JPH0748140A - Production of glass sharply cutting ultraviolet rays - Google Patents

Production of glass sharply cutting ultraviolet rays

Info

Publication number
JPH0748140A
JPH0748140A JP21230893A JP21230893A JPH0748140A JP H0748140 A JPH0748140 A JP H0748140A JP 21230893 A JP21230893 A JP 21230893A JP 21230893 A JP21230893 A JP 21230893A JP H0748140 A JPH0748140 A JP H0748140A
Authority
JP
Japan
Prior art keywords
glass
terms
fine particles
mol
cubr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21230893A
Other languages
Japanese (ja)
Inventor
Naoki Sugimoto
直樹 杉本
Tsuneo Manabe
恒夫 真鍋
Hiromi Kondo
裕己 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP21230893A priority Critical patent/JPH0748140A/en
Publication of JPH0748140A publication Critical patent/JPH0748140A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the shielding performance and transmittance of visible light by heat-treating a specific raw glass to precipitate fine particles of CuCl and/or CuBr. CONSTITUTION:A raw glass to be used in this process has a glass composition composed of 62-85mol% of SiO2, 10-20mol% of B2O3, 1-10mol% of Al2O3, 3-15mol% of Li2O+Na2O+K2O, 0.01-2mol% of copper oxide in terms of Cub, 0.01-4mol% of Cl+Br, 0.001-0.5mol% of iron oxide in terms of Fe2O3 and 0.01-3mol% of tin and antimony oxides in terms of SnO+Sb2O3. The raw glass is melted by heating at 1200-1800 deg.C for 5min to several days, formed to a desired form, cooled to room temperature, heated again and maintained at a prescribed temperature to precipitate Curl and/or CuBr fine particles having particle diameter of 0.5-400nm and obtain a glass having a sharp UV-cutting property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線シャープカット
ガラスの製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultraviolet sharp cut glass.

【0002】[0002]

【従来の技術】従来、紫外線をカットするガラスとして
は、いわゆる紫外線シャープカットガラスとして市販さ
れているものや、人工衛星の太陽電池を紫外線から保護
する目的のカバーガラスなどが知られている。これらの
ガラスは、種々のイオンをドープしたガラスの紫外域の
吸収を利用して紫外線の遮蔽を行っている。
2. Description of the Related Art Heretofore, as glass for cutting off ultraviolet rays, there have been known ones which are commercially available as so-called ultraviolet sharp cut glasses and cover glasses for protecting solar cells of artificial satellites from ultraviolet rays. These glasses shield ultraviolet rays by utilizing the absorption in the ultraviolet region of glasses doped with various ions.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらイオン
をドープしたガラスは、紫外側吸収端付近での波長に対
する透過率の変化の割合が比較的ゆるやかであるため、
近紫外線をカットするためには可視域での吸収がさけら
れず、ガラスが黄色く着色してしまい、逆に、可視域で
吸収のない無色なガラスでは近紫外域がカットできない
という課題があった。
However, in the glass doped with these ions, the rate of change of the transmittance with respect to the wavelength near the ultraviolet absorption edge is relatively gradual.
In order to cut near-ultraviolet rays, absorption in the visible region is unavoidable, and the glass is colored yellow, and conversely, there is a problem that the near-ultraviolet region cannot be cut with colorless glass that does not absorb in the visible region. .

【0004】また、この欠点の解消を目的として特公昭
46−3464の波長傾斜幅の小さい紫外線吸収ガラス
が提案された。このガラスはCuClやCuBrの結晶
をガラス中に析出させることを特徴とするが、ガラスの
化学的耐久性が不十分であったり、化学的耐久性が良好
であってもガラスが青色や緑色や赤色に着色してしまう
という課題があった。
Further, for the purpose of eliminating this drawback, Japanese Patent Publication No. 46-3464 proposes an ultraviolet absorbing glass having a small wavelength inclination width. This glass is characterized by precipitating CuCl or CuBr crystals in the glass, but the chemical durability of the glass is insufficient, or even if the glass has good chemical durability, the glass is blue or green. There was a problem that it was colored red.

【0005】[0005]

【課題を解決するための手段】本発明は、前述の課題を
解決するためになされたものであり、ガラスの組成がモ
ル%表示で SiO2 62〜85% B23 10〜20% Al23 1〜10% Li2 O+Na2 O+K2 O 3〜15% 銅の酸化物を CuO換算で 0.01〜 2% Cl+Br 0.01〜 4% 鉄の酸化物を Fe23 換算で 0.001〜0.5% 錫及びアンチモンの酸化物を SnO+Sb23 換算で 0.01〜 3% からなる素ガラスを準備し、素ガラスを熱処理して、C
uCl又は/及びCuBr微粒子を析出させる紫外線シ
ャープカットガラスの製造法である。
The present invention has been made to solve the above-mentioned problems, and the composition of the glass is expressed as mol% SiO 2 62 to 85% B 2 O 3 10 to 20% Al. 2 O 3 1 to 10% Li 2 O + Na 2 O + K 2 O 3 to 15% Copper oxide in terms of CuO 0.01 to 2% Cl + Br 0.01 to 4% Iron oxide in terms of Fe 2 O 3 the oxide of 0.001 to 0.5% tin and antimony preparing a raw glass consisting from 0.01 to 3% by SnO + Sb 2 O 3 in terms of, by heat-treating raw glass, C
It is a method for producing an ultraviolet sharp cut glass in which uCl or / and CuBr fine particles are deposited.

【0006】本発明により製造される紫外線シャープカ
ットガラスは、紫外線領域で非常にシャープな吸収を持
つCuCl又は/及びCuBr微粒子(結晶)がガラス
中に析出しているため、可視域の光を吸収することなく
紫外線だけを選択的に遮蔽できる。
The ultraviolet sharp cut glass produced by the present invention absorbs light in the visible region because CuCl and / or CuBr fine particles (crystals) having extremely sharp absorption in the ultraviolet region are deposited in the glass. It is possible to selectively block only ultraviolet rays without doing so.

【0007】本発明は、上記特定組成の素ガラスを準備
し、それを熱処理することにより、CuCl又は/及び
CuBr微粒子を析出させるものである。まず、素ガラ
スの組成限定理由について説明する。
The present invention prepares CuCl and / or CuBr fine particles by preparing the elementary glass having the above-mentioned specific composition and heat-treating it. First, the reason for limiting the composition of the raw glass will be described.

【0008】本発明における素ガラスにおいて、SiO
2 が62モル%未満では、ガラスの分相によってガラス
の白濁や銅コロイドによる着色が起こりやすく、85モ
ル%超では、ガラスの生成温度が高くなり、Cu、Cl
及びBr成分の揮散が多くなる。
In the raw glass of the present invention, SiO
When 2 is less than 62 mol%, clouding of the glass or coloring due to copper colloid is likely to occur due to the phase separation of the glass, and when it exceeds 85 mol%, the glass formation temperature becomes high and Cu, Cl
And, the volatilization of Br component is increased.

【0009】B23 が10モル%未満では、CuC
l、CuBrの析出が得られ難く、20モル%超では、
ガラスの化学的耐久性が低くなる。
When B 2 O 3 is less than 10 mol%, CuC
l, it is difficult to obtain CuBr precipitation, and if it exceeds 20 mol%,
The chemical durability of glass becomes low.

【0010】Al23 が1モル%未満では、ガラスが
分相により白濁しやすくなり、10モル%超では、ガラ
ス化し難くなる。
When Al 2 O 3 is less than 1 mol%, the glass tends to become cloudy due to phase separation, and when it exceeds 10 mol%, vitrification is difficult.

【0011】Li2 O、Na2 O、K2 Oは、1種類の
みを用いても2種類以上混合して用いても支障ない。合
計量が3モル%未満では、ガラスの生成温度が高くなり
Cu及びCl、Br成分の揮散が多くなり、合計量が1
5モル%超では、ガラス中に銅コロイドが析出して赤色
化しやすくなるとともに化学的耐久性が低くなる。
Li 2 O, Na 2 O and K 2 O may be used alone or in combination of two or more. When the total amount is less than 3 mol%, the glass formation temperature becomes high and the volatilization of Cu, Cl, and Br components increases, and the total amount becomes 1
If it exceeds 5 mol%, the copper colloid will be precipitated in the glass to easily turn red and the chemical durability will be low.

【0012】さらに、ガラス中にCuCl又は/及びC
uBr微粒子を析出させるために、銅の酸化物をCuO
換算で0.01〜2モル%、Cl又は/及びBrを0.
01〜4モル%含有させることが必要である。
Further, CuCl and / or C is contained in the glass.
In order to deposit uBr fine particles, copper oxide was added to CuO.
Converted to 0.01 to 2 mol%, Cl or / and Br to 0.
It is necessary to contain 01 to 4 mol%.

【0013】CuO換算した銅の酸化物が0.01モル
%未満では、CuCl又は/及びCuBr微粒子が充分
析出せず紫外線の遮蔽性能が十分でなく、2モル%超で
は、紫外線遮蔽性能はそれ以上向上せず、逆にCuCl
又は/及びCuBr微粒子の巨大粒子が析出し、ガラス
の透明性が失われる。Cl、Brは、遮蔽波長により適
宜その混合比も選定される。
When the copper oxide converted to CuO is less than 0.01 mol%, CuCl and / or CuBr fine particles are not sufficiently deposited and the ultraviolet ray shielding performance is not sufficient. No improvement, and conversely CuCl
Alternatively, giant particles of CuBr fine particles are deposited, and the transparency of the glass is lost. The mixing ratio of Cl and Br is appropriately selected depending on the shielding wavelength.

【0014】ClとBrの合計量が0.01モル%未満
では、CuCl又は/及びCuBr微粒子が充分析出せ
ず紫外線の遮蔽性能が十分でなく、4モル%超では、紫
外線遮蔽性能はそれ以上向上せず、逆にガラスの分相が
生じやすくなりガラスの透明性が失われるおそれがあ
る。Cl、Brは、それぞれ単独で用いてもよい。
When the total amount of Cl and Br is less than 0.01 mol%, CuCl and / or CuBr fine particles are not sufficiently precipitated and the ultraviolet ray shielding performance is not sufficient. There is a risk that the glass does not improve, and conversely the glass is likely to undergo phase separation, and the transparency of the glass is lost. Cl and Br may be used alone.

【0015】さらに、ガラス中に銅コロイドが析出する
ことによる赤色化を防ぐために、Fe23 換算した鉄
の酸化物を0.001〜0.5%含有させることが必要
である。Fe23 換算した鉄の酸化物が0.001モ
ル%未満では、銅コロイド析出の抑止が十分でなく、ガ
ラスが赤色化しやすくなり、0.5%超では、ガラスが
茶褐色や緑色に着色してしまう。
Further, it is necessary to contain 0.001 to 0.5% of Fe 2 O 3 -converted iron oxide in order to prevent reddening due to copper colloid deposition in the glass. When the iron oxide calculated as Fe 2 O 3 is less than 0.001 mol%, the copper colloid precipitation is not sufficiently suppressed and the glass tends to turn red, and when it exceeds 0.5%, the glass is colored brown or green. Resulting in.

【0016】上記成分の外に、錫及びアンチモンの酸化
物をSnO+Sb23 換算で0.01〜3モル%含有
させることにより、ガラスが着色せずかつCuCl又は
/及びCuBr微粒子がさらに析出しやすくなる。Sn
O+Sb23 換算した錫及びアンチモンの酸化物が
0.01モル%未満では、ガラスが青色や緑色に着色し
やすく、3モル%超では、ガラスが赤色に着色しやすい
ため好ましくない。
In addition to the above components, by containing 0.01 to 3 mol% of tin and antimony oxides in terms of SnO + Sb 2 O 3 , the glass is not colored and CuCl and / or CuBr fine particles are further precipitated. It will be easier. Sn
If the oxide of tin and antimony converted to O + Sb 2 O 3 is less than 0.01 mol%, the glass tends to be colored blue or green, and if it exceeds 3 mol%, the glass tends to be colored red, which is not preferable.

【0017】そしてこれらの範囲のうち、SiO2
3〜82モル%、B23 12〜18モル%、Al2
3 1.5〜8モル%、Li2 O+Na2 O+K2
4〜13モル%、CuO換算した銅の酸化物0.1〜
2モル%、Cl又は/及びBr 0.1〜3モル%、F
23 換算した鉄の酸化物0.002〜0.05モル
%、SnO+Sb23 換算した錫及びアンチモンの酸
化物0.05〜2モル%からなるガラスは、無色透明の
外観を有するとともに制御された粒径のCuCl又は/
及びCuBr微粒子が容易に析出しうるので特に好まし
い。
Of these ranges, SiO 2 6
3 to 82 mol%, B 2 O 3 12 to 18 mol%, Al 2
O 3 1.5 to 8 mol%, Li 2 O + Na 2 O + K 2 O
4 to 13 mol%, CuO equivalent copper oxide 0.1
2 mol%, Cl or / and Br 0.1 to 3 mol%, F
A glass composed of 0.002 to 0.05 mol% of iron oxide converted to e 2 O 3 and 0.05 to 2 mol% of tin and antimony oxide converted to SnO + Sb 2 O 3 has a colorless and transparent appearance. With controlled particle size CuCl or /
And CuBr fine particles are particularly preferable because they can be easily deposited.

【0018】上記以外の成分として、ガラスの溶解性や
耐久性や熱的特性などを制御する目的でCaO、Mg
O、BaOなどのアルカリ土類成分を含有してもよい。
As components other than the above, CaO and Mg are used for the purpose of controlling the solubility, durability and thermal characteristics of the glass.
You may contain alkaline-earth components, such as O and BaO.

【0019】析出させるCuCl又は/及びCuBr微
粒子の粒径は0.5〜400nmであることが好まし
い。粒径が0.5nm未満ではCuCl又は/及びCu
Brの吸収が充分でなく期待される紫外線の遮蔽が不十
分であり、400nm超では、可視光がガラス中で散乱
してしまいガラスの透明度が失われるので好ましくな
い。この範囲のうち1〜100nmの粒径の場合、十分
に紫外線を遮蔽するとともに可視光に対して透明なガラ
スとなるので特に好ましい。
The particle size of the CuCl and / or CuBr fine particles to be precipitated is preferably 0.5 to 400 nm. If the particle size is less than 0.5 nm, CuCl and / or Cu
The absorption of Br is not sufficient and the expected shielding of ultraviolet rays is insufficient. If it exceeds 400 nm, visible light is scattered in the glass and the transparency of the glass is lost, which is not preferable. A particle size of 1 to 100 nm in this range is particularly preferable because it sufficiently shields ultraviolet rays and makes the glass transparent to visible light.

【0020】本発明の紫外線シャープカットガラスの製
造に際し、用いられる原料としては、例えば次の物質が
あげられる。
Examples of raw materials used in the production of the ultraviolet sharp cut glass of the present invention include the following substances.

【0021】ケイ素原料としては、例えば二酸化ケイ素
などのケイ素の酸化物の他、窒化物、有機ケイ素化合物
や、ケイ酸アルカリなどのケイ酸塩も他のアルカリ化合
物と混合して用いうる。
As the silicon raw material, for example, a silicon oxide such as silicon dioxide, a nitride, an organic silicon compound, or a silicate such as an alkali silicate may be mixed with another alkali compound.

【0022】ホウ酸原料としては、ホウ酸(H3 BO
3 )、無水ホウ酸(B23 )などの酸化物の他、窒化
物、有機ホウ素化合物や、ホウ酸アルカリなどのホウ酸
塩も他のアルカリ化合物と混合して用いうる。
Boric acid (H 3 BO) is used as a boric acid raw material.
3 ), oxides such as boric anhydride (B 2 O 3 ), nitrides, organoboron compounds, and borate salts such as alkali borate may be mixed with other alkali compounds.

【0023】アルミニウム原料としては、水酸化アルミ
ニウム(Al(OH)3 )、アルミナ(Al23 )な
どの水酸化物、酸化物の他、窒化物、有機アルミニウム
化合物なども用いうる。
As the aluminum raw material, hydroxides and oxides such as aluminum hydroxide (Al (OH) 3 ) and alumina (Al 2 O 3 ) as well as nitrides and organoaluminum compounds can be used.

【0024】アルカリ金属の原料としては、例えば炭酸
塩が代表的であるが、水酸化物、塩化物等の他のアルカ
リ化合物を適宜用いうる。
Typical examples of the alkali metal raw material are carbonates, but other alkali compounds such as hydroxides and chlorides can be appropriately used.

【0025】銅及び塩素並びに臭素の原料としては、例
えばCuCl、CuCl2 、CuBr、CuBr2 など
の銅の塩化物、臭化物が用いうる。さらに、銅原料とし
ては銅単体あるいは銅の酸化物、水酸化物、硫酸塩等の
無機塩や有機塩を用いうる。また、塩素、臭素原料とし
てはアルカリ塩化物、アルカリ臭化物、塩化アンモニウ
ム、臭化アンモニウムも用いうるし、他の添加成分の塩
化物、臭化物としても供給しうる。さらに、塩素、臭素
は単体あるいは塩化物、臭化物の気体としてガラスと反
応させ導入することもできる。
As the raw materials for copper, chlorine and bromine, for example, copper chlorides and bromides such as CuCl, CuCl 2 , CuBr and CuBr 2 can be used. Further, as the copper raw material, simple copper or an inorganic salt or organic salt such as copper oxide, hydroxide, or sulfate may be used. As the chlorine and bromine raw materials, alkali chlorides, alkali bromides, ammonium chloride and ammonium bromide can be used, and chlorides and bromides of other additive components can also be supplied. Further, chlorine and bromine can be introduced as a simple substance or as a gas of chloride or bromide by reacting with glass.

【0026】鉄の原料としては、鉄単体、鉄の酸化物、
ハロゲン化物などを用いうる。
As a raw material of iron, iron simple substance, iron oxide,
A halide or the like can be used.

【0027】スズの原料としては、酸化第1スズ(Sn
O)、酸化第2スズ(SnO2 )などの酸化物の他、塩
化物、有機スズ化合物も用いうる。
As a raw material of tin, stannous oxide (Sn) is used.
O), stannic oxide (SnO 2 ) and other oxides, as well as chlorides and organotin compounds may be used.

【0028】アンチモンの原料としては、三酸化アンチ
モン(Sb23 )、五酸化アンチモン(Sb25
などの酸化物やピロアンチモン酸ソーダなどの複合酸化
物の他、塩化物や有機アンチモン化合物も用いうる。
As a raw material of antimony, antimony trioxide (Sb 2 O 3 ) and antimony pentoxide (Sb 2 O 5 ) are used.
In addition to oxides such as and complex oxides such as sodium pyroantimonate, chlorides and organic antimony compounds can also be used.

【0029】本発明の紫外線シャープカットガラスの製
造手段としては、特に制限はなく、例えば諸原料を所定
量秤量して混合し、これを1200〜1800℃で5分
〜数日間加熱溶融し、所定形状に成形せしめる方法が用
いられる。CuCl又は/及びCuBr微粒子の析出方
法としては、成形されたガラスを一旦室温まで冷却しつ
いで加熱して所定温度に保持して微粒子を析出する方法
と、成形する温度までの冷却過程あるいは成形後のガラ
スを室温まで冷却する過程で所定の温度で保持したり、
冷却速度を制御することによって微粒子を析出する方法
とがあり、どちらの方法も好ましい。
The means for producing the ultraviolet sharp cut glass of the present invention is not particularly limited, and for example, various raw materials are weighed and mixed in a predetermined amount, and the mixture is heated and melted at 1200 to 1800 ° C. for 5 minutes to several days, and then predetermined. A method of forming into a shape is used. As a method for depositing CuCl or / and CuBr fine particles, the molded glass is once cooled to room temperature and then heated to be maintained at a predetermined temperature to deposit fine particles, and a cooling process up to the temperature for molding or after molding. In the process of cooling the glass to room temperature, keep it at a predetermined temperature,
There is a method of depositing fine particles by controlling the cooling rate, and both methods are preferable.

【0030】本製造法による紫外線シャープカットガラ
スは、融液状態からの冷却過程においても、本質的にガ
ラスの分相や着色がおこりにくいため、プレス法、ロー
ルアウト法、フロート法、ダンナー法など種々の方法や
雰囲気での所定の形状のガラス成形が可能である。
The ultraviolet sharp cut glass produced by the present method is essentially free from phase separation and coloring of the glass even in the cooling process from the melt state, so that the pressing method, the roll-out method, the float method, the Danner method, etc. It is possible to mold glass into a predetermined shape in various methods and atmospheres.

【0031】[0031]

【実施例】【Example】

例1〜14(実施例) 表1、2に示す組成(単位:モル%)のガラス400g
になるように原料を調合し、これを白金坩堝に入れ15
50℃で2時間溶融した。ついで、これをステンレス板
上に流しだして板状のガラスを成形した。この成形した
ガラスを同表に示す熱処理温度(単位:℃)、熱処理時
間(単位:分)で熱処理を行う、あるいは同表に示す冷
却速度(単位:℃/分)でガラス転移温度以下まで冷却
を行うことによって、ガラス中に微粒子の析出を行っ
た。
Examples 1 to 14 (Examples) 400 g of glass having the composition (unit: mol%) shown in Tables 1 and 2
Mix the raw materials so that it becomes and put it in a platinum crucible.
It was melted at 50 ° C. for 2 hours. Then, this was poured onto a stainless plate to form a plate-shaped glass. This shaped glass is heat-treated at the heat treatment temperature (unit: ° C) and heat treatment time (unit: minutes) shown in the table, or cooled to the glass transition temperature or lower at the cooling rate (unit: ° C / min) shown in the table. By performing the above, fine particles were deposited in the glass.

【0032】この微粒子析出ガラスの外観を観察すると
ともに、1mmの厚さに研磨し、分光透過率を測定し、
50%透過率を示す波長(単位:nm)及び80%から
10%に透過率が変化する波長傾斜幅(単位:nm)を
求めた。ガラス中の微粒子の粒径(単位:nm)は透過
型電子顕微鏡観察により測定した。外観及びその他の測
定値を同表に示す。
While observing the appearance of this fine particle-deposited glass, it was polished to a thickness of 1 mm and the spectral transmittance was measured.
The wavelength showing 50% transmittance (unit: nm) and the wavelength inclination width (unit: nm) at which the transmittance changes from 80% to 10% were determined. The particle size (unit: nm) of fine particles in glass was measured by observation with a transmission electron microscope. Appearance and other measured values are shown in the same table.

【0033】例21〜23(比較例) 表2に示す組成のガラスを実施例と同様にして作製し、
外観を観察するとともに、分光透過率を測定した。その
結果を表2に示した。これらのガラスは570nm付近
にガラス中に生成した銅コロイドの吸収により赤く着色
したり、褐色に着色したり、ガラスの分相により不透明
化したりした。
Examples 21 to 23 (Comparative Examples) Glasses having the compositions shown in Table 2 were prepared in the same manner as in Examples,
The appearance was observed and the spectral transmittance was measured. The results are shown in Table 2. These glasses were colored red or brown due to absorption of copper colloid generated in the glass at around 570 nm, and were opaque due to the phase separation of the glass.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】本発明によれば、紫外線の遮蔽性能が極
めて優れ、可視域の透過率が高いので無色のガラスが製
造される。
EFFECTS OF THE INVENTION According to the present invention, a colorless glass is produced because it has an excellent ultraviolet ray shielding performance and a high transmittance in the visible region.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラスの組成がモル%表示で SiO2 62〜85% B23 10〜20% Al23 1〜10% Li2 O+Na2 O+K2 O 3〜15% 銅の酸化物を CuO換算で 0.01〜 2% Cl+Br 0.01〜 4% 鉄の酸化物を Fe23 換算で 0.001〜0.5% 錫及びアンチモンの酸化物を SnO+Sb23 換算で 0.01〜 3% からなる素ガラスを準備し、素ガラスを熱処理して、C
uCl又は/及びCuBr微粒子を析出させる紫外線シ
ャープカットガラスの製造法。
1. A glass composition in terms of mol% SiO 2 62 to 85% B 2 O 3 10 to 20% Al 2 O 3 1 to 10% Li 2 O + Na 2 O + K 2 O 3 to 15% Copper oxide 0.01 to 2% in terms of CuO Cl + Br 0.01 to 4% 0.001 to 0.5% in terms of Fe 2 O 3 oxide of iron 2 to 0 in terms of SnO + Sb 2 O 3 of oxides of tin and antimony Prepare a raw glass consisting of 0.01 to 3%, heat-treat the raw glass, and add C
A method for producing an ultraviolet sharp cut glass in which uCl or / and CuBr fine particles are deposited.
【請求項2】析出させるCuCl又は/及びCuBr微
粒子の粒径は0.5〜400nmである請求項1の紫外
線シャープカットガラスの製造法。
2. The method for producing an ultraviolet sharp cut glass according to claim 1, wherein the CuCl and / or CuBr fine particles to be precipitated have a particle size of 0.5 to 400 nm.
JP21230893A 1993-08-04 1993-08-04 Production of glass sharply cutting ultraviolet rays Pending JPH0748140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21230893A JPH0748140A (en) 1993-08-04 1993-08-04 Production of glass sharply cutting ultraviolet rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21230893A JPH0748140A (en) 1993-08-04 1993-08-04 Production of glass sharply cutting ultraviolet rays

Publications (1)

Publication Number Publication Date
JPH0748140A true JPH0748140A (en) 1995-02-21

Family

ID=16620416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21230893A Pending JPH0748140A (en) 1993-08-04 1993-08-04 Production of glass sharply cutting ultraviolet rays

Country Status (1)

Country Link
JP (1) JPH0748140A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058185A1 (en) 2005-11-15 2007-05-24 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
JP2008222542A (en) * 2007-02-16 2008-09-25 Nippon Electric Glass Co Ltd Glass substrate for solar battery
WO2008123378A1 (en) 2007-03-29 2008-10-16 Isuzu Glass Co., Ltd. Method for production of distributed refractive index-type optical element having ultraviolet ray-absorbing ability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058185A1 (en) 2005-11-15 2007-05-24 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
JP2008222542A (en) * 2007-02-16 2008-09-25 Nippon Electric Glass Co Ltd Glass substrate for solar battery
WO2008123378A1 (en) 2007-03-29 2008-10-16 Isuzu Glass Co., Ltd. Method for production of distributed refractive index-type optical element having ultraviolet ray-absorbing ability

Similar Documents

Publication Publication Date Title
JP5385507B2 (en) Optically detectable, floatable, arsenic and antimony free, glasable lithium-aluminosilicate glass
EP0640571A1 (en) A wavelength up-conversion glass ceramic and a process for the production thereof
EP0156479B1 (en) Lithium alumino-silicate glass ceramics
JP2628006B2 (en) Glass ceramic, method for producing the same, and method for changing the color thereof
JPH11228180A (en) Li2o-al2o3-sio2 based glass ceramics
JPH02293345A (en) Transparent nonexpandable crystallized glass
JP7138139B2 (en) Li2O-Al2O3-SiO2-based crystallized glass
JPS58151347A (en) Phototropism glass having not less than 1.59 refractive index, not less than 44 abbe number and not more than 3.0g/cm3 density
US4687750A (en) Transparent glass-ceramics containing gahnite
JPH07300339A (en) Antifungal glass composition
JPS5915102B2 (en) Near infrared cut filter glass
US5024974A (en) Glass having ultrafine particles of CuCl and/or CuBr precipitated therein and process for its production
CA2106230C (en) Polarizing glasses
JPS61286237A (en) Glass ceramic body suitable for ring laser gyroscope and manufacture
JPS6356182B2 (en)
US3746556A (en) Chemically resistant aluminophosphate glasses
JPH0859289A (en) Method for producing ultraviolet light-sharply cutting glass for high brightness light source
US6191059B1 (en) Metal silicides as performance modifiers for glass compositions
US3589918A (en) Optical glass and process for its manufacture
JPH04275946A (en) Blue/gray transparent glass ceramic article and method for manufacture thereof
JPH0664936A (en) Production of glass capable of sharply cutting ultraviolet ray
JPH0748140A (en) Production of glass sharply cutting ultraviolet rays
JPH08337433A (en) Matrix glass for ultraviolet-ray shielding glass and production of ultraviolet-ray shielding glass
JPS63215533A (en) Cathode-ray tube panel glass
JPH0551235A (en) Colored low expansion transparent crystallized glass