JPH0859289A - Method for producing ultraviolet light-sharply cutting glass for high brightness light source - Google Patents

Method for producing ultraviolet light-sharply cutting glass for high brightness light source

Info

Publication number
JPH0859289A
JPH0859289A JP19675794A JP19675794A JPH0859289A JP H0859289 A JPH0859289 A JP H0859289A JP 19675794 A JP19675794 A JP 19675794A JP 19675794 A JP19675794 A JP 19675794A JP H0859289 A JPH0859289 A JP H0859289A
Authority
JP
Japan
Prior art keywords
glass
mol
fine particles
oxide
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19675794A
Other languages
Japanese (ja)
Inventor
Naoki Sugimoto
直樹 杉本
Hiromi Kondo
裕己 近藤
Tsuneo Manabe
恒夫 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP19675794A priority Critical patent/JPH0859289A/en
Publication of JPH0859289A publication Critical patent/JPH0859289A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To obtain colorless and transparent glass excellent in solarization- resistant characteristics against high brightness infrared light by preparing raw glass having a specific composition, and subsequently heating the raw glass to deposit the fine particles of CuCl2 and/or CuBr2 . CONSTITUTION: Raw glass having a composition comprising SiO2 : 62-80-mol.%, B2 O3 : 10-20mol.%, Al2 O3 : 1-10mol.%, Li2 O+Na2 O+K2 O: 5-15mol.% copper oxide: 0.01-2mol.% in terms of CuO, Cl+Br: 0.01-2mol.%, the oxides of tin and antimony: 0.1-3mol.% in terms of SnO and Sb2 O3 , the oxide of one or more metals selected from iron, lead, cerium, titanium and bismuth: 0.01-5mol.% is prepared, heated and melted at 1200-1800 deg.C for 5min to several days, and subsequently molded into a prescribed shape. The fine particles of CuCl2 and/or CuBr2 can be deposited by a thermal treatment at 500-730 deg.C for 0.1-4hrs. The deposited fine particles of the CuCl2 and/or the CuBr2 have a particle diameter of 0.5-400nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水銀ランプやメタルハ
ライドランプなどの高輝度光源用紫外線シャープカット
ガラスの製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultraviolet sharp cut glass for a high brightness light source such as a mercury lamp or a metal halide lamp.

【0002】[0002]

【従来の技術】従来、紫外線をカットするガラスとして
は、いわゆる紫外線シャープカットガラスとして市販さ
れているものや、人工衛星の太陽電池を紫外線から保護
する目的のカバーガラスなどが知られている。これらの
ガラスは、種々のイオンをドープしたガラスの紫外域の
吸収を利用することによって紫外線の遮蔽を行なってい
る。しかしながらこれらイオンをドープしたガラスは、
紫外側吸収端付近での波長に対する透過率の変化の割合
が比較的ゆるやかであるため、近紫外線をカットするた
めには可視域での吸収がさけられず、ガラスが黄色く着
色してしまい、逆に、可視域で吸収のない無色なガラス
では近紫外域がカットできないという問題点があった。
また、この欠点の解消を目的として特公昭46−346
4や特開平4−18501、特開平4−275942、
特開平5−13235の波長傾斜幅の小さい紫外線吸収
ガラスが提案された。このガラスはCuClやCuBrの結晶を
ガラス中に析出させることを特徴とする。
2. Description of the Related Art Heretofore, as glass for cutting off ultraviolet rays, there have been known ones which are commercially available as so-called ultraviolet sharp cut glasses and cover glasses for protecting solar cells of artificial satellites from ultraviolet rays. These glasses shield ultraviolet rays by utilizing the absorption in the ultraviolet region of glasses doped with various ions. However, glass doped with these ions
Since the rate of change in transmittance with respect to wavelength near the ultraviolet absorption edge is relatively gentle, absorption in the visible region cannot be avoided in order to cut near-ultraviolet light, and the glass becomes yellow, In addition, there is a problem that the near-ultraviolet region cannot be cut with colorless glass that does not absorb in the visible region.
Also, in order to eliminate this drawback, Japanese Patent Publication No. 46-346
4, JP-A-4-18501, JP-A-4-275942,
Japanese Patent Laid-Open No. 5-13235 proposes an ultraviolet absorbing glass having a small wavelength inclination width. This glass is characterized by precipitating CuCl or CuBr crystals in the glass.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
のガラスは高圧水銀ランプやメタルハライドランプのよ
うな強い紫外線が放射される高輝度光源に曝すことによ
ってソーラリゼーションによってガラスが着色してしま
うという課題があり、高輝度光源用ガラスとしては不充
分であった。
However, when these glasses are exposed to a high-intensity light source, such as a high-pressure mercury lamp or a metal halide lamp, which emits strong ultraviolet rays, there is a problem that the glass is colored by solarization. However, it was insufficient as a glass for a high brightness light source.

【0004】本発明は、従来の技術が有していた上記課
題を解消し、無色で、紫外線によりソーラリゼーション
を生じにくい高輝度光源用紫外線シャープカットガラス
の製造法の提供を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems of the prior art and to provide a method for producing an ultraviolet sharp cut glass for a high brightness light source which is colorless and is less likely to cause solarization by ultraviolet rays.

【0005】[0005]

【課題を解決するための手段】本発明は、モル%表示
で、 銅の酸化物を CuO換算で 0.01〜 2% Cl+Br 0.01〜 2% 錫及びアンチモンの酸化物をそれぞれSnO、Sb2O3 に換算
し SnO+Sb2O3 0.01〜 3% を含有する素ガラスを準備し、素ガラスを熱処理してCu
Cl又は/及びCuBr微粒子を析出し、高輝度光源用紫外線
シャープカットガラスの製造するにあたり、素ガラスは
鉄、鉛、セリウム、チタン及びビスマスから選ばれた少
なくとも一種の酸化物を 0.001〜5モル%含有する高輝
度光源用紫外線シャープカットガラスの製造法である。
[Means for Solving the Problems] In the present invention, copper oxide is expressed as CuO in terms of CuO of 0.01 to 2% Cl + Br 0.01 to 2% Tin and antimony oxides of SnO and Sb 2 O, respectively. in terms of 3 to prepare a raw glass containing 2 O 3 0.01~ 3% SnO + Sb, Cu by heat-treating raw glass
In the production of UV sharp cut glass for high-brightness light sources by precipitating Cl or / and CuBr fine particles, the raw glass contains 0.001 to 5 mol% of at least one oxide selected from iron, lead, cerium, titanium and bismuth. It is a method for producing an ultraviolet sharp cut glass for a high-brightness light source.

【0006】本発明により製造される高輝度光源用紫外
線シャープカットガラスは、紫外線領域で非常にシャー
プな吸収を持つCuCl又は/及びCuBr微粒子(結晶)がガ
ラス中に析出しているため、可視域の光を吸収すること
なく紫外線だけを選択的に遮蔽することができるととも
に、高輝度紫外線に対する耐ソーラリゼーション特性を
有する。
The ultraviolet sharp cut glass for a high-intensity light source produced by the present invention has CuCl or / and CuBr fine particles (crystals) having a very sharp absorption in the ultraviolet region, which are deposited in the visible region. It is possible to selectively block only the ultraviolet rays without absorbing the above-mentioned light and has a solarization resistance property against the high-intensity ultraviolet rays.

【0007】本発明は、上記特定組成の素ガラスを準備
し、それを熱処理することにより、CuCl又は/及びCuBr
微粒子を析出させるものである。先ず、素ガラスの限定
理由について説明する。
The present invention provides CuCl and / or CuBr by preparing a raw glass having the above-mentioned specific composition and heat-treating it.
It deposits fine particles. First, the reason for limiting the raw glass will be described.

【0008】本発明における素ガラスにおいて、ガラス
中にCuCl又は/及びCuBr微粒子が析出させるために、銅
を酸化物換算でCuO として0.01〜3モル%、Cl又は/及
びBrをO.O1〜2モル%含有させることが必要である。Cu
O が0.01モル%未満の場合は、CuCl又は/及びCuBr微粒
子が充分析出せず紫外線の遮蔽性能が充分でない。一
方、3モル%を超えても紫外線遮蔽性能はそれ以上向上
せず、逆にCuCl又は/及びCuBr微粒子の巨大粒子が析出
し、ガラスの透明性が失われる。Cl、Brは、遮蔽波長に
より適宜その混合比も選定される。
In the base glass of the present invention, in order to deposit CuCl or / and CuBr fine particles in the glass, copper is 0.01 to 3 mol% as CuO in terms of oxide, and Cl or / and Br is O.O1 to 2 It is necessary to contain it by mol%. Cu
When O 2 is less than 0.01 mol%, CuCl and / or CuBr fine particles are not sufficiently precipitated and the ultraviolet ray shielding performance is insufficient. On the other hand, even if it exceeds 3 mol%, the ultraviolet shielding performance is not further improved, and conversely, giant particles of CuCl or / and CuBr fine particles are deposited and the transparency of the glass is lost. The mixing ratio of Cl and Br is appropriately selected depending on the shielding wavelength.

【0009】ClとBrの合計がO.O1モル%未満の場合、Cu
Cl又は/及びCuBr微粒子が充分析出せず紫外線の遮蔽性
能が充分でない。一方、2モル%を超えても紫外線遮蔽
性能はそれ以上向上せず、逆にガラスの分相が生じやす
くなりガラスの透明性が失われおそれがある。なお、C
l、Brは、それぞれ単独で用いられてもよい。
If the sum of Cl and Br is less than 1 mol% O.O, Cu
Cl or / and CuBr fine particles are not sufficiently deposited and the ultraviolet ray shielding performance is not sufficient. On the other hand, even if it exceeds 2 mol%, the ultraviolet ray shielding performance is not further improved, and conversely, phase separation of the glass is likely to occur and the transparency of the glass may be lost. Note that C
l and Br may be used alone.

【0010】錫及びアンチモンの酸化物をそれぞれSnO
、Sb2O3 換算し合量で0.01〜3モル%含有させること
により、ガラスが青色や緑色に着色せず、さらにCuCl又
は/及びCuBr微粒子が更に析出しやすくなる。SnO 、Sb
2O3 の含有量が合量で 0.01 モル%未満の場合は、ガラ
スが青色や緑色に着色しやすく、逆に3モル%を超える
場合にはガラスが赤色に着色し、無色のものは得られに
くい。
The oxides of tin and antimony are respectively SnO.
, Sb 2 O 3 converted to a total content of 0.01 to 3 mol%, the glass is not colored blue or green, and CuCl or / and CuBr fine particles are more likely to be deposited. SnO, Sb
When the total content of 2 O 3 is less than 0.01 mol%, the glass tends to be colored blue or green. On the contrary, when it exceeds 3 mol%, the glass is colored red and a colorless product is obtained. It is hard to be caught.

【0011】鉄、鉛、セリウム、チタン及びビスマスの
酸化物は、紫外線に対する耐ソーラリゼーション特性を
向上する作用をする。それらの酸化物の含有量が、合量
で0.001モル%未満では、その作用がほとんどな
く、逆に、5モル%を超える場合にはガラス中に銅コロ
イドが析出してガラスが赤色化したり、これらの成分の
影響によってガラスが黄色く着色し無色のものは得られ
にくい。中でもビスマスの酸化物は、その作用が大きい
ので好ましい。特に、ビスマスの酸化物を0.1〜3モ
ル%含有するものは、本発明における素ガラスとして最
も適している。
Oxides of iron, lead, cerium, titanium and bismuth act to improve the solarization resistance to ultraviolet rays. If the total amount of these oxides is less than 0.001 mol%, there is almost no effect. On the contrary, if the total amount exceeds 5 mol%, copper colloids are precipitated in the glass and the glass turns red. Or, the glass is colored yellow due to the influence of these components, and it is difficult to obtain a colorless glass. Of these, bismuth oxide is preferable because it has a large effect. In particular, those containing 0.1 to 3 mol% of bismuth oxide are most suitable as the raw glass in the present invention.

【0012】かかる素ガラスの組成としては、ガラスの
成形時や熱処理時における白濁化や赤色化を抑止した
り、化学的耐久性を向上するうえで、次の2タイプのも
のが好ましい。
As the composition of the raw glass, the following two types are preferable in order to suppress clouding and red coloration during glass forming and heat treatment and to improve chemical durability.

【0013】第1のタイプの素ガラスの組成は、モル%
表示で、 SiO2 62〜80% B2O3 10〜20% Al2O3 1〜10% Li2O+Na2O+K2O 5〜15% 銅の酸化物を CuO換算で 0.01〜 2% Cl+Br 0.01〜 2% 錫及びアンチモンの酸化物をそれぞれSnO、Sb2O3 に換算
し SnO+Sb2O3 0.01〜 3% 鉄、鉛、セリウム、チタン及びビスマスから選ばれた少
なくとも一種の酸化物0.001〜 5% からなる。
The composition of the first type of raw glass is mol%
Indication, SiO 2 62-80% B 2 O 3 10-20% Al 2 O 3 1-10% Li 2 O + Na 2 O + K 2 O 5-15% Copper oxide 0.01- 2% Cl + Br 0.01 to 2% Tin and antimony oxides are converted into SnO and Sb 2 O 3 , respectively SnO + Sb 2 O 3 0.01 to 3% At least selected from iron, lead, cerium, titanium and bismuth. Consists of 0.001 to 5% of a kind of oxide.

【0014】かかる素ガラスにおいて、SiO2の含有量が
62モル%未満の場合は、ガラスの分相によってガラスの
白濁や銅コロイドによる着色が起こりやすく、逆に80モ
ル%を超えた場合は、ガラスの生成温度が高くなり、C
u、Cl及びBr成分の揮散が多くなるのでいずれも好まし
くない。
In such a raw glass, the content of SiO 2 is
If it is less than 62 mol%, clouding of the glass or coloring due to copper colloid is likely to occur due to the phase separation of the glass. Conversely, if it exceeds 80 mol%, the glass formation temperature becomes high, and C
Any of these is not preferable because the volatilization of u, Cl and Br components increases.

【0015】B2O3の含有量が10モル%未満の場合は、Cu
Cl、CuBrの析出が得られにくく、逆に20モル%を超える
とガラスの化学的耐久性が低くなるのでいずれも好まし
くない。Al2O3 の含有量が1モル%未満の場合は、ガラ
スが分相により白濁しやすくなり、一方、Al2O3 が10モ
ル%を超えると、ガラス化し難くなるのでいずれも好ま
しくない。
When the content of B 2 O 3 is less than 10 mol%, Cu
Precipitation of Cl and CuBr is difficult to obtain, and conversely, if it exceeds 20 mol%, the chemical durability of the glass becomes low, so neither is preferable. If the Al 2 O 3 content is less than 1 mol%, the glass tends to become cloudy due to phase separation, while if the Al 2 O 3 content exceeds 10 mol%, vitrification tends to be difficult, which is not preferable.

【0016】Li2O、Na2O、K2O の含有量が、合量で5モ
ル%未満の場合はガラスの生成温度が高くなりCu及びC
l、Br成分が揮散してしまい、一方、合量が15モル%を
超える場合はガラス中に銅コロイドが析出して赤色化し
やすくなるとともに化学的耐久性が低くなるので、いず
れも好ましくない。なお、Li2O、 Na2O 、K2O の合量に
対するLi2Oの比が0.25以上にすると制御された粒径のCu
Cl又は/及びCuBr微粒子が容易に析出しうるので特に好
ましい。
When the total content of Li 2 O, Na 2 O and K 2 O is less than 5 mol%, the glass formation temperature becomes high and Cu and C are contained.
Both l and Br components are volatilized. On the other hand, when the total amount exceeds 15 mol%, copper colloids are likely to precipitate in the glass to cause red coloration and the chemical durability is lowered, which is not preferable. Note that when the ratio of Li 2 O to the total amount of Li 2 O, Na 2 O, and K 2 O is 0.25 or more, Cu having a controlled grain size is formed.
Particularly preferred is that Cl or / and CuBr fine particles can be easily deposited.

【0017】このうち特に好ましい素ガラスは以下のも
のである。
Of these, particularly preferred glass bases are as follows.

【0018】 SiO2 63〜72% B2O3 12〜18% Al2O3 2〜 8% Li2O+Na2O+K2O 7〜13% 銅の酸化物を CuO換算で 0.1〜 1.5% Cl+Br 0.1〜 1.5% 錫及びアンチモンの酸化物をそれぞれSnO、Sb2O3 に換算
し SnO+Sb2O3 0.05〜 2% ビスマスの酸化物 0.1〜 3% からなるものである。
SiO 2 63 to 72% B 2 O 3 12 to 18% Al 2 O 3 2 to 8% Li 2 O + Na 2 O + K 2 O 7 to 13% Copper oxide in terms of CuO 0.1 to 1.5% Cl + Br 0.1 to 1.5% The oxides of tin and antimony are converted into SnO and Sb 2 O 3 , respectively, and are composed of SnO + Sb 2 O 3 0.05 to 2% bismuth oxide 0.1 to 3%.

【0019】一方、第2の素ガラスの組成は、モル%表
示で、 SiO2 50〜80% B2O3 10〜30% Al2O3 1〜20% Li2O+Na2O+K2O 5〜20% ZrO2 0.3〜10% 銅の酸化物がCuO 換算で 0.01〜 2% Cl 0〜 2% Br 0〜 2% Cl+Br 0.01〜 2% 錫及びアンチモンの酸化物をそれぞれSnO、Sb2O3 に換算
し SnO+Sb2O3 0.01〜 3% 鉄、鉛、セリウム、チタン及びビスマスから選ばれた少
なくとも一種の酸化物0.001〜 5% からなる。
On the other hand, the composition of the second elemental glass is expressed in mol%, SiO 2 50 to 80% B 2 O 3 10 to 30% Al 2 O 3 1 to 20% Li 2 O + Na 2 O + K 2 O 5 to 20% ZrO 2 0.3 to 10% Copper oxide is CuO equivalent 0.01 to 2% Cl 0 to 2% Br 0 to 2% Cl + Br 0.01 to 2% Tin and antimony oxides are SnO, respectively. , Sb 2 O 3 , SnO + Sb 2 O 3 0.01 to 3% 0.001 to 5% of at least one oxide selected from iron, lead, cerium, titanium and bismuth.

【0020】かかる素ガラスにおいて、SiO2の含有量が
50モル%未満の場合は、ガラスの化学的耐久性が不充分
であり、逆に80モル%を超えた場合は、ガラスの生成温
度が高くなり、Cu及びCl、Br成分が揮散してしまいいず
れも好ましくない。
In such a raw glass, the content of SiO 2 is
If it is less than 50 mol%, the chemical durability of the glass is insufficient. Conversely, if it exceeds 80 mol%, the glass formation temperature becomes high and the Cu, Cl, and Br components volatilize. Neither is preferable.

【0021】B2O3の含有量が10モル%未満の場合は、Cu
Cl、CuBrの析出が得られにくく、逆に30モル%を超える
とガラスの化学的耐久性が低くなるのでいずれも好まし
くない。Al2O3 の含有量が1モル%未満の場合は、ガラ
スが分相により白濁しやすくなり、一方、Al2O3 が20モ
ル%を超えると、ガラス化し難くなるので好ましくな
い。
When the content of B 2 O 3 is less than 10 mol%, Cu
Precipitation of Cl and CuBr is difficult to obtain, and conversely, if it exceeds 30 mol%, the chemical durability of the glass becomes low, so neither is preferable. If the Al 2 O 3 content is less than 1 mol%, the glass tends to become cloudy due to phase separation, while if the Al 2 O 3 content exceeds 20 mol%, vitrification becomes difficult, which is not preferable.

【0022】Li2O、Na2O、K2O の含有量が、合量で5モ
ル%未満の場合はガラスの生成温度が高くなりCu及びC
l、Br成分が揮散してしまい、一方、合量が15モル%を
超える場合はガラス中に銅コロイドが析出して赤色化し
やすくなるとともに化学的耐久性が低くなるので、いず
れも好ましくない。なお、Li2O、 Na2O 、 K2Oの合量に
対するLi2Oの比が0.25以上にすると制御された粒径のCu
Cl又は/及びCuBr微粒子が容易に析出しうるので特に好
ましい。
If the total content of Li 2 O, Na 2 O and K 2 O is less than 5 mol%, the glass formation temperature becomes high and Cu and C
Both l and Br components are volatilized. On the other hand, when the total amount exceeds 15 mol%, copper colloids are likely to precipitate in the glass to cause red coloration and the chemical durability is lowered, which is not preferable. Note that when the ratio of Li 2 O to the total amount of Li 2 O, Na 2 O, and K 2 O is 0.25 or more, Cu with a controlled grain size is formed.
Particularly preferred is that Cl or / and CuBr fine particles can be easily deposited.

【0023】ZrO2の含有量が0.3 モル%未満の場合は、
ガラスの成形時に分相による白濁化が生じたり、熱処理
時に銅コロイドの析出によるガラスの赤色化が生じやす
く、一方10モル%を超えるとガラスの生成温度が高くな
りCu及びCl、Br成分が揮散してしまい、いずれも好まし
くない。
When the ZrO 2 content is less than 0.3 mol%,
When glass is formed, white turbidity occurs due to phase separation, and copper colloid precipitates easily during the heat treatment, causing glass to turn red. On the other hand, when it exceeds 10 mol%, the glass formation temperature rises and Cu, Cl, and Br components volatilize. This is not preferable either.

【0024】そしてこのうち特に好ましい素ガラスは以
下のものである。
Of these, the particularly preferable raw glass is as follows.

【0025】 SiO2 55〜75% B2O3 12〜25% Al2O3 2〜15% Li2O+Na2O+K2O 7〜17% ZrO2 0.3〜 3% 銅の酸化物がCuO 換算で 0.1〜 2% Cl 0〜 2% Br 0〜 2% Cl+Br 0.1〜 2% 錫及びアンチモンの酸化物をそれぞれSnO、Sb2O3 に換算
し SnO+Sb2O3 0.05〜 2% ビスマスの酸化物 0.1〜 3% からなるものである。
SiO 2 55-75% B 2 O 3 12-25% Al 2 O 3 2-15% Li 2 O + Na 2 O + K 2 O 7-17% ZrO 2 0.3-3% Copper oxide Converted to CuO 0.1 to 2% Cl 0 to 2% Br 0 to 2% Cl + Br 0.1 to 2% TinO and Sb 2 O 3 are converted into SnO and Sb 2 O 3 , respectively, and SnO + Sb 2 O 3 0.05 to 2% Bismuth oxide 0.1 to 3%.

【0026】析出させるCuCl又は/及びCuBr微粒子の粒
径は0.5 〜 400nmであることが好ましい。粒径が 0.5
nm未満の場合はCuCl又は/及びCuBrの吸収が充分でな
く期待される紫外線の遮蔽が不充分であり、逆に、 400
nmを超えると可視光がガラス中で散乱してしまいガラ
スの透明度が失われるので好ましくない。この範囲のう
ち1〜 100nmの粒径の場合、充分に紫外線を遮蔽する
とともに可視光に対して透明なガラスとなるので特に好
ましい。
The particle size of CuCl and / or CuBr fine particles to be deposited is preferably 0.5 to 400 nm. Particle size 0.5
If it is less than nm, the absorption of CuCl and / or CuBr is not sufficient and the expected ultraviolet ray shielding is insufficient.
If it exceeds nm, visible light is scattered in the glass and the transparency of the glass is lost, which is not preferable. Within this range, a particle size of 1 to 100 nm is particularly preferable because it sufficiently shields ultraviolet rays and makes the glass transparent to visible light.

【0027】本発明の紫外線シャープカットガラスの製
造に際し、用いられる原料としては、例えば次の物質が
あげられる。
Examples of raw materials used in the production of the ultraviolet sharp cut glass of the present invention include the following substances.

【0028】銅及び塩素並びに臭素の原料としては、例
えばCuCl、CuCl2 、CuBr、CuBr2 などの銅の塩化物、臭
化物の他、銅は銅単体あるいは銅の酸化物、水酸化物、
硫酸塩等の無機塩や有機塩を用いることができる。ま
た、塩素、臭素はアルカリ塩化物、アルカリ臭化物、塩
化アンモニウム、臭化アンモニウムや他の添加成分の塩
化物、臭化物として供給することも可能である。更に、
塩素、臭素は単体あるいは塩化物、臭化物の気体として
ガラスと反応させ導入させることも可能である。
Examples of raw materials for copper, chlorine and bromine include chlorides and bromides of copper such as CuCl, CuCl 2 , CuBr and CuBr 2, and copper as a simple substance of copper or an oxide or hydroxide of copper.
Inorganic salts such as sulfate and organic salts can be used. Further, chlorine and bromine can be supplied as alkali chloride, alkali bromide, ammonium chloride, ammonium bromide and chlorides and bromides of other additive components. Furthermore,
Chlorine and bromine can be introduced as a simple substance or as a gas of chloride or bromide by reacting with glass.

【0029】錫の原料としては、酸化第一錫(SnO )、
酸化第二錫(SnO2)などの酸化物の他、塩化物、有機錫
化合物が用いることができる。
As a raw material of tin, stannous oxide (SnO),
In addition to oxides such as stannic oxide (SnO 2 ), chlorides and organotin compounds can be used.

【0030】アンチモンの原料としては、三酸化アンチ
モン(Sb2O3 )、五酸化アンチモン(Sb2O5 )などの酸
化物やピロアンチモン酸ソーダなどの複合酸化物の他、
塩化物や有機アンチモン化合物を用いることができる。
As the raw material of antimony, in addition to oxides such as antimony trioxide (Sb 2 O 3 ) and antimony pentoxide (Sb 2 O 5 ) and complex oxides such as sodium pyroantimonate,
Chlorides and organic antimony compounds can be used.

【0031】鉄、鉛、セリウム、チタン及びビスマスの
原料としては、例えば酸化鉄(Fe2O3 、FeO )、酸化鉛
(PbO 、Pb3O4 )、酸化セリウム(CeO2)、酸化チタン
(TiO2)、酸化ビスマス(Bi2O3 、Bi2O5 )などの酸化
物の他、窒化物や有機金属化合物が用いることができ
る。
Examples of raw materials for iron, lead, cerium, titanium and bismuth include iron oxide (Fe 2 O 3 , FeO), lead oxide (PbO, Pb 3 O 4 ), cerium oxide (CeO 2 ), titanium oxide ( In addition to oxides such as TiO 2 ) and bismuth oxide (Bi 2 O 3 , Bi 2 O 5 ), nitrides and organometallic compounds can be used.

【0032】ケイ素原料としては、例えば二酸化ケイ素
などのケイ素の酸化物の他、窒化物、有機ケイ素化合物
や、ケイ酸アルカリなどのケイ酸塩も他のアルカリ化合
物と混合して用いることができる。
As the silicon raw material, for example, a silicon oxide such as silicon dioxide, a nitride, an organic silicon compound, or a silicate such as an alkali silicate can be mixed with another alkali compound.

【0033】ホウ酸原料としては、ホウ酸(H3BO3 )、
無水ホウ酸(B2O3)などの酸化物の他、窒化物、有機ホ
ウ素化合物や、ホウ酸アルカリなどのホウ酸塩も他のア
ルカリ化合物と混合して用いることができる。
As boric acid raw material, boric acid (H 3 BO 3 ),
In addition to oxides such as anhydrous boric acid (B 2 O 3 ), nitrides, organoboron compounds, and borate salts such as alkali borate can be used as a mixture with other alkali compounds.

【0034】アルミニウム原料としては、水酸化アルミ
ニウム(Al(OH)3 )、アルミナ(Al2O3 )などの水酸化
物、酸化物の他、窒化物、有機アルミニウム化合物など
も用いることができる。
As the aluminum raw material, hydroxides and oxides such as aluminum hydroxide (Al (OH) 3 ) and alumina (Al 2 O 3 ) as well as nitrides and organic aluminum compounds can be used.

【0035】アルカリ金属の原料としては、例えば炭酸
塩が代表的であるが、水酸化物、塩化物等の他のアルカ
リ化合物を適宜用いうる。
Typical examples of the alkali metal raw material are carbonates, but other alkali compounds such as hydroxides and chlorides can be appropriately used.

【0036】鉄の原料としては、鉄単体あるいは鉄の酸
化物やハロゲン化物などを用いることができる。
As a raw material of iron, iron alone, iron oxides or halides can be used.

【0037】ジルコニウムの原料としては、酸化ジルコ
ニウム(ZrO2)などの酸化物の他、塩化物、有機ジルコ
ニウム化合物やジルコン(ZrSiO4)などの複合酸化物も
他のケイ素化合物と混合して用いることができる。
As zirconium raw materials, in addition to oxides such as zirconium oxide (ZrO 2 ), chlorides, complex oxides such as organozirconium compounds and zircon (ZrSiO 4 ) may be mixed with other silicon compounds. You can

【0038】また、ガラス融液のレドックスを制御して
ガラスを無色にするために、原料バッチ中に硝酸塩や硫
酸塩などの酸化剤やカーボンなどの還元剤を適宜添加し
てもよい。
Further, in order to control the redox of the glass melt to make the glass colorless, an oxidizing agent such as nitrate or sulfate or a reducing agent such as carbon may be appropriately added to the raw material batch.

【0039】本発明の紫外線シャープカットガラスの製
造手段としては、特に制限はなく、例えば諸原料を所定
量秤量して混合し、これを1200〜1800℃で5分〜数日間
加熱溶融し、所定形状に成形せしめる方法が用いられ
る。CuCl又は/及びCuBr微粒子は、500〜730℃、
0.1〜4時間の熱処理により析出することができる。
その析出方法としては、成形されたガラスを一旦室温ま
で冷却し次いで加熱して所定温度に保持して微粒子を析
出する方法と、成形する温度までの冷却過程あるいは成
形後のガラスを室温まで冷却する過程で所定の温度で保
持したり、冷却速度を制御することによって微粒子を析
出する方法とがあり、どちらの方法も好ましい。
The means for producing the ultraviolet sharp cut glass of the present invention is not particularly limited, and for example, various raw materials are weighed and mixed in a predetermined amount, and the mixture is heated and melted at 1200 to 1800 ° C. for 5 minutes to several days, and then predetermined. A method of forming into a shape is used. CuCl or / and CuBr fine particles are 500 to 730 ° C.,
It can be deposited by heat treatment for 0.1 to 4 hours.
As the precipitation method, the molded glass is once cooled to room temperature and then heated to be kept at a predetermined temperature to precipitate fine particles, and the cooling process to the molding temperature or the glass after molding is cooled to room temperature. There is a method of precipitating fine particles by maintaining a predetermined temperature in the process or controlling a cooling rate, and either method is preferable.

【0040】本発明による紫外線シャープカットガラス
製造法においては、融液状態からの冷却過程において
も、本質的にガラスの分相や着色がおこりにくいため、
プレス法、ロールアウト法、フロート法、ダンナー法な
ど種々の方法や雰囲気での所定の形状のガラス成形が可
能である。
In the method for producing an ultraviolet sharp cut glass according to the present invention, it is essentially difficult for the glass to undergo phase separation or coloring even during the cooling process from the melt state.
Various methods such as a pressing method, a roll-out method, a float method, and a Danner method, and glass molding of a predetermined shape in an atmosphere are possible.

【0041】[0041]

【実施例】【Example】

(実施例1〜11)表1の組成のガラス 500gになるよ
うに原料を調合し、これを白金坩堝に入れ1550℃で2時
間溶融した後、スレンレス板上に流しだして板状のガラ
スを成形した。この成形したガラスを表1に示す温度、
時間で熱処理を行なうことによって、ガラス中に微粒子
の析出を行なった。この微粒子析出ガラスの外観を観察
するとともに、1mmの厚さに研磨し、分光透過率を測
定し、1%透過率を示す波長及び80%から10%に透過率
が変化する波長傾斜幅を求めた。ガラス中の微粒子の粒
径は透過型電子顕微鏡観察により測定した。さらに、 1
00Wの超高圧水銀ランプを光源に用いて 250〜 380nm
の紫外線強度が 150mW/cm2 になる位置にガラスを
置き、 100時間暴露した後の透過率変化△T%を測定し
た。△T%は次式で算出した。
(Examples 1 to 11) Raw materials were blended so as to obtain 500 g of the glass having the composition shown in Table 1, which was placed in a platinum crucible and melted at 1550 ° C for 2 hours, and then poured onto a stainless steel plate to obtain a plate-shaped glass. Molded. The temperature of this molded glass shown in Table 1,
Fine particles were deposited in the glass by performing heat treatment for a period of time. While observing the appearance of this fine particle-deposited glass, it was polished to a thickness of 1 mm, the spectral transmittance was measured, and the wavelength showing 1% transmittance and the wavelength inclination width at which the transmittance changed from 80% to 10% were obtained. It was The particle size of the fine particles in the glass was measured by observation with a transmission electron microscope. In addition, 1
250 ~ 380nm using 00W ultra high pressure mercury lamp as light source
The glass was placed at a position where the ultraviolet intensity of the above was 150 mW / cm 2 and the change in transmittance ΔT% after 100 hours of exposure was measured. ΔT% was calculated by the following formula.

【0042】△T%=T%( 430nmの波長における暴
露前透過率)−T%( 430nmの波長における暴露後透
過率) ガラスの外観及びその他の測定値を表1に示す。
ΔT% = T% (transmittance before exposure at a wavelength of 430 nm) -T% (transmittance after exposure at a wavelength of 430 nm) The appearance of glass and other measured values are shown in Table 1.

【0043】(比較例1〜8)表2の組成のガラスを実
施例と同様にして作製し、外観を観察するとともに、実
施例と同様の紫外線暴露試験を行なった。その結果、紫
外線照射により大幅な透過率変化が観測された。
(Comparative Examples 1 to 8) Glasses having the compositions shown in Table 2 were prepared in the same manner as in the examples, the appearance was observed, and the ultraviolet exposure test similar to the examples was conducted. As a result, a large change in transmittance was observed by UV irradiation.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】本発明によれば、高輝度紫外線に対する
耐ソーラリゼーション特性に優れた無色透明の高輝度光
源用紫外線シャープカットガラスが製造される。
EFFECTS OF THE INVENTION According to the present invention, a colorless and transparent UV sharp cut glass for a high brightness light source, which is excellent in solarization resistance to high brightness UV, is manufactured.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】モル%表示で、 銅の酸化物をCuO 換算で 0.01〜 2% Cl+Br 0.01〜 2% 錫及びアンチモンの酸化物をそれぞれSnO、Sb2O3 に換算
し SnO+Sb2O3 0.01〜 3% を含有する素ガラスを準備し、素ガラスを熱処理してCu
Cl又は/及びCuBr微粒子を析出し、高輝度光源用紫外線
シャープカットガラスの製造するにあたり、素ガラスは
鉄、鉛、セリウム、チタン及びビスマスから選ばれた少
なくとも一種の酸化物を 0.001〜5モル%含有する高輝
度光源用紫外線シャープカットガラスの製造法。
1. In terms of mol%, copper oxide is converted to CuO 0.01 to 2% Cl + Br 0.01 to 2% Tin and antimony oxides are converted to SnO and Sb 2 O 3 , respectively, and SnO + Sb 2 Prepare an elementary glass containing 0.01 to 3% of O 3 and heat treat the elementary glass to Cu.
In the production of UV sharp cut glass for high-brightness light sources by precipitating Cl or / and CuBr fine particles, the raw glass contains 0.001 to 5 mol% of at least one oxide selected from iron, lead, cerium, titanium and bismuth. A method for producing an ultraviolet sharp-cut glass for a high-brightness light source containing.
【請求項2】前記素ガラスはビスマスの酸化物を 0.1〜
3モル%含有する請求項1記載の高輝度光源用紫外線シ
ャープカットガラスの製造法。
2. The base glass contains bismuth oxide in an amount of 0.1 to
The method for producing an ultraviolet sharp cut glass for a high-intensity light source according to claim 1, which contains 3 mol%.
JP19675794A 1994-08-22 1994-08-22 Method for producing ultraviolet light-sharply cutting glass for high brightness light source Pending JPH0859289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19675794A JPH0859289A (en) 1994-08-22 1994-08-22 Method for producing ultraviolet light-sharply cutting glass for high brightness light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19675794A JPH0859289A (en) 1994-08-22 1994-08-22 Method for producing ultraviolet light-sharply cutting glass for high brightness light source

Publications (1)

Publication Number Publication Date
JPH0859289A true JPH0859289A (en) 1996-03-05

Family

ID=16363116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19675794A Pending JPH0859289A (en) 1994-08-22 1994-08-22 Method for producing ultraviolet light-sharply cutting glass for high brightness light source

Country Status (1)

Country Link
JP (1) JPH0859289A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529048A (en) * 2002-05-16 2005-09-29 ショット アーゲー UV-shielding borosilicate glass, its use, and fluorescent lamp
WO2006090801A1 (en) * 2005-02-25 2006-08-31 Japan Science And Technology Agency Glass composition containing bismuth and method of amplifying signal light therewith
WO2007123012A1 (en) * 2006-04-24 2007-11-01 Nippon Electric Glass Co., Ltd. Glass for illumination lamp
WO2008102822A1 (en) 2007-02-20 2008-08-28 Fujifilm Corporation Polymer material containing ultraviolet absorbent
WO2009022736A1 (en) 2007-08-16 2009-02-19 Fujifilm Corporation Heterocyclic compound, ultraviolet ray absorbent, and composition comprising the ultraviolet ray absorbent
JP2018513825A (en) * 2015-03-02 2018-05-31 コーニング インコーポレイテッド UV absorbing glass and articles thereof
JP2019534234A (en) * 2016-11-07 2019-11-28 コーニング インコーポレイテッド Lithium-containing glass
CN112047625A (en) * 2020-09-17 2020-12-08 成都光明光电股份有限公司 Ultraviolet-transmitting optical glass
US11111173B2 (en) 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005529048A (en) * 2002-05-16 2005-09-29 ショット アーゲー UV-shielding borosilicate glass, its use, and fluorescent lamp
US7517822B2 (en) 2002-05-16 2009-04-14 Schott Ag UV-blocking borosilicate glass, the use of the same, and a fluorescent lamp
JPWO2006090801A1 (en) * 2005-02-25 2008-08-07 独立行政法人科学技術振興機構 Glass composition containing bismuth and method for amplifying signal light using the same
WO2006090801A1 (en) * 2005-02-25 2006-08-31 Japan Science And Technology Agency Glass composition containing bismuth and method of amplifying signal light therewith
DE112006000454B4 (en) * 2005-02-25 2017-10-26 Hamamatsu Photonics K.K. A bismuth-containing glass composition and method for enhancing a signal light
WO2007123012A1 (en) * 2006-04-24 2007-11-01 Nippon Electric Glass Co., Ltd. Glass for illumination lamp
WO2008102822A1 (en) 2007-02-20 2008-08-28 Fujifilm Corporation Polymer material containing ultraviolet absorbent
WO2009022736A1 (en) 2007-08-16 2009-02-19 Fujifilm Corporation Heterocyclic compound, ultraviolet ray absorbent, and composition comprising the ultraviolet ray absorbent
JP2018513825A (en) * 2015-03-02 2018-05-31 コーニング インコーポレイテッド UV absorbing glass and articles thereof
JP2019534234A (en) * 2016-11-07 2019-11-28 コーニング インコーポレイテッド Lithium-containing glass
US11111173B2 (en) 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses
US11932574B2 (en) 2016-11-07 2024-03-19 Corning Incorporated Lithium containing glasses
US11945747B2 (en) 2016-11-07 2024-04-02 Corning Incorporated Low viscosity glasses and methods and systems for manufacture
CN112047625A (en) * 2020-09-17 2020-12-08 成都光明光电股份有限公司 Ultraviolet-transmitting optical glass

Similar Documents

Publication Publication Date Title
US3208860A (en) Phototropic material and article made therefrom
WO1997014661A1 (en) High-index glasses that absorb uv radiation
US4092139A (en) Process for making colored photosensitive glass
CN108423986B (en) Borosilicate glass, anti-halation input window glass and preparation method thereof
JP7138139B2 (en) Li2O-Al2O3-SiO2-based crystallized glass
JPH02296747A (en) High refractive index photochromic glass
JPS58151347A (en) Phototropism glass having not less than 1.59 refractive index, not less than 44 abbe number and not more than 3.0g/cm3 density
EP0087967B1 (en) Alkali metal aluminoborosilicate photochromic glasses
GB2056434A (en) Optically clear copper halide photochromic glass
JP2628014B2 (en) Polarized glass
JPH0369528A (en) Quick-response, photosensitive opal glass
JPH0859289A (en) Method for producing ultraviolet light-sharply cutting glass for high brightness light source
US4328299A (en) Polychromatic glasses and method
TW200951088A (en) Oxyhalide glass fining
JPH08337433A (en) Matrix glass for ultraviolet-ray shielding glass and production of ultraviolet-ray shielding glass
JPH0664936A (en) Production of glass capable of sharply cutting ultraviolet ray
Stoica et al. UV–vis spectroscopic studies of CaF2 photo-thermo-refractive glass
JPH0551235A (en) Colored low expansion transparent crystallized glass
JP2852462B2 (en) Tinted glass
JPH0748140A (en) Production of glass sharply cutting ultraviolet rays
JPH05229848A (en) Ultraviolet light sharply cutting glass
JPH0616453A (en) Manufacture of glass for sharply cutting u.v. rays
JPH06340445A (en) Yellow colored glass
JPH02302338A (en) Bronze color transparent crystallized glass
JP2881573B2 (en) Method for producing lead-free crystal glass composition