力に加えられる基
準電圧Esと比較される。
On the other hand, the high voltage HV is connected to a voltage dividing resistor 5, and at the voltage dividing point b, a reference voltage Ere proportional to the high voltage HV.
f occurs. This reference voltage Eref is applied to one of the inputs of the next operational amplifier 6 and compared with the reference voltage Es applied to the other input.

【0006】また、さらにフライバックトランス2の1
次側の回路には、直流電源電圧Ebがあり、ここから電
圧制御回路7を経て前述の直流電圧Eboが得られてお
り、これが前記フライバックトランス2の1次巻線2a
の一端に加えられ、水平出力回路1の動作用の電源電圧
となる。そして、この直流電圧Eboは電圧制御回路7の
制御端子cの値によって制御され、このc点には前述の
演算増幅器6の出力が接続される。なお、ここでは2次
巻線と高圧ダイオードの組みを、5組みの状態で描いて
あるが、これは特に複数組であればその数は任意であ
り、以下の図も同じである。
[0006] Further, 1 of the flyback transformer 2
The circuit on the secondary side has a DC power supply voltage Eb from which the aforementioned DC voltage Ebo is obtained via a voltage control circuit 7, which is the primary winding 2a of the flyback transformer 2.
Is applied to one end of the horizontal output circuit 1 and becomes a power supply voltage for operating the horizontal output circuit 1. The DC voltage Ebo is controlled by the value of the control terminal c of the voltage control circuit 7, and the output of the operational amplifier 6 is connected to the point c. Note that, here, the set of the secondary winding and the high voltage diode is drawn in a state of five sets, but the number is arbitrary as long as it is a plurality of sets, and the following figures are the same.

【0007】この図3に示す回路構成において、もし受
像管が明るい画像を映出して、その陽極電流Iaが増加
した場合を考えてみる。第2の分圧抵抗5、演算増幅器
6、電圧制御回路7の一連の回路がない場合は、フライ
バックトランス2の内部インピーダンスにより高圧の値
は低下してしまう。これは画像の安定度の点から望まし
くないので、これを回路で補償し、陽極電流Iaの値如
何に拘らず、極力高圧HVの値は一定に保たなくてはな
らない。この図3に示す回路では、もし、高圧HVが低
下すると、その分圧した結果の参照電圧Eref が低下
し、これが基準電圧Esを下回ることになる。すると、
演算増幅器6の出力は電圧制御回路7に対して、電圧E
boを上昇させるように変化する。
In the circuit configuration shown in FIG. 3, let us consider a case where the picture tube displays a bright image and the anode current Ia thereof increases. If the series of circuits including the second voltage dividing resistor 5, the operational amplifier 6, and the voltage control circuit 7 is not provided, the high impedance value will decrease due to the internal impedance of the flyback transformer 2. Since this is not desirable from the viewpoint of image stability, it must be compensated by the circuit and the value of the high voltage HV should be kept as constant as possible regardless of the value of the anode current Ia. In the circuit shown in FIG. 3, if the high voltage HV is reduced, the reference voltage Eref resulting from the voltage division is reduced, which is below the reference voltage Es. Then
The output of the operational amplifier 6 is supplied to the voltage control circuit 7 by the voltage E
Change to raise bo.

【0008】その結果、もし陽極電流Iaが増加して高
圧HVが下がろうとしても、その分電圧Eboが増加して
1次のパルスVpの波高値を増大させるので、結局高圧
HVの値は下がることはできず、一定となる。この時、
その分圧した参照電圧Erefは基準電圧Esに一致す
る。
As a result, even if the anode current Ia increases and the high voltage HV lowers, the voltage Ebo increases correspondingly and the peak value of the primary pulse Vp increases. It cannot be lowered, it is constant. This time,
The divided reference voltage Eref matches the reference voltage Es.

【0009】[0009]

【発明が解決しようとする課題】図3に示す回路は、良
く高圧の安定化の目的を果たす一方、幾つかの問題点も
抱えている。その1つは第2の分圧抵抗5が高圧HVと
接地の間につながるため、耐圧の問題から構造上大型に
なり、高価なものになってしまうことである。また、こ
の高圧HVに直接つながる部品である、第2の分圧抵抗
5から演算増幅器6に参照電圧Eref を導いているた
め、受像管が管内放電を起こした際の過渡的な電圧振動
が第2の分圧抵抗5に付随する分布容量を通して演算増
幅器6に加わって、これを破損させてしまうという問題
もある。
While the circuit shown in FIG. 3 serves the purpose of stabilizing high voltage well, it also has some problems. One of them is that the second voltage dividing resistor 5 is connected between the high voltage HV and the ground, so that the structure becomes large and expensive due to the problem of withstand voltage. Further, since the reference voltage Eref is guided from the second voltage dividing resistor 5, which is a component directly connected to the high voltage HV, to the operational amplifier 6, the transient voltage oscillation when the picture tube causes an in-tube discharge occurs. There is also a problem in that the voltage is added to the operational amplifier 6 through the distributed capacitance associated with the voltage dividing resistor 5 and is damaged.

【0010】図4は、これらの問題の解決を図った従来
回路の他の例を示したものである。図3と異なる点は、
高圧HVに直接つながる第2の分圧抵抗5を無くして、
その代わりに中圧FVにつながる分圧抵抗8に参照電圧
Eref を取り出すためのタップbを設けたものである。
このようにすれば、中圧FVは高圧HVの20〜30%
と低い値で良いので、大型で、高価な抵抗は不要にな
る。また、分圧抵抗8は直接高圧HVにつながらないだ
けに、管内放電の際に参照電圧Eref が影響を受けるこ
とは少ない。
FIG. 4 shows another example of a conventional circuit for solving these problems. The difference from FIG. 3 is that
By eliminating the second voltage dividing resistor 5 directly connected to the high voltage HV,
Instead, the voltage dividing resistor 8 connected to the intermediate voltage FV is provided with a tap b for extracting the reference voltage Eref.
By doing this, the medium pressure FV is 20 to 30% of the high pressure HV.
Since a low value is enough, a large and expensive resistor is unnecessary. Further, since the voltage dividing resistor 8 is not directly connected to the high voltage HV, the reference voltage Eref is rarely affected by the discharge in the tube.

【0011】しかし、この図4に示す回路は、受像管画
像の明るさが急に変動した時の応答特性に問題がある。
即ち、陽極電流Iaの変化によって、高圧HVひいては
中圧FVが急激に変化したとしても、タップb点の参照
電圧Eref は、即時には追随できない。それは受像管の
フォーカス電極fの容量9やスクリーン電極gの容量1
0があるため、これによって積分されるからである。こ
の容量9,10の値は、およそ数pFと少ないが、分圧
抵抗8の抵抗値が100MΩ以上と大きいために、その
影響は無視できない。
However, the circuit shown in FIG. 4 has a problem in response characteristics when the brightness of the picture tube image changes suddenly.
That is, even if the high voltage HV, and thus the intermediate voltage FV, changes rapidly due to the change in the anode current Ia, the reference voltage Eref at the tap b point cannot immediately follow. It is the capacitance 9 of the focus electrode f of the picture tube and the capacitance 1 of the screen electrode g.
Because there is 0, it is integrated by this. The values of the capacitors 9 and 10 are small, about several pF, but the influence cannot be ignored because the resistance value of the voltage dividing resistor 8 is as large as 100 MΩ or more.

【0012】その結果、電圧Eboの動きが遅れ、一時的
に高圧HVが変動し、画像が歪んでしまうことになる。
特に、スクリーン電極gには、ここに誘導されるリップ
ル波形の影響を避けるため、積極的に大きな値の外部容
量を付加する場合がある。また、フォーカス電極fの方
にもその一端を接地でなく波形発生回路に接続して、偏
向周期のパラボラ波形をフォーカス電極に重畳するため
のコンデンサを付加することがあり、これらの場合、さ
らに応答の遅れは大きく、ほとんど実用にならなくなっ
てしまう。
As a result, the movement of the voltage Ebo is delayed, the high voltage HV fluctuates temporarily, and the image is distorted.
In particular, in order to avoid the influence of the ripple waveform induced here, the screen electrode g may be positively added with an external capacitance having a large value. Further, one end of the focus electrode f may be connected to the waveform generating circuit instead of being grounded to add a capacitor for superimposing the parabolic waveform of the deflection period on the focus electrode. The delay is so large that it becomes almost impractical.

【0013】さらに、受像管管内放電の際も、フォーカ
ス電極fの電圧が誘導を受けて大きな過渡電圧が発生す
ることがあり、これがf点と同じ分圧抵抗8につながっ
ているb点に現れて演算増幅器6を破損することがあ
る。これは直接高圧HVにつながらないだけに、図3に
示す回路よりは改善されてはいるが、まだ、信頼性の上
で不十分であった。
Further, even during discharge in the picture tube, a large transient voltage may be generated due to the induction of the voltage of the focus electrode f, which appears at the point b connected to the same voltage dividing resistor 8 as the point f. As a result, the operational amplifier 6 may be damaged. This is an improvement over the circuit shown in FIG. 3 because it is not directly connected to the high voltage HV, but it is still insufficient in reliability.

【0014】また、図4は中圧FVの動きを検出して高
圧HVの動きを補正しようとしている。ところが、中圧
FVは必ずしも高圧HVに比例するとは限らず、その時
は高圧HVは一定化されない。特に、電流Iaの増加と
共に、高圧HVの値が逆に上昇するような特性になるこ
ともあり、このような時は回路全体に正帰還がかかって
発振状態になり、高圧HVの値が秒単位の周期で振動し
てしまうことがある。もちろんこのような場合は、画像
の大きさが激しく変化して実用にはならなくなる。
Further, in FIG. 4, the movement of the medium pressure FV is detected to correct the movement of the high pressure HV. However, the medium pressure FV is not always proportional to the high pressure HV, and the high pressure HV is not constant at that time. In particular, there is a case where the value of the high voltage HV rises conversely as the current Ia increases. In such a case, the positive feedback is applied to the entire circuit to cause an oscillation state, and the value of the high voltage HV is It may vibrate in a unit cycle. Of course, in such a case, the size of the image changes drastically and it becomes impractical.

【0015】さらに、受像管のフォーカス電極fにはご
く僅かではあるが、電流Ifが流れる。この電流Ifは
電極に向かって流れ込む方向の場合と、流れ出す場合と
があって、受像管によって一定しない。また、経時変化
もある。従って、この電流Ifによって、当然参照電圧
Eref の値が左右され、バラツキ,ドリフトの点で問題
となっていた。
Further, a current If flows through the focus electrode f of the picture tube, although only slightly. This current If may or may not flow toward the electrodes, and is not constant depending on the picture tube. There is also a change over time. Therefore, the value of the reference voltage Eref is naturally influenced by the current If, which is a problem in terms of variation and drift.

【0016】[0016]

【課題を解決するための手段】本発明は、上述した従来
の技術の課題を解決するため、フライバックトランスの
1次側の一端に接続されて、制御端子の電圧に応じて直
流電圧を制御して供給する電圧制御回路と、前記フライ
バックトランスの1次側の他の一端に接続されて、水平
周期のパルスを印加する水平出力回路と、前記フライバ
ックトランスの2次側に巻回された複数組みの2次巻線
と高圧整流ダイオードとの直列回路と、前記複数組みの
2次巻線と高圧整流ダイオードの高電圧側の一端に接続
された受像管の陽極と、前記複数組みの2次巻線と高圧
整流ダイオードの低電圧側の一部の組みに接続され、フ
ォーカス電圧及びスクリーン電圧を得る第1の分圧抵抗
器と、前記第1の分圧抵抗器と並列に接続された第2の
分圧抵抗器と、入力端子の一方が前記第2の分圧抵抗器
上のタップに接続され、前記入力端子の他方が基準電圧
に接続され、前記電圧制御回路の制御端子に制御電圧を
供給する演算増幅器と、前記演算増幅器の反転入力と出
力との間に、前記受像管の陽極に流れる電流変化に対す
る陽極電圧の変化を略一定化するように、その抵抗値を
設定した直流帰還回路とを設けたことを特徴とする高圧
制御回路を提供するものである。
In order to solve the above-mentioned problems of the prior art, the present invention is connected to one end on the primary side of a flyback transformer and controls a DC voltage according to the voltage of a control terminal. Is supplied to the flyback transformer, a horizontal output circuit connected to the other end on the primary side of the flyback transformer to apply a pulse of a horizontal cycle, and a horizontal output circuit wound on the secondary side of the flyback transformer. A series circuit of a plurality of sets of secondary windings and a high-voltage rectifying diode, an anode of a picture tube connected to one end of the plurality of sets of secondary windings and a high-voltage rectifying diode on the high voltage side, and a plurality of sets of the plurality of sets. A first voltage dividing resistor, which is connected to a part of the secondary winding and a part of the high voltage rectifying diode on the low voltage side and obtains a focus voltage and a screen voltage, and is connected in parallel with the first voltage dividing resistor. And a second voltage divider resistor, One of the terminals is connected to a tap on the second voltage dividing resistor, the other of the input terminals is connected to a reference voltage, and an operational amplifier that supplies a control voltage to a control terminal of the voltage control circuit; Between the inverting input and the output of the amplifier, a direct current feedback circuit having its resistance value set so as to make the change of the anode voltage with respect to the change of the current flowing in the anode of the picture tube substantially constant is provided. The present invention provides a high voltage control circuit.

【0017】[0017]

【実施例】以下、本発明の高圧制御回路について、添付
図面を参照して説明する。図1は本発明の一実施例を示
す回路図、図2は本発明の動作を説明するための特性図
である。なお、図1において、先の図3及び図4と同一
部分には同一符号を付し、その詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A high voltage control circuit according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a characteristic diagram for explaining the operation of the present invention. In FIG. 1, the same parts as those in FIGS. 3 and 4 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0018】図1において、水平出力回路1が励振信号
Vhを受けて、水平出力パルスVpを発生し、このパル
スVpがフライバックトランス2の2次巻線2b-1 ,2
b-2,2b-3 ,2b-4 ,2b-5 に昇圧され、高圧整流ダ
イオード群3-1,3-2,3-3,3-4,3-5で直流高圧H
Vとなって、受像管陽極aに導かれるのは、基本的に図
3に示す従来回路と変わりはない。また、直流電源電圧
Ebを電圧制御回路7を通すことによって、制御端子c
の電圧に応じて変化する直流電圧Eboを得て、これをフ
ライバックトランス2の1次巻線2aの一端に加え、水
平出力回路1の動作用電源とすることも同じである。
In FIG. 1, a horizontal output circuit 1 receives an excitation signal Vh and generates a horizontal output pulse Vp, which is a secondary winding 2b-1 and 2b of a flyback transformer 2.
The voltage is boosted to b-2, 2b-3, 2b-4, 2b-5, and DC high voltage H is generated by the high voltage rectifier diode group 3-1, 3-2, 3-3, 3-4, 3-5.
What is V and is guided to the cathode ray tube a is basically the same as the conventional circuit shown in FIG. Further, by passing the DC power supply voltage Eb through the voltage control circuit 7, the control terminal c
It is also the same as obtaining the DC voltage Ebo which changes in accordance with the voltage of, and adding this to one end of the primary winding 2a of the flyback transformer 2 to use it as the power supply for operating the horizontal output circuit 1.

【0019】この図1に示す回路で特徴的な点は、参照
電圧Eref をフォーカス用の分圧抵抗器(第1の分圧抵
抗器)4と並列に新設された分圧抵抗器(第2の分圧抵
抗器)11のタップd点から得ていることである。即
ち、この場合は図3のように高圧HVからの分圧ではな
く、フォーカス電圧を供給するための中圧FVの分圧で
参照電圧Eref を生成している。従って、この参照電圧
Eref を基準電圧Esと比較した結果で、電圧制御回路
7に加えるこの図1の回路は、本質的に中圧FVの安定
化回路である。
A characteristic point of the circuit shown in FIG. 1 is that a reference voltage Eref is newly provided in parallel with a voltage dividing resistor (first voltage dividing resistor) 4 for focusing (second voltage dividing resistor (second voltage dividing resistor)). It is obtained from the tap d point of the voltage dividing resistor 11). That is, in this case, the reference voltage Eref is generated not by the voltage division from the high voltage HV as in FIG. 3, but by the voltage division of the intermediate voltage FV for supplying the focus voltage. Therefore, the circuit of FIG. 1 applied to the voltage control circuit 7 as a result of comparing the reference voltage Eref with the reference voltage Es is essentially a stabilizing circuit of the medium voltage FV.

【0020】ところで、図3の従来回路において、陽極
電流Iaの変化に対して、高圧HVを一定化したとす
る。この時、中圧FVの陽極電流Iaに対する変化は、
フライバックトランス2の設計手法によって異なるが、
一般に、図2(A)に示すように、電流Iaの増加と共
に、若干減少するようにすることが多く、このようにし
たほうが受像管のフォーカス特性が電流Iaの全域に渡
って良好に保たれる。
By the way, in the conventional circuit of FIG. 3, it is assumed that the high voltage HV is constant with respect to the change of the anode current Ia. At this time, the change of the intermediate pressure FV with respect to the anode current Ia is
Depending on the design method of the flyback transformer 2,
In general, as shown in FIG. 2 (A), the current Ia is often made to slightly decrease as the current Ia increases, and in this way, the focusing characteristics of the picture tube are kept good over the entire area of the current Ia. Be done.

【0021】ここで、このような特性のフライバックト
ランス2を用いて、図1あるいは図4に示す回路のよう
に、中圧FVを分圧して参照電圧Eref を得るようにし
た場合、図2(B)に示すように、中圧FVは一定にな
るものの、高圧HVの方は陽極電流Iaの増加と共に上
昇してしまう。これは画像サイズの変化になって現れる
点も問題であるが、このように陽極電流Iaの増加と共
に、高圧HV即ち陽極電圧も増加してしまうという、い
わゆる負性抵抗特性は回路全体の発振現象を招きやす
く、画面の大きさが振動的に変化して安定しないことが
ある。
When the flyback transformer 2 having such characteristics is used to obtain the reference voltage Eref by dividing the intermediate voltage FV as in the circuit shown in FIG. 1 or FIG. As shown in (B), the medium pressure FV is constant, but the high pressure HV increases with the increase of the anode current Ia. This is also a problem in that it appears as a change in image size, but the so-called negative resistance characteristic that the high voltage HV, that is, the anode voltage, also increases with the increase in the anode current Ia in this way is an oscillation phenomenon of the entire circuit. May occur, and the size of the screen may change oscillatingly and become unstable.

【0022】そこで、図1に示す本発明の回路において
は、演算増幅器6の反転入力端子と出力端子との間に直
流帰還抵抗(直流帰還回路)12を設けて、比較器とし
てのゲインを故意に低下させるようにしている。従来回
路においても、回路の安定度を保つ意味で、直流帰還抵
抗12の抵抗値Rnを、高圧一定化の特性を損なわない
範囲のごく高い値に定めて、挿入する場合があるが、こ
の図1では積極的に電圧一定化の特性を悪化させるよう
なより低い値に設定する。
Therefore, in the circuit of the present invention shown in FIG. 1, a DC feedback resistor (DC feedback circuit) 12 is provided between the inverting input terminal and the output terminal of the operational amplifier 6 to intentionally increase the gain as a comparator. I am trying to lower it. In the conventional circuit as well, in order to maintain the stability of the circuit, the resistance value Rn of the DC feedback resistor 12 may be set to a very high value within a range that does not impair the characteristics of constant high voltage, and this may be inserted. At 1, the value is positively set to a lower value that deteriorates the constant voltage characteristic.

【0023】具体的にはd点から分圧抵抗11側を見た
等価抵抗、即ちほぼd点と接地との間の抵抗値Riに対
して、従来はRnはRiに対してかなり大きな値とした
が、図1に示す回路ではRn<10Ri程度の低い値に
する。このようにすると、図2(C)に示すように、中
圧FVの一定化の働きが弱まり、その特性は負の傾斜を
持つようになる一方、高圧HVの方は正の傾斜がなくな
り、ほぼ平らにすることができ、従来の図2(A)と類
似の特性を保つことができる。
Specifically, with respect to the equivalent resistance when the voltage dividing resistor 11 side is viewed from the point d, that is, the resistance value Ri between the point d and the ground, Rn is conventionally a considerably large value with respect to Ri. However, the circuit shown in FIG. 1 has a low value of about Rn <10Ri. By doing so, as shown in FIG. 2 (C), the function of stabilizing the intermediate pressure FV is weakened and the characteristic has a negative slope, while the high pressure HV has no positive slope. It can be made almost flat, and characteristics similar to those of the conventional FIG. 2A can be maintained.

【0024】図1に示す回路において、直流中圧FVを
作る際の平滑コンデンサに相当するものは、符号13で
示すトランスのストレイ容量しかない。従って、どうし
ても受像管の陽極と接地との間に存在するアクアダック
の容量のため、電流Iaの変化に対して応答の遅れが多
い高圧HV側に比べて、中圧FVの方は応答が速い。こ
れにより、参照電圧Eref の動きも良く、電流Iaの変
化に対応し、結果として画像の歪みは少なくなる。
In the circuit shown in FIG. 1, only the stray capacitance of the transformer indicated by reference numeral 13 corresponds to the smoothing capacitor when the DC intermediate voltage FV is produced. Therefore, the medium pressure FV has a faster response than the high pressure HV side, which has a large response delay with respect to the change in the current Ia, due to the capacity of the aqua duck between the anode of the picture tube and the ground. . As a result, the movement of the reference voltage Eref is good and it corresponds to the change of the current Ia, resulting in less distortion of the image.

【0025】また、図4に示す従来回路で問題になった
フォーカス電極fの容量9、スクリーン電極gの容量1
0も、本発明では参照電圧生成用の分圧抵抗11とは別
の分圧抵抗4で生成するので、応答特性に影響すること
はほとんどない。従って、図1においては、スクリーン
電極gにリップル除去のためのコンデンサ14を接地と
の間に挿入することが可能であるし、フォーカス電極f
にはコンデンサ15を接続して、その一端に偏向周期の
パラボラ波Vpbを加え、受像管周辺のフォーカス品位を
上げることもできる。
Further, the capacitance 9 of the focus electrode f and the capacitance 1 of the screen electrode g which have been problems in the conventional circuit shown in FIG.
In the present invention, 0 is also generated by the voltage dividing resistor 4 different from the voltage dividing resistor 11 for generating the reference voltage, so that it hardly affects the response characteristic. Therefore, in FIG. 1, it is possible to insert the capacitor 14 for removing ripples between the screen electrode g and the ground, and the focus electrode f.
It is also possible to connect a condenser 15 to and to add a parabola wave Vpb having a deflection period to one end of the condenser 15 to improve the focus quality around the picture tube.

【0026】また、さらに受像管の管内放電の際に、本
発明による図1では陽極a側からもフォーカス電極f側
からも、直接過度振動の波形が参照電圧Eref 側にもフ
ォーカス電極fからも、直接過度振動の波形が参照電圧
Eref 側に現れないので、演算増幅器6を危険にさらす
ことはない。同時に、フォーカス電流の値も参照電圧E
ref に直接影響を及ぼすことはなく、ドリフトやバラツ
キの点で有利である。
Further, during the discharge of the picture tube, in FIG. 1 according to the present invention, the waveform of the excessive vibration is directly generated from both the anode a side and the focus electrode f side, and both the reference voltage Eref side and the focus electrode f side. Since the waveform of the excessive vibration does not directly appear on the reference voltage Eref side, the operational amplifier 6 is not endangered. At the same time, the focus current value also changes to the reference voltage E.
It does not affect ref directly and is advantageous in terms of drift and dispersion.

【0027】[0027]

【発明の効果】以上詳細に説明したように、本発明の高
圧制御回路によれば、応答の速い高圧制御ができるばか
りでなく、小型、低コストで、管内放電に対しても信頼
性が高く、バラツキ、ドリフトの少ない回路を構成する
ことが可能となる上、回路の不要な発振の危険も少ない
など、種々の利点をもたらすという実用上極めて優れた
効果がある。
As described in detail above, according to the high-voltage control circuit of the present invention, not only can high-voltage control with a quick response be performed, but it is also small in size, low in cost, and highly reliable against discharge in a tube. In addition, it is possible to form a circuit with less variation and drift, and there is also a lesser risk of unnecessary oscillation of the circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高圧制御回路の一実施例を示す回路図
である。
FIG. 1 is a circuit diagram showing an embodiment of a high voltage control circuit of the present invention.

【図2】本発明の動作を説明するための特性図である。FIG. 2 is a characteristic diagram for explaining the operation of the present invention.

【図3】従来の高圧制御回路の一例を示す回路図であ
る。
FIG. 3 is a circuit diagram showing an example of a conventional high voltage control circuit.

【図4】従来の高圧制御回路の他の一例を示す回路図で
ある。
FIG. 4 is a circuit diagram showing another example of a conventional high voltage control circuit.

【符号の説明】[Explanation of symbols]

1 水平出力回路 2 フライバックトランス 2b-1 ,2b-2 ,2b-3 ,2b-4 ,2b-5 高圧巻線 3-1,3-2,3-3,3-4,3-5 高圧整流ダイオード 4 分圧抵抗器(第1の分圧抵抗器) 6 演算増幅器 7 電圧制御回路 11 分圧抵抗器(第2の分圧抵抗器) 12 直流帰還抵抗(直流帰還回路) 1 Horizontal output circuit 2 Flyback transformer 2b-1, 2b-2, 2b-3, 2b-4, 2b-5 High voltage winding 3-1, 3-2, 3-3, 3-4, 3-5 High voltage Rectifier diode 4 voltage dividing resistor (first voltage dividing resistor) 6 operational amplifier 7 voltage control circuit 11 voltage dividing resistor (second voltage dividing resistor) 12 DC feedback resistor (DC feedback circuit)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フライバックトランスの1次側の一端に接
続されて、制御端子の電圧に応じて直流電圧を制御して
供給する電圧制御回路と、 前記フライバックトランスの1次側の他の一端に接続さ
れて、水平周期のパルスを印加する水平出力回路と、 前記フライバックトランスの2次側に巻回された複数組
みの2次巻線と高圧整流ダイオードとの直列回路と、 前記複数組みの2次巻線と高圧整流ダイオードの高電圧
側の一端に接続された受像管の陽極と、 前記複数組みの2次巻線と高圧整流ダイオードの低電圧
側の一部の組みに接続され、フォーカス電圧及びスクリ
ーン電圧を得る第1の分圧抵抗器と、 前記第1の分圧抵抗器と並列に接続された第2の分圧抵
抗器と、 入力端子の一方が前記第2の分圧抵抗器上のタップに接
続され、前記入力端子の他方が基準電圧に接続され、前
記電圧制御回路の制御端子に制御電圧を供給する演算増
幅器と、 前記演算増幅器の反転入力と出力との間に、前記受像管
の陽極に流れる電流変化に対する陽極電圧の変化を略一
定化するように、その抵抗値を設定した直流帰還回路と
を設けたことを特徴とする高圧制御回路。
1. A voltage control circuit connected to one end on the primary side of a flyback transformer to control and supply a DC voltage according to the voltage of a control terminal, and another voltage control circuit on the primary side of the flyback transformer. A horizontal output circuit connected to one end for applying a pulse of a horizontal cycle; a series circuit of a plurality of sets of secondary windings wound around the secondary side of the flyback transformer and a high-voltage rectifying diode; A pair of secondary windings and an anode of a picture tube connected to one end of the high-voltage rectifier diode on the high-voltage side, and a plurality of sets of secondary windings and a part of the low-voltage side of the high-voltage rectifier diode connected to the anode. , A first voltage dividing resistor for obtaining a focus voltage and a screen voltage, a second voltage dividing resistor connected in parallel with the first voltage dividing resistor, and one of the input terminals of the second voltage dividing resistor. Connected to the tap on the piezoresistor, The other of the terminals is connected to a reference voltage and an operational amplifier that supplies a control voltage to the control terminal of the voltage control circuit, and a change in current flowing through the anode of the picture tube between the inverting input and the output of the operational amplifier. A high-voltage control circuit, comprising: a DC feedback circuit whose resistance value is set so as to make the change of the anode voltage substantially constant.
JP21951994A 1994-08-22 1994-08-22 High-pressure control circuit Pending JPH0864444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21951994A JPH0864444A (en) 1994-08-22 1994-08-22 High-pressure control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21951994A JPH0864444A (en) 1994-08-22 1994-08-22 High-pressure control circuit

Publications (1)

Publication Number Publication Date
JPH0864444A true JPH0864444A (en) 1996-03-08

Family

ID=16736747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21951994A Pending JPH0864444A (en) 1994-08-22 1994-08-22 High-pressure control circuit

Country Status (1)

Country Link
JP (1) JPH0864444A (en)

Similar Documents

Publication Publication Date Title
KR100302967B1 (en) High-voltage generating circuit
US5883794A (en) High voltage generating circuit including high voltage circuit section having voltage dividing resistor and speed-up capacitor
KR100669952B1 (en) High-voltage power supply for video display apparatus
JP3271581B2 (en) Deflection high voltage integrated power supply
JPH0864444A (en) High-pressure control circuit
KR900005363B1 (en) Horizontal output circuit for cathode ray tube
JPH07303224A (en) High pressured power supply for video device
JP3265390B2 (en) High voltage generation circuit for CRT
JP3045047B2 (en) Dynamic focus circuit
JP3370856B2 (en) Dynamic focus correction circuit
JPH04288777A (en) Power supply for cathode-ray tube
JPH08130659A (en) High voltage generating circuit
JP3313181B2 (en) High voltage output stop circuit
JPH08172544A (en) High voltage generating circuit
JP3728899B2 (en) High voltage generation circuit
JPH0216633B2 (en)
KR800000857B1 (en) High voltage generator
JP2715991B2 (en) High pressure generator
JPS61134181A (en) Horizontal deflecting circuit
JPH06178136A (en) Resonance type power source circuit
JPH01300767A (en) High voltage generating circuit
JPH0846808A (en) Crt display device
JPH0585104B2 (en)
JPS61140278A (en) Horizontal deflection circuit
JPH07115028A (en) Bias circuit device for cathode ray tube