JPH0858796A - Biodegradable composite container and manufacture thereof - Google Patents

Biodegradable composite container and manufacture thereof

Info

Publication number
JPH0858796A
JPH0858796A JP19936794A JP19936794A JPH0858796A JP H0858796 A JPH0858796 A JP H0858796A JP 19936794 A JP19936794 A JP 19936794A JP 19936794 A JP19936794 A JP 19936794A JP H0858796 A JPH0858796 A JP H0858796A
Authority
JP
Japan
Prior art keywords
container
paper
biodegradable
strength
stretch blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19936794A
Other languages
Japanese (ja)
Inventor
Hiroshi Umeyama
浩 梅山
Masayuki Taniguchi
谷口  正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP19936794A priority Critical patent/JPH0858796A/en
Publication of JPH0858796A publication Critical patent/JPH0858796A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/08Coverings or external coatings
    • B65D23/0842Sheets or tubes applied around the bottle with or without subsequent folding operations
    • B65D23/0857Sheets or tubes applied around the bottle with or without subsequent folding operations and locked to the bottle by mechanical means, e.g. tabs snapping into recesses of the bottle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • B29C49/251Lining or labelling explicit lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/12Paper, e.g. cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

PURPOSE: To save a resin to be used without losing its strength and physical properties of a container by combining a draw-blown container made of biodegradable plastic and paper. CONSTITUTION: Polylactic acid and fatty acid ester which are highly suitable for draw-blow molding is preferably used as biodegradable plastic and molded by draw-blowing. At this time, paper is preferably inserted into a metallic mold in advance and draw-blow molded. Paper 6 to be combined with a draw- blow molded container 5 is a precursor of a container which has been shaped in advance, while a pattern or characters may be printed on a surface and used as a label. Thus an amount of the biodegradable plastic to be used can be reduced as well as no problem occurs in strength, whereby an entire container which is made unnecessary can be biodegraded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、土中に埋める、汚水に
つける等により分解可能な生分解性プラスチック容器及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable plastic container which can be decomposed by burying it in soil, immersing it in sewage, etc., and a method for producing the same.

【0002】[0002]

【従来の技術】ポリ乳酸、脂肪族ポリエステル、ヒドロ
キシポリエステル、ポリカプトラクトン等の生分解性プ
ラスチックは、土中に埋める、汚水につける等を行うと
加水分解及び微生物により生分解する樹脂として知られ
ている。
Biodegradable plastics such as polylactic acid, aliphatic polyesters, hydroxypolyesters, and polycaptolactones are known as resins that are hydrolyzed and biodegraded by microorganisms when they are buried in soil or immersed in sewage. ing.

【0003】しかし該樹脂は、重合方法が解明されてい
ない、重合が微生物によるものである、触媒が高価であ
る等の理由から、経済性に問題がある。
However, the resin has a problem in economic efficiency because the polymerization method has not been clarified, the polymerization is carried out by a microorganism, and the catalyst is expensive.

【0004】この様な理由から、該樹脂を使用し、成形
する際の使用樹脂量を減らす工夫がなされている。しか
し容器として成形するには、成形品の強度面、物性等か
ら限界があり、例えば、内容物を充填すると容器が膨れ
る、座屈強度が弱くなる等の問題が生じてくる。
For these reasons, measures have been taken to reduce the amount of resin used when molding by using the resin. However, there is a limit to the molding of the container in terms of strength and physical properties of the molded product. For example, when the contents are filled, the container swells and the buckling strength becomes weak.

【0005】一方、従来よりプラスチックの減量化をす
る方法として、減量化して肉厚が薄くなり強度的に問題
のあるプラスチック容器を、紙等により覆い強度保持す
る方法が知られている。しかし、該方法の容器は、不要
と成った時、土中に埋める等を行ってもプラスチックが
分解等を行わず、体積が減少しない為、処理の方法でし
ばしば問題となる。
On the other hand, as a conventional method for reducing the amount of plastic, there is known a method in which a plastic container, which is reduced in weight and thinned in thickness and has a problem in strength, is covered with paper or the like to maintain the strength. However, when the container of the method is no longer needed, the plastic does not decompose even if it is buried in the soil, etc., and the volume does not decrease, which is often a problem in the processing method.

【0006】[0006]

【発明が解決しようとする課題】本発明はこれらの問題
点を解決するためになされたものであり、その課題とす
るところは、生分解性プラスチックの使用量が少なく、
しかも強度的(特に内容物を充填した時の胴膨れ)に問
題がなく、不要になった容器全体を生分解させることが
できる生分解性複合容器及びその製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems. The problem is that the amount of biodegradable plastic used is small.
Moreover, it is an object of the present invention to provide a biodegradable composite container and a method for producing the same, which has no problem in strength (particularly, swelling of the barrel when filled with contents) and can biodegrade the entire container that is no longer needed.

【0007】[0007]

【課題を解決するための手段】本発明はこの課題を解決
するため、生分解性プラスチックから成る延伸ブロー容
器を、少なくとも部分的に或いは全面的に、紙で覆って
いることを特徴とする生分解性複合容器を提供する。ま
た、紙がラベル、予め賦形された容器前駆体であるこ
と、前記生分解性プラスチックがポリ乳酸あるいは脂肪
族ポリエステルであることを特徴とする生分解性複合容
器を提供する。また、前記紙を生分解性プラスチック延
伸ブローの際の金型内に予めインサートして延伸ブロー
成形することを特徴とする生分解性複合容器の製造方法
を提供する。
In order to solve this problem, the present invention is characterized in that a stretch blow container made of biodegradable plastic is covered with paper at least partially or entirely. A degradable composite container is provided. Also provided is a biodegradable composite container in which the paper is a label, a preformed container precursor, and the biodegradable plastic is polylactic acid or an aliphatic polyester. Further, the present invention provides a method for producing a biodegradable composite container, which comprises inserting the paper in advance into a mold for stretch-blowing a biodegradable plastic and performing stretch-blow molding.

【0008】以下に本発明の詳細を説明する。本発明に
用いる生分解性プラスチックとしては、ポリ乳酸、脂肪
族ポリエステル、ヒドロキシポリエステル、ポリカプト
ラクトン等の熱可塑性生分解性プラスチックであれば良
く、好ましくは、延伸ブロー成形適性の高いポリ乳酸、
脂肪族ポリエステルが用いられる。
The details of the present invention will be described below. The biodegradable plastic used in the present invention may be any thermoplastic biodegradable plastic such as polylactic acid, aliphatic polyester, hydroxypolyester, polycaptolactone, etc., preferably polylactic acid having high stretch blow molding suitability,
Aliphatic polyester is used.

【0009】ポリ乳酸としては、単体のポリ乳酸でも、
酒石酸、グリコール酸、α−リンゴ酸、ポリエチレング
リコール、ラクトン等との共重合体のポリ乳酸でも良
い。
As polylactic acid, even a single polylactic acid,
Polylactic acid, which is a copolymer with tartaric acid, glycolic acid, α-malic acid, polyethylene glycol, lactone or the like, may be used.

【0010】脂肪族ポリエステルとしては、アジピン
酸、琥珀酸、シュウ酸等のジカルボン酸とエチレングリ
コール、プロピレングリコール、ブタンジオール等のグ
リコールから重縮合される脂肪族ポリエステルで良い。
The aliphatic polyester may be an aliphatic polyester obtained by polycondensation of a dicarboxylic acid such as adipic acid, succinic acid or oxalic acid and a glycol such as ethylene glycol, propylene glycol or butanediol.

【0011】これら生分解性樹脂の成形方法としては、
延伸ブロー成形を使用する。延伸ブロー成形は本発明の
主たる特徴であり、生分解性プラスチックを延伸するこ
とにより、容器の強度を上げることができ、肉厚を薄く
することが出来る為、生分解性プラスチックの使用樹脂
量を減らせる。
As a method of molding these biodegradable resins,
Stretch blow molding is used. Stretch blow molding is the main feature of the present invention. By stretching the biodegradable plastic, the strength of the container can be increased and the wall thickness can be reduced, so the amount of resin used in the biodegradable plastic can be reduced. Can be reduced.

【0012】図1に生分解性プラスチックの延伸ブロー
成形の概念図を示す。プリフォームはネジ部(1)およ
び延伸成形時のプリフォーム支持の役割をはたすフラン
ジ部(2)およびプリフォーム胴部有底円筒部(3)か
ら成る。
FIG. 1 shows a conceptual diagram of stretch blow molding of biodegradable plastic. The preform comprises a screw part (1), a flange part (2) which plays a role of supporting the preform at the time of stretch molding, and a bottomed cylindrical part (3) of the preform body.

【0013】なお、延伸ブロー成形方法としては、プリ
フォーム成形行程と延伸ブロー成形行程を分けて2行程
で行うコールドパリソン方式でも、プリフォーム成形工
程と延伸ブロー成形工程を一連の工程にて行うホットパ
リソン方式でも生分解性プラスチックの成形は可能であ
る。
As a stretch blow molding method, a cold parison method in which a preform molding step and a stretch blow molding step are divided into two steps is also used. In the hot blow method, the preform molding step and the stretch blow molding step are performed in a series of steps. The parison method can also be used to mold biodegradable plastics.

【0014】組み合わせる紙は、表面に、絵柄や字等を
印刷して、ラベルとして使用しても良い。容器全体を覆
わなくても、図3に示すように、生分解性プラスチック
容器の強度的に弱い部分を覆うだけでも、強度向上は望
める。紙との複合方法としては、延伸ブロー容器を成形
後紙によって覆う方法と、延伸ブロー容器の成形時に紙
をインサートする2通りの方法が考えられる。
The paper to be combined may be used as a label by printing a picture or letters on the surface. Even if the whole container is not covered, as shown in FIG. 3, the strength can be improved by covering only the weak portion of the biodegradable plastic container. As a method of combining with a paper, two methods are conceivable: a method of covering a stretch blow container with paper after molding and a method of inserting paper at the time of molding the stretch blow container.

【0015】[0015]

【作用】生分解性プラスチックの延伸ブロー成形容器の
肉厚は、不要になった時の分解性、経済性の点から、使
用樹脂量の少ない、肉厚の薄い方が好ましいが容器強度
が弱くなる。本発明ではこの容器強度を保つ為に、紙に
よって補正する。延伸ブロー容器と紙との複合容器の概
念図を図2に示すが、本発明の複合容器をこれらに限定
するものではく、様々な形態が可能である。
The thickness of the stretch-blow molded container of biodegradable plastic is preferably low in the amount of resin used and thin in terms of the decomposability when it is no longer needed and the economical efficiency, but the container strength is weak. Become. In the present invention, in order to maintain the strength of the container, correction is performed using paper. FIG. 2 shows a conceptual diagram of a composite container of a stretch blow container and paper, but the composite container of the present invention is not limited to these and various forms are possible.

【0016】[0016]

【実施例】【Example】

<実施例1>生分解性樹プラスチックとしてガラス転移
点温度=56.8℃、結晶化温度=107.8℃、融点
=160.3℃、重量平均分子量/数平均分子量(Mw
/Mn)=2.4からなるポリ乳酸15gをシリンダ温
度200℃、金型温度15℃で射出成形し、直径30m
mのフランジ部、直径27.4mmの胴部、長さ120
mm、厚さ2.2mm、15gのプリフォーム(有底パ
リソン)を得た。
Example 1 As a biodegradable resinous plastic, glass transition temperature = 56.8 ° C., crystallization temperature = 107.8 ° C., melting point = 160.3 ° C., weight average molecular weight / number average molecular weight (Mw).
/Mn)=2.4 15 g of polylactic acid was injection molded at a cylinder temperature of 200 ° C. and a mold temperature of 15 ° C., and the diameter was 30 m.
m flange, 27.4 mm diameter body, length 120
A preform (bottom parison) having a thickness of 2.2 mm and a thickness of 2.2 mm was obtained.

【0017】該プリフォームを再加熱し94℃(再加熱
温度)とし、徐冷してプリフォーム温度を均一に75℃
(延伸温度)とし、延伸ロッド圧力;7kgf/c
2 、一次ブロー;3.3kgf/cm2 、1s、二次
ブロー;15kgf/cm2 、3sにて延伸ブロー成形
して、縦延伸倍率2.1倍、横延伸倍率2.6倍、ボト
ル高さ250mm、直径78mmの1000mlのポリ
乳酸製延伸ブロー容器を得た。このようにして得た容器
は、外観は透明で、肉厚0.2mmのものとなった。プ
リフォームも透明であった。
The preform is reheated to 94 ° C. (reheating temperature) and gradually cooled to a uniform preform temperature of 75 ° C.
(Stretching temperature), stretching rod pressure; 7 kgf / c
m 2, the primary blow; 3.3 kgf / cm 2, 1s, secondary blow; and stretch blow molded at 15 kgf / cm 2, 3s, longitudinal stretching ratio 2.1 times, transverse stretching ratio 2.6 times, bottles A 1000 ml stretch blow container made of polylactic acid having a height of 250 mm and a diameter of 78 mm was obtained. The container thus obtained had a transparent appearance and a wall thickness of 0.2 mm. The preform was also transparent.

【0018】得られたポリ乳酸製延伸ブロー容器を、図
2(1)に示す様に紙製の箱に入れて複合容器とした。
該容器の座屈強度、落下強度を測定した結果を表1に示
す。該容器を土中に6ヶ月間埋めたところ、該容器は強
度低下が厳しく形状保持能力のないものとなったが、空
気中に6ヶ月間放置した該容器は外観等変化しなかっ
た。
The resulting stretch blow container made of polylactic acid was put in a paper box as shown in FIG. 2 (1) to make a composite container.
The results of measuring the buckling strength and the drop strength of the container are shown in Table 1. When the container was buried in soil for 6 months, the strength of the container was severely reduced and the shape-retaining ability was lost. However, the appearance of the container left in the air for 6 months did not change.

【0019】<実施例2>実施例1のポリ乳酸製の延伸
ブロー容器を成形する際、延伸ブロー成形の工程で、予
め金型内に紙製の箱をインサートし、延伸ブロー成形を
行い図2(2)に示す様なボトル高さ250mm、直径
78mm、容量900mlの複合容器を得た。複合容器
のポリ乳酸製の延伸ブローボトルの肉厚は0.2mmで
あった。該容器の座屈強度、落下強度を測定した結果を
表1に示す。該容器を土中に6ヶ月間埋めたところ、該
容器は強度低下が厳しく形状保持能力のないものとなっ
たが、空気中に6ヶ月間放置した該容器は、外観等変化
しなかった。
<Example 2> When the stretch blow container made of polylactic acid of Example 1 is molded, a paper box is previously inserted into the mold in the stretch blow molding step, and stretch blow molding is performed. A composite container having a bottle height of 250 mm, a diameter of 78 mm, and a capacity of 900 ml as shown in 2 (2) was obtained. The stretched blow bottle made of polylactic acid in the composite container had a wall thickness of 0.2 mm. The results of measuring the buckling strength and the drop strength of the container are shown in Table 1. When the container was buried in soil for 6 months, the strength of the container was severely reduced and the shape-retaining ability was lost. However, the appearance of the container left in the air for 6 months did not change.

【0020】<実施例3>生分解性プラスチックとして
重量平均分子量/数平均分子量=3、融解温度と再結晶
化温度の差=30.4℃(融解温度=93.8℃、再結
晶化温度=63.4℃)、融解熱=35.9J/gのジ
カルボン酸とグリコールからなる脂肪族ポリエステル1
0gを射出成形し、直径30mmのフランジ部、直径2
8mmの胴部、長さ100mm、厚さ2.0mm、重量
10gのプリフォーム(有底パリソン)を得た。
Example 3 As a biodegradable plastic, weight average molecular weight / number average molecular weight = 3, difference between melting temperature and recrystallization temperature = 30.4 ° C. (melting temperature = 93.8 ° C., recrystallization temperature) = 63.4 ° C.), heat of fusion = 35.9 J / g aliphatic polyester 1 composed of dicarboxylic acid and glycol
0g injection molded, 30mm diameter flange, diameter 2
A preform (bottom parison) having a body portion of 8 mm, a length of 100 mm, a thickness of 2.0 mm and a weight of 10 g was obtained.

【0021】該プリフォームを再加熱し94℃(再加熱
温度)とし、徐冷してプリフォーム温度を均一に70℃
(延伸温度)とし、延伸ロッド圧力;7kgf/c
2 、一次ブロー;3.3kgf/cm2 、2s、二次
ブロー;30kgf/cm2 、5sにて延伸ブロー成形
して、縦延伸倍率1.4倍、横延伸倍率2.2倍、ボト
ル高さ140mm、直径62mmの350mlの脂肪族
ポリエステル製延伸ブロー容器を得た。得られた脂肪族
ポリエステル製延伸ブロー容器の肉厚は0.3mmの容
器であった。
The preform is reheated to 94 ° C. (reheating temperature) and gradually cooled to a uniform preform temperature of 70 ° C.
(Stretching temperature), stretching rod pressure; 7 kgf / c
m 2, the primary blow; 3.3 kgf / cm 2, 2s, secondary blow; and stretch blow molded at 30 kgf / cm 2, 5s, longitudinal stretching ratio 1.4 times, transverse stretching ratio 2.2 times, bottles A 350 ml stretch blow container made of an aliphatic polyester having a height of 140 mm and a diameter of 62 mm was obtained. The obtained stretch blow container made of aliphatic polyester had a wall thickness of 0.3 mm.

【0022】該脂肪族ポリエステル製延伸ブロー容器を
カートンの中に入れて図2(3)に示す複合容器を得
た。該容器の座屈強度、落下強度を測定した結果を表1
に示す。該容器を土中に6ヶ月間埋めたところ、該容器
は強度低下が厳しく形状保持能力のないものとなった
が、空気中に6ヶ月間放置した該容器は、外観等変化し
なかった。
The stretch blow container made of the aliphatic polyester was put in a carton to obtain a composite container shown in FIG. 2 (3). The results of measuring the buckling strength and the drop strength of the container are shown in Table 1.
Shown in When the container was buried in soil for 6 months, the strength of the container was severely reduced and the shape-retaining ability was lost. However, the appearance of the container left in the air for 6 months did not change.

【0023】<比較例1>実施例1で成形したポリ乳酸
製の延伸ブロー容器を、紙製の箱に入れず、座屈強度、
落下強度の測定を行った結果を表1に示す。実施例1の
複合容器に比べ、座屈強度、落下強度共、弱い容器であ
った。
<Comparative Example 1> The stretch blow container made of polylactic acid molded in Example 1 was placed in a paper box without buckling strength.
The results of measuring the drop strength are shown in Table 1. Compared with the composite container of Example 1, both buckling strength and drop strength were weak containers.

【0024】<比較例2>実施例1で成形したポリ乳酸
製の延伸ブロー容器と同形状で同様の座屈強度、落下強
度を得るための容器をダイレクトブロー成形にて得た。
該容器を実施例1と同様に紙製の箱内に入れ、実施例1
と同形状の複合容器を得た。実施例1の複合容器に比
べ、使用した生分解性プラスチックの量は、20gであ
り、実施例1に比べ5gも多く必要とした。
Comparative Example 2 A container having the same shape as the stretch blow container made of polylactic acid molded in Example 1 and having the same buckling strength and drop strength was obtained by direct blow molding.
The container was placed in a paper box in the same manner as in Example 1,
A composite container having the same shape as was obtained. Compared to the composite container of Example 1, the amount of biodegradable plastic used was 20 g, which was 5 g more than in Example 1.

【0025】<比較例3>実施例1のポリ乳酸の代わり
に、ポリエチレンテレフタレート16gを使用し、実施
例1と同様の複合容器を得た。該容器を土中に埋めたと
ころ、周囲の紙は6カ月間でボロボロになたっが、1年
間してもポリエチレンテレフタレート製の延伸ブロー容
器の強度低下はみられなかった。以上結果を表1にまと
める。
<Comparative Example 3> 16 g of polyethylene terephthalate was used in place of the polylactic acid of Example 1 to obtain a composite container similar to that of Example 1. When the container was buried in the soil, the surrounding paper was broken for 6 months, but the strength of the stretch-blown container made of polyethylene terephthalate was not decreased even after 1 year. The above results are summarized in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上詳細に説明したように、生分解性プ
ラスチックを使用した延伸ブロー容器と紙を組み合わせ
た生分解性複合容器及びその製造方法により、容器強
度、物性を損なわず、生分解性プラスチックの使用樹脂
量を減らすことができ、経済的な問題、強度的な問題を
解消することが可能となった。
As described above in detail, the biodegradable composite container in which the stretch blow container using the biodegradable plastic and the paper are combined and the method for producing the composite container, the container strength and the physical properties are not impaired and the biodegradability is improved. The amount of plastic resin used can be reduced, and it has become possible to solve economic problems and strength problems.

【0028】[0028]

【図面の簡単な説明】[Brief description of drawings]

【図1】延伸ブロー成形の概念図である。FIG. 1 is a conceptual diagram of stretch blow molding.

【図2】生分解性複合容器の一実施例の形状を示す説明
図である。
FIG. 2 is an explanatory view showing the shape of an embodiment of a biodegradable composite container.

【図3】生分解性複合容器の一実施例の形状を示す説明
図である。
FIG. 3 is an explanatory view showing the shape of an embodiment of a biodegradable composite container.

【図4】生分解性複合容器の一実施例の断面の形状を示
す説明図である。
FIG. 4 is an explanatory view showing a cross-sectional shape of an example of the biodegradable composite container.

【符号の説明】[Explanation of symbols]

1…ネジ部 2…フランジ部 3…胴部有底円筒部 4
…延伸ロッド 5…生分解性延伸ブロー容器 6…紙 7…生分解性複
合容器
1 ... screw part 2 ... flange part 3 ... body part bottomed cylindrical part 4
... Stretching rod 5 ... Biodegradable stretch blow container 6 ... Paper 7 ... Biodegradable composite container

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29B 17/00 9350−4F B29L 22:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B29B 17/00 9350-4F B29L 22:00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】生分解性プラスチックから成る延伸ブロー
容器を、少なくとも部分的に或いは全面的に、紙で覆っ
ていることを特徴とする生分解性複合容器。
1. A biodegradable composite container, characterized in that a stretch blow container made of biodegradable plastic is at least partially or entirely covered with paper.
【請求項2】前記紙がラベルであることを特徴とする請
求項1記載の生分解性複合容器。
2. The biodegradable composite container according to claim 1, wherein the paper is a label.
【請求項3】前記紙が予め賦形された容器前駆体である
ことを特徴とする請求項1記載の生分解性複合容器。
3. The biodegradable composite container according to claim 1, wherein the paper is a preformed container precursor.
【請求項4】前記生分解性プラスチックがポリ乳酸ある
いは脂肪族ポリエステルであることを特徴とする請求項
1〜3記載の生分解性複合容器。
4. The biodegradable composite container according to claim 1, wherein the biodegradable plastic is polylactic acid or an aliphatic polyester.
【請求項5】生分解性プラスチックから成る延伸ブロー
容器を、少なくとも部分的に或いは全面的に、紙で覆っ
ていることを特徴とする生分解性複合容器の製造方法で
あって、前記紙を生分解性プラスチック延伸ブローの際
の金型内に予めインサートして延伸ブロー成形すること
を特徴とする生分解性複合容器の製造方法。
5. A method for producing a biodegradable composite container, characterized in that a stretch blow container made of biodegradable plastic is at least partially or entirely covered with paper. A method for producing a biodegradable composite container, which comprises inserting the biodegradable plastic into a mold in advance for stretch blow molding and performing stretch blow molding.
JP19936794A 1994-08-24 1994-08-24 Biodegradable composite container and manufacture thereof Pending JPH0858796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19936794A JPH0858796A (en) 1994-08-24 1994-08-24 Biodegradable composite container and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19936794A JPH0858796A (en) 1994-08-24 1994-08-24 Biodegradable composite container and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0858796A true JPH0858796A (en) 1996-03-05

Family

ID=16406585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19936794A Pending JPH0858796A (en) 1994-08-24 1994-08-24 Biodegradable composite container and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0858796A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096310A1 (en) 2002-05-09 2003-11-20 Yupo Corporation Biodegradable label for in-mold molding and biodegradable container having the label stuck thereto
WO2004002836A1 (en) 2001-03-16 2004-01-08 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
JP2009255937A (en) * 2008-04-14 2009-11-05 Daiho Industrial Co Ltd Storage body
WO2016017082A1 (en) * 2014-07-31 2016-02-04 株式会社吉野工業所 Composite container
JP2016033040A (en) * 2014-07-31 2016-03-10 株式会社吉野工業所 Composite container and method for manufacturing the same
WO2016130071A1 (en) * 2015-02-10 2016-08-18 Billerudkorsnäs Ab Labeled container
CN112677449A (en) * 2020-12-28 2021-04-20 常熟市沈氏塑业有限公司 Degradable double-layer plastic bottle and blow molding method thereof
CN114340871A (en) * 2019-08-09 2022-04-12 日精Asb机械株式会社 Method and device for producing containers made of biodegradable resin

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002836A1 (en) 2001-03-16 2004-01-08 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
EP1591365A1 (en) * 2001-03-16 2005-11-02 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
EP1591365A4 (en) * 2001-03-16 2008-01-02 Yoshino Kogyosho Co Ltd Environmentally friendly plastic container
US7422780B2 (en) 2001-03-16 2008-09-09 Yoshino Kogyosho Co., Ltd. Environmentally friendly plastic container
WO2003096310A1 (en) 2002-05-09 2003-11-20 Yupo Corporation Biodegradable label for in-mold molding and biodegradable container having the label stuck thereto
JP2009255937A (en) * 2008-04-14 2009-11-05 Daiho Industrial Co Ltd Storage body
WO2016017082A1 (en) * 2014-07-31 2016-02-04 株式会社吉野工業所 Composite container
JP2016033040A (en) * 2014-07-31 2016-03-10 株式会社吉野工業所 Composite container and method for manufacturing the same
JP2016034850A (en) * 2014-07-31 2016-03-17 株式会社吉野工業所 Composite container
CN106604872A (en) * 2014-07-31 2017-04-26 帝斯克玛股份有限公司 Composite container
US10336494B2 (en) 2014-07-31 2019-07-02 Discma Ag Composite container
WO2016130071A1 (en) * 2015-02-10 2016-08-18 Billerudkorsnäs Ab Labeled container
CN114340871A (en) * 2019-08-09 2022-04-12 日精Asb机械株式会社 Method and device for producing containers made of biodegradable resin
CN114340871B (en) * 2019-08-09 2024-02-06 日精Asb机械株式会社 Method and device for producing containers made of biodegradable resins
CN112677449A (en) * 2020-12-28 2021-04-20 常熟市沈氏塑业有限公司 Degradable double-layer plastic bottle and blow molding method thereof

Similar Documents

Publication Publication Date Title
US6355738B2 (en) Polyester and process for preparing polyester
US6613259B2 (en) Process of making polyester pellets
JPH07304088A (en) Production of biaxially oriented blow vessel
JP4294475B2 (en) Biaxial stretch blow thermoset container and method for manufacturing the same
RU2005116686A (en) COMPOSITION OF A PET POLYMER WITH IMPROVED MECHANICAL PROPERTIES AND EXTRACTION
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
US7618694B2 (en) Biodegradable label for in-mold forming and biodegradable container having the label attached thereto
EP2025703B1 (en) Biodegradable stretch-molded container having excellent heat resistance
JPH0858796A (en) Biodegradable composite container and manufacture thereof
JPH10337772A (en) Stretching blown container and its manufacture
JPH0858797A (en) Biodegradable container
JPH08244781A (en) Container, production thereof and preform
JP2001354223A (en) Container made of aliphatic polyester
JPH081760A (en) Manufacture of biaxially oriented blown container
JPH05254531A (en) Pressure resisting self-standing container, method for production thereof and blow molding die thereof
JP3726682B2 (en) Stretch molded container
JPH1086212A (en) Stretchable blow bottle
JP4285016B2 (en) Flat polyester stretch molding
JPS59230022A (en) Biaxially oriented polyester hollow molded article
JP4430833B2 (en) Polyester composition bottle and method for producing the same
JP4418647B2 (en) Cap seal
JP4348960B2 (en) POLYESTER RESIN COMPOSITION, EXTENDED MOLDED BODY, AND METHOD FOR PRODUCING EXTENDED MOLDED BODY
JPH05193635A (en) Self-standing pressure-resistant container and its manufacture
JP3023388B2 (en) Saturated polyester carbonated beverage bottle
JP3303415B2 (en) Stretch blow-molded article and method for producing the same