JPH086130B2 - Method for producing copper powder - Google Patents
Method for producing copper powderInfo
- Publication number
- JPH086130B2 JPH086130B2 JP2089742A JP8974290A JPH086130B2 JP H086130 B2 JPH086130 B2 JP H086130B2 JP 2089742 A JP2089742 A JP 2089742A JP 8974290 A JP8974290 A JP 8974290A JP H086130 B2 JPH086130 B2 JP H086130B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- copper powder
- powder
- hydrazine
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅ペースト等に用いられる微粒子状の銅粉末
の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for producing fine-grained copper powder used for copper paste and the like.
銅ペーストに用いられる銅粉末は1μm〜10μmの粒
径のものが多いが、粒径1μm以下の銅粉末は活性が高
く、銅ペーストに用いて基板に焼付けした場合、基板と
の界面での化学的結合により接着強度が向上し、緻密で
良質の銅電極を形成できるという特徴がある。このよう
な微細な銅粉末を製造するため、従来より電解法,噴霧
法,ガス還元法,機械的粉砕法等の種々の製造方法が知
られているが、これら方法は製造に手間がかかったり、
不純物が混入しやすかったり、さらに製造した銅粉末の
粒子が大きく、粒径が不規則である等の問題があった。Most of the copper powder used in the copper paste has a particle size of 1 μm to 10 μm, but the copper powder having a particle size of 1 μm or less is highly active, and when used in the copper paste and baked on the substrate, the chemistry at the interface with the substrate is high. The characteristic feature is that the adhesive strength is improved by the dynamic bonding, and a dense and high-quality copper electrode can be formed. In order to produce such fine copper powder, various production methods such as an electrolysis method, a spraying method, a gas reduction method, and a mechanical pulverization method have been conventionally known, but these methods are time-consuming to produce. ,
There are problems that impurities are easily mixed in and that the particles of the produced copper powder are large and the particle diameter is irregular.
このような問題を解決するため、本出願人は、炭酸銅
を含む銅含有溶液とヒドラジンあるいはヒドラジン化合
物とを混合し、これを加熱することにより銅粉末を還元
析出せしめるようにした銅粉末の製造方法を提案した
(特公昭59−12723号公報)。この方法によれば、純度
が高く微細な銅粉末を製造でき、しかも液相反応によっ
て銅粉末を得るので、特別な設備や高度な技術が不要で
製造が簡単であるという特徴がある。In order to solve such a problem, the present applicant mixed a copper-containing solution containing copper carbonate with hydrazine or a hydrazine compound, and produced copper powder by reducing and precipitating the copper powder by heating the mixture. A method was proposed (Japanese Patent Publication No. 59-12723). According to this method, fine copper powder with high purity can be produced, and since copper powder is obtained by a liquid phase reaction, there is a feature that special equipment and advanced technology are not required and the production is simple.
ところが、上記方法で銅粉末を製造した場合、第1図
のように銅粉末の平均粒径が1〜2μm程度で、粒度分
布幅が0.4〜3μmと粒径のバラツキが比較的大きく、
また1μm以下の超微粒子は得にくいという問題があっ
た。However, when the copper powder is manufactured by the above method, as shown in FIG. 1, the average particle size of the copper powder is about 1 to 2 μm, and the particle size distribution width is 0.4 to 3 μm, and the variation in particle size is relatively large.
Further, there is a problem that it is difficult to obtain ultrafine particles of 1 μm or less.
そこで、本発明の第1の目的は、平均粒径が1μm以
下の超微粒子を得ることができる銅粉末の製造方法を提
供することにある。Then, the 1st objective of this invention is to provide the manufacturing method of the copper powder which can obtain the ultrafine particle whose average particle diameter is 1 micrometer or less.
また、第2の目的は、粒径のバラツキが小さい銅粉末
の製造方法を提供することにある。A second object is to provide a method for producing a copper powder with a small variation in particle size.
上記目的を達成するために、請求項1に記載の発明
は、ピロリン酸銅を含む銅含有溶液とヒドラジンあるい
はヒドラジン化合物とを混合する工程と、この混合物溶
液を20〜150℃に加熱することにより銅粉末を還元析出
せしめる工程と、 を含む銅粉末の製造方法である。In order to achieve the above object, the invention according to claim 1 comprises the steps of mixing a copper-containing solution containing copper pyrophosphate with hydrazine or a hydrazine compound, and heating the mixture solution to 20 to 150 ° C. And a step of reducing and precipitating the copper powder, the method comprising the steps of:
また、請求項2に記載の発明は、ギ酸銅を含む銅含有
溶液とヒドラジンあるいはヒドラジン化合物とを混成す
る工程と、この混合溶液を20〜150℃に加熱することに
より銅粉末を還元析出せしめる工程と、を含む銅粉末の
製造方法である。Further, the invention according to claim 2 is a step of mixing a copper-containing solution containing copper formate with hydrazine or a hydrazine compound, and a step of heating the mixed solution to 20 to 150 ° C. to reduce and precipitate copper powder. And a method for producing a copper powder containing
請求項1に記載の発明では、銅塩としてピロリン酸銅
を用い、この水溶液に還元剤であるヒドラジンあるいは
ヒドラジン化合物を混合して加熱処理すると、銅塩中の
銅が還元析出され、炭酸銅を用いたものに比べて粒径の
小さく、平均粒径が1μm以下の超微粒子銅粉末が得ら
れる。In the invention according to claim 1, when copper pyrophosphate is used as the copper salt, and hydrazine or a hydrazine compound which is a reducing agent is mixed with this aqueous solution and heat-treated, copper in the copper salt is reduced and precipitated, and copper carbonate is removed. Ultrafine copper powder having a smaller particle size than that used and having an average particle size of 1 μm or less is obtained.
加熱処理の適正温度は、20℃〜150℃の範囲である。
その理由は、20℃未満では銅粉末の還元析出が不十分で
あり、150℃を越えると還元析出する銅粉末の粒径が大
きく、かつ粒径のバラツキが大きくなるからである。The proper temperature for the heat treatment is in the range of 20 ° C to 150 ° C.
The reason is that if the temperature is lower than 20 ° C., the reduction precipitation of the copper powder is insufficient, and if the temperature exceeds 150 ° C., the particle size of the copper powder reduced and precipitated is large, and the variation in the particle size becomes large.
加熱時間は特に限定されないが、混合溶液中のピロリ
ン酸銅がほぼ反応を終了する2時間以上が望ましい。The heating time is not particularly limited, but is preferably 2 hours or more at which copper pyrophosphate in the mixed solution almost completes the reaction.
ヒドラジンあるいはヒドラジン化合物としては、ヒド
ラジン自身は勿論、抱水ヒドラジン,ヒラジンヒドラー
ト,硫酸ヒドラジン,硫酸ヒドラゾニウム,塩化ヒドラ
ゾニウム等がある。Examples of the hydrazine or the hydrazine compound include hydrazine itself, hydrazine hydrate, hydrazine hydrate, hydrazine sulfate, hydrazonium sulfate, and hydrazonium chloride.
ピロリン酸銅とヒドラジンあるいはヒドラジン化合物
との混合比は、例えばヒドラジン化合物にヒドラジンヒ
ドラートを用いた場合、ピロリン酸銅1モルに対してヒ
ドラジンヒドラートは1〜15モルが適当である。その理
由は、1モル未満では反応速度が遅く、量産性に適さな
いからであり、また15モルを越えると、歩留り,粒径に
おいて微粒子状の銅粉末が得られないからである。As for the mixing ratio of copper pyrophosphate and hydrazine or a hydrazine compound, for example, when hydrazine hydrate is used as the hydrazine compound, 1 to 15 moles of hydrazine hydrate are suitable with respect to 1 mole of copper pyrophosphate. The reason is that if it is less than 1 mol, the reaction rate is slow and it is not suitable for mass production, and if it exceeds 15 mol, copper powder in the form of fine particles in yield and particle size cannot be obtained.
また、請求項2に記載の発明では、銅塩としてギ酸銅
を用いたものであり、析出する銅粉末の粒径は炭酸銅を
用いた場合より大きいが、粒度分布幅が小さく均質な銅
粉末が得られる。なお、加熱温度,加熱時間,混合比等
の条件は請求項1に記載の発明と同様である。Further, in the invention described in claim 2, copper formate is used as the copper salt, and the particle size of the precipitated copper powder is larger than that when copper carbonate is used, but the particle size distribution width is small and homogeneous copper powder. Is obtained. The conditions such as the heating temperature, the heating time, and the mixing ratio are the same as those of the invention described in claim 1.
−第1実施例− ピロリン酸銅250gを水3000ccに溶かし、これに抱水ヒ
ドラジンを加えて混合した。ついで、この混合液を100
℃で3時間加熱すると、沈澱粉末が得られた。これを1
時間放置して冷却し、室温下でグラスフィルタを用いて
液を濾過し、PH7の水で水洗いした後、アセトンで洗浄
して乾燥した。-First Example- 250 g of copper pyrophosphate was dissolved in 3000 cc of water, and hydrazine hydrate was added thereto and mixed. Then mix this mixture with 100
A precipitate powder was obtained after heating at ℃ for 3 hours. This one
The solution was left standing for cooling for a while, the solution was filtered at room temperature using a glass filter, washed with water of PH7, washed with acetone and dried.
こうして得られた銅粉末の粒度は第1図のように平均
粒径が約0.6μmの超微粒子状で、凝集が小さく、分散
性の良い球状の粉末であり、また不純物を殆ど含まない
高純度のものであった。The particle size of the copper powder obtained in this way is ultrafine particles with an average particle size of about 0.6 μm as shown in Fig. 1, is a spherical powder with little aggregation and good dispersibility, and is highly pure with almost no impurities. It was the one.
この銅粉末は、ガラスフリット,有機ワニスとともに
混合されて銅ペーストとされ、またペーストへの微粉添
加剤としても使用される。上記銅粉末は分散性が良いの
で、ガラスフリットおよび有機ワニスに対して均等に混
合され、均質なペーストが得られた。このペーストはセ
ラミックス基板等の上に印刷,塗布したのち、窒素等の
非酸化性雰囲気中で焼付けされる。こうして得られた電
極や回路パターンは良好な半田付け性と十分な接着強度
を有し、信頼性の高い厚膜回路を得ることができた。This copper powder is mixed with glass frit and organic varnish to form a copper paste, and is also used as a fine powder additive to the paste. Since the above copper powder has good dispersibility, it was uniformly mixed with the glass frit and the organic varnish to obtain a homogeneous paste. This paste is printed and applied on a ceramic substrate or the like, and then baked in a non-oxidizing atmosphere such as nitrogen. The electrodes and circuit patterns obtained in this way had good solderability and sufficient adhesive strength, and a thick film circuit with high reliability could be obtained.
−第2実施例− ギ酸銅350gを水3000ccに溶かし、これに抱水ヒドラジ
ンを加えて混合した。ついで、この混合液を100℃で3
時間加熱すると、沈澱粉末が得られた。これを1時間放
置して冷却し、室温下でグラスフィルタを用いて液を濾
過し、PH7の水で水洗いした後、アセトンで洗浄して乾
燥した。-Second Example- 350 g of copper formate was dissolved in 3000 cc of water, and hydrazine hydrate was added thereto and mixed. This mixture is then mixed at 100 ° C for 3
Upon heating for hours, a precipitated powder was obtained. This was left to stand for 1 hour to cool, the liquid was filtered at room temperature using a glass filter, washed with water of PH7, washed with acetone and dried.
得られた銅粉末は第1図のように最多粒径が5μmの
微粒子状で、炭酸銅を用いた銅粉末より粒径は大きい
が、粒度分布幅が3〜8μmであり、粒径のバラツキが
小さく均質である。しかも、凝集が小さく、分散性の良
い球状の粉末であり、また不純物を殆ど含まない高純度
のものであった。この銅粉末も上記と同様に銅ペースト
あるいはペーストへの微粉添加剤として用いられ、これ
を焼付けた導電被膜は半田付け性および接着強度が良好
であった。The obtained copper powder is in the form of fine particles having a maximum particle size of 5 μm as shown in FIG. 1 and has a particle size larger than that of copper powder using copper carbonate, but has a particle size distribution width of 3 to 8 μm, which results in variation in particle size. Is small and homogeneous. Moreover, it was a spherical powder with small aggregation, good dispersibility, and high purity containing almost no impurities. This copper powder was also used as a copper paste or a fine powder additive to the paste in the same manner as described above, and the conductive coating baked on this had good solderability and adhesive strength.
以上の説明で明らかなように、請求項1に記載の発明
によれば、ピロリン酸銅とヒドラジンあるいはヒドラジ
ン化合物とを用いて湿式還元法により銅粉末を得るよう
にしたので、炭酸銅を用いた場合に比べて粒子が小さ
く、分散性の良い球状の銅粉末を簡単に得ることができ
る。As is clear from the above description, according to the invention of claim 1, since copper powder is obtained by the wet reduction method using copper pyrophosphate and hydrazine or a hydrazine compound, copper carbonate is used. It is possible to easily obtain a spherical copper powder having small particles and good dispersibility as compared with the case.
また、請求項2に記載の発明では、ギ酸銅とヒドラジ
ンあるいはヒドラジン化合物とを用いて湿式還元法によ
り銅粉末を得るようにしたので、炭酸銅に比べて粒径は
やや大きいものの、粒度分布幅が小さく、均質な銅粉末
を得ることができる。Further, in the invention according to claim 2, since copper powder is obtained by a wet reduction method using copper formate and hydrazine or a hydrazine compound, the particle size is slightly larger than copper carbonate, but the particle size distribution width. It is possible to obtain a homogeneous copper powder having a small size.
第1図は本発明にかかるピロリン酸銅,ギ酸銅を用いた
銅粉末と、従来の炭酸銅を用いた銅粉末との粒径分布図
である。FIG. 1 is a particle size distribution chart of a copper powder using copper pyrophosphate and copper formate according to the present invention and a copper powder using conventional copper carbonate.
Claims (2)
ンあるいはヒドラジン化合物とを混合する工程と、 この混合溶液を20〜150℃に加熱することにより銅粉末
を還元析出せしめる工程と、 を含む銅粉末の製造方法。1. A step of mixing a copper-containing solution containing copper pyrophosphate with hydrazine or a hydrazine compound; and a step of heating the mixed solution at 20 to 150 ° C. to reduce and precipitate copper powder. Powder manufacturing method.
いはヒドラジン化合物とを混合する工程と、 この混合溶液を20〜150℃に加熱することにより銅粉末
を還元析出せしめる工程と、 を含む銅粉末の製造方法。2. A copper powder comprising: a step of mixing a copper-containing solution containing copper formate with hydrazine or a hydrazine compound; and a step of heating the mixed solution to 20 to 150 ° C. to reduce and precipitate the copper powder. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2089742A JPH086130B2 (en) | 1990-04-04 | 1990-04-04 | Method for producing copper powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2089742A JPH086130B2 (en) | 1990-04-04 | 1990-04-04 | Method for producing copper powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03287707A JPH03287707A (en) | 1991-12-18 |
JPH086130B2 true JPH086130B2 (en) | 1996-01-24 |
Family
ID=13979215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2089742A Expired - Lifetime JPH086130B2 (en) | 1990-04-04 | 1990-04-04 | Method for producing copper powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH086130B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108526490A (en) * | 2018-05-14 | 2018-09-14 | 六盘水中联工贸实业有限公司 | A method of producing copper powder with copper chloride or stannous chloride |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3570591B2 (en) * | 1996-03-22 | 2004-09-29 | 株式会社村田製作所 | Production method of copper powder |
JP5255223B2 (en) * | 2007-03-29 | 2013-08-07 | 古河電気工業株式会社 | Method for producing copper alloy fine particles, and copper alloy fine particles obtained by the production method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5912723A (en) * | 1982-07-14 | 1984-01-23 | Daido Steel Co Ltd | Separation of magnetic component and non-magnetic component |
JPS6357703A (en) * | 1986-08-29 | 1988-03-12 | Daido Steel Co Ltd | Production of fine metallic powder |
-
1990
- 1990-04-04 JP JP2089742A patent/JPH086130B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108526490A (en) * | 2018-05-14 | 2018-09-14 | 六盘水中联工贸实业有限公司 | A method of producing copper powder with copper chloride or stannous chloride |
CN108526490B (en) * | 2018-05-14 | 2021-05-25 | 六盘水中联工贸实业有限公司 | Method for producing copper metal powder by using copper chloride or cuprous chloride |
Also Published As
Publication number | Publication date |
---|---|
JPH03287707A (en) | 1991-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4687599B2 (en) | Copper fine powder, method for producing the same, and conductive paste | |
KR101236253B1 (en) | Method of producing copper powder and copper powder | |
JP2638271B2 (en) | Production method of copper fine powder | |
JPH0480303A (en) | Manufacture of copper powder coated with silver | |
JP6130209B2 (en) | Conductive film | |
JP3570591B2 (en) | Production method of copper powder | |
JPH02294414A (en) | Production of fine copper powder | |
JP2006199982A (en) | Method for producing metallic fine powder | |
JPH09241709A (en) | Production of copper powder | |
JP2900650B2 (en) | Method for producing nickel fine powder | |
JP3073732B1 (en) | Nickel fine powder and method for producing the same | |
CN118106498A (en) | Preparation method of polyhedral micro-nano copper powder | |
JPS6299406A (en) | Production of copper powder | |
JP2017039991A (en) | Silver-coated copper powder, method for producing the same, and conductive paste using the same | |
JPH086130B2 (en) | Method for producing copper powder | |
JPH02294415A (en) | Production of fine copper powder | |
JP3245965B2 (en) | Production method of copper powder | |
JP2994020B2 (en) | Method for producing conductive titanium dioxide powder | |
JP6407850B2 (en) | Method for producing platinum powder | |
JPH04235205A (en) | Production of copper powder | |
JPH06145727A (en) | Production of spheroidal palladium powder | |
JP2002363618A (en) | Copper ultrafine grain and production method therefor | |
JPH06336601A (en) | Production of nickel powder | |
JP6491595B2 (en) | Method for producing platinum palladium rhodium alloy powder | |
JP2004339601A (en) | Method for manufacturing nickel powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 15 |