JPH085864A - Formation of spherical end fiber lens - Google Patents

Formation of spherical end fiber lens

Info

Publication number
JPH085864A
JPH085864A JP6141577A JP14157794A JPH085864A JP H085864 A JPH085864 A JP H085864A JP 6141577 A JP6141577 A JP 6141577A JP 14157794 A JP14157794 A JP 14157794A JP H085864 A JPH085864 A JP H085864A
Authority
JP
Japan
Prior art keywords
optical fiber
light
optical
fiber
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6141577A
Other languages
Japanese (ja)
Inventor
Mitsuteru Kimura
光照 木村
Hisayuki Miyagawa
久行 宮川
Koji Endo
浩司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU NAKATANI KK
Original Assignee
TOHOKU NAKATANI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU NAKATANI KK filed Critical TOHOKU NAKATANI KK
Priority to JP6141577A priority Critical patent/JPH085864A/en
Publication of JPH085864A publication Critical patent/JPH085864A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily form a spherical end fiber lens having a prescribed focal length with high accuracy. CONSTITUTION:An optical fiber fusing device 2 which balls up the front end of an optical fiber 10 by electric discharge heating, a light source device 1 and a photodetector 3 which introduces the light from the light source 1 to the other end of the optical fiber 10 and determines the focal length by keeping the light radiated from the ball up end of the optical fiber 10 and detecting the radiation light are provided. The signal from the photodetector 3 is fed back and the discharge power, discharge time, etc., of the optical fiber fusing device 2 are adjusted, by which the prescribed focal length is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバから出射す
る光が所定の焦点距離を持つようにした先球ファイバレ
ンズの作成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a spherical fiber lens in which light emitted from an optical fiber has a predetermined focal length.

【0002】[0002]

【従来の技術】従来、光ファイバの先端をレンズ状に加
工する方法として、研削などがあった。また、光ファイ
バの先端部を加熱溶融して先球ファイバレンズを作成す
る方法もある。これは、溶融加熱中のボ−ルアップの様
子を画像処理し画像でモニタして予め設定した引き込み
量と一致したときに加熱を停止する方法が提案された。
しかし、この方法は、溶融したときにコアの終端部から
漏れる光の位置と先球先端の位置関係及び先球の曲率半
径との関係が非常に厳しく、しかも光のコア終端部から
漏れるところが点光源とみなせない時には、所定の焦点
距離が得難い。つまり先球の外形は同じ様であってもコ
ア終端部の点光源としての光の漏れる位置及び曲率半径
との関係にばらつきがある。従って決まった焦点距離の
ファイバレンズを得ようとした場合には、いずれもばら
つきが生じやすく、問題があった。
2. Description of the Related Art Conventionally, grinding has been used as a method of processing the tip of an optical fiber into a lens shape. There is also a method in which the front end portion of the optical fiber is heated and melted to form a front spherical fiber lens. A method has been proposed in which the state of ball-up during melting and heating is image-processed, and the image is monitored, and heating is stopped when the amount of pull-in matches a preset pull-in amount.
However, this method has a very strict relationship between the position of the light leaking from the end of the core when melted, the positional relationship between the tip of the front ball and the radius of curvature of the front ball, and moreover, the point where the light leaks from the end of the core. When it cannot be regarded as a light source, it is difficult to obtain a predetermined focal length. That is, even if the outer shape of the front sphere is the same, there is variation in the relationship between the position where light leaks as the point light source at the core end portion and the radius of curvature. Therefore, when trying to obtain a fiber lens having a fixed focal length, variations tend to occur, which is a problem.

【0003】[0003]

【発明が解決しようとする課題】ほぼ平行光線になるよ
うにしたり、所定の焦点距離を持つ先球ファイバレンズ
を作成するために、先球の曲率半径や溶融のための放電
パワ−及び放電時間を調節し、所定の焦点距離を制御で
きるようにし、再現性が良く、容易な先球ファイバレン
ズの作成方法を提供しようとするものである。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention In order to make almost parallel rays and to form a front-end fiber lens having a predetermined focal length, the radius of curvature of the front-end ball and the discharge power and the discharge time for melting. It is intended to provide a method for producing a front spherical fiber lens which has good reproducibility and is easy to control by adjusting a predetermined focal length.

【0004】[0004]

【課題を解決するための手段】光ファイバ10の先端部
を光ファイバ溶融装置2で溶融して先球ファイバレンズ
20を作成する方法として、例えば、焦点距離が無限
大、即ち平行光線を得るときには、点光源とみなせる光
ファイバのコア終端部と先球先端部までの距離Lが先球
の平均曲率半径Rの約3倍にすればよいことがわかって
いる。この様なときは焦点距離を検出する光検出装置3
の所定の開口面積を持つ光学スリットの背後に光学セン
サを設けたり、あるいは所定の開口面積を持つ光学スリ
ットとしての光検出用光ファイバ11で、ほぼ平行光線
になることを検出してフィ−ドバックにより放電パワ−
及び放電時間を制御する。また、大きい曲率半径の先球
ファイバレンズ20を作成するときは、溶融加熱するフ
ァイバを固定する光ファイバ溶融装置2のクランプに送
り機構を設けて制御すれば良い。
As a method of melting the tip of the optical fiber 10 by the optical fiber melting device 2 to form the front spherical fiber lens 20, for example, when the focal length is infinite, that is, when parallel rays are obtained. It is known that the distance L between the core end of the optical fiber that can be regarded as a point light source and the tip of the tip sphere should be about three times the average radius of curvature R of the tip sphere. In such a case, the photodetector 3 for detecting the focal length
An optical sensor is provided behind the optical slit having a predetermined opening area, or the optical fiber 11 for detecting light serving as an optical slit having a predetermined opening area detects that the light beam is substantially parallel and feedback is performed. Discharge power
And control the discharge time. Further, when the front spherical fiber lens 20 having a large radius of curvature is produced, a feeding mechanism may be provided in the clamp of the optical fiber melting device 2 for fixing the fiber to be melted and heated for control.

【0005】また、光ファイバ溶融装置2で放電加熱
中、様々な領域の波長を持つ光が放射されるので光ファ
イバ10に導入する光は、チョッパ−やレ−ザ−ダイオ
−ドの電流変調などにより変調した信号光を導入し、信
号光の波長のバンドパスフィルタ−を用いることによ
り、外乱光から信号光成分を精度良く、且つ正確に光検
出装置3で検出することができる。
Further, during discharge heating in the optical fiber melting device 2, light having wavelengths in various regions is radiated, so that the light introduced into the optical fiber 10 is current-modulated by a chopper or a laser diode. By introducing the signal light modulated by the above, and using the bandpass filter having the wavelength of the signal light, the signal light component can be accurately and accurately detected from the ambient light by the photodetector 3.

【0006】例えばLEDを電流変調信号により信号光
を作る時の発振器からの電気的な変調信号を参照信号に
したり、信号光に二分割し、一方を先球加工するファイ
バに、他方を参照光として利用し、ロックインアンプの
ように同期検出させて、外乱光から信号光をSN比を大
きくさせた状態で分離することもできる。もちろん、こ
の時、信号光のバンドパスフィルタを用いると一層SN
比が大きくできる。尚、信号光の波長が1.3μmの時
には、光検出用光ファイバ11から導入された1.3μ
m光を通過させる干渉フィルタをバンドパスフィルタと
して光検出装置3内に設けると良い。
For example, when an LED is used to generate a signal light by a current modulation signal, an electric modulation signal from an oscillator is used as a reference signal, or the signal light is divided into two, one of which is a fiber for processing a sphere and the other is a reference light. It is also possible to separate the signal light from the ambient light with a large SN ratio by performing synchronous detection like a lock-in amplifier. Of course, at this time, if a bandpass filter for the signal light is used, SN will be further improved.
The ratio can be increased. When the wavelength of the signal light is 1.3 μm, 1.3 μm introduced from the optical fiber for photodetection 11 is used.
An interference filter that passes m light may be provided in the photodetector 3 as a bandpass filter.

【0007】また、溶融中にボ−ルアップ端から出射す
る光に対して焦点距離の光検出用光ファイバ11を用い
る場合、光軸上に一本とそこから一定の間隔で平行に二
本以上設置することで光強度分布の情報が得られ、所定
の焦点距離を持つ一層正確な先球ファイバレンズ20が
得られる。
When the optical fiber 11 for detecting light having a focal length for the light emitted from the ball-up end during melting is used, one optical fiber 11 and two or more optical fibers 11 parallel to each other at a constant interval from the optical axis are used. By installing it, information on the light intensity distribution can be obtained, and a more accurate front spherical fiber lens 20 having a predetermined focal length can be obtained.

【0008】[0008]

【作用】先球ファイバレンズ20の作成について本発明
者らは、スネルの法則より計算式を立てて計算すると、
空気中(屈折率n2が約1.0)に光を出射するときに
は、コア終端部Aと先球先端の光軸中心部Cとの距離L
が、先球先端の光軸中心部付近の平均曲率半径Rのほぼ
3倍になるように形成すれば、平行光線が得られるとい
う理論と作成方法を提案している(特願平6−1222
11号)。
When the present inventors make a calculation formula based on Snell's law to calculate the spherical fiber lens 20,
When the light is emitted into the air (refractive index n2 is about 1.0), the distance L between the core end portion A and the center portion C of the optical axis at the tip of the tip ball.
However, a theory and a method of making parallel rays can be obtained by forming the tip so that it has a radius of curvature R of about 3 times the average radius R near the center of the optical axis (Japanese Patent Application No. 6-1222).
No. 11).

【0009】先球ファイバレンズ20の作成について
は、光ファイバ溶融装置2を用いてファイバ先端部を溶
融加熱することによりボ−ルアップさせる。この時、重
要になるのが先球の平均曲率半径Rと先球先端の光軸中
心部からコア終端部までの距離Lとの関係である。
In order to produce the front-end fiber lens 20, the optical fiber melting device 2 is used to melt and heat the tip of the fiber for ball-up. At this time, what is important is the relationship between the average radius of curvature R of the front ball and the distance L from the center of the optical axis at the tip of the front ball to the end of the core.

【0010】本発明では、例えば平行光線を得るために
は、先球ファイバの他端から光を導入し、ボ−ルアップ
端から放射させておき、光軸上で先球が形成される位置
から十分離れたところに配置した焦点距離の光検出装置
3の光検出用光ファイバ11で光強度をモニタ−しなが
らボ−ルアップさせていく。そして、先球先端からコア
終端部までの距離Lが短くなるにつれて光強度はしだい
に大きくなり、先球先端からコア終端部までの距離Lが
先球の平均曲率半径Rのほぼ3倍になるところで最大に
なり、その時、光ファイバ溶融装置2の放電パワ−及び
放電時間が止まるようにすればほぼ平行光線が得られ
る。
In the present invention, for example, in order to obtain a parallel light beam, light is introduced from the other end of the front spherical fiber and is emitted from the ball-up end, and from the position where the front sphere is formed on the optical axis. While the light intensity is monitored by the optical fiber 11 for light detection of the photodetector 3 having the focal length arranged at a sufficiently distant place, the ball is raised. The light intensity gradually increases as the distance L from the tip of the tip ball to the end of the core becomes shorter, and the distance L from the tip of the tip to the end of the core becomes almost three times the average radius of curvature R of the tip. By the way, it becomes maximum, and at that time, if the discharge power and discharge time of the optical fiber melting device 2 are stopped, almost parallel rays can be obtained.

【0011】また、光ファイバのコア終端部に異なる光
ファイバを融着接続し、その位置から所定の距離をファ
イバカッタ−で切断し、先球化すると良い。この様にコ
ア終端部からファイバカッタ−で切断する距離は、常に
一定にすることで先球の曲率半径を同じ大きさにするこ
とができ、先球の曲率半径のばらつきを抑えることが可
能である。
Further, it is preferable that different optical fibers are fusion-spliced to the core end portion of the optical fiber, and a predetermined distance from that position is cut by a fiber cutter to form a sphere. In this way, the radius of curvature of the tip sphere can be made the same size by keeping the distance from the end of the core cut by the fiber cutter constant, and it is possible to suppress the variation of the radius of curvature of the tip sphere. is there.

【0012】[0012]

【発明の実施例】Examples of the invention

【0013】[0013]

【実施例1】図1に、本発明を実施するために使用され
る装置の構成図を示す。はじめに光ファイバ10として
シングルモ−ド光ファイバ(コア径10μm、クラッド
径125μm)を用い、その中心軸に対して垂直にファ
イバカッタ−で切断し、その切断面にコア終端部51を
形成する。そこに、光ファイバ10に異なる光ファイバ
を同様に切断し、光ファイバ10の切断面と、異なる光
ファイバの端面とを突き合わせ光ファイバ溶融装置2で
溶融接続する。ここで、接続する異なる光ファイバは、
コアを有しない光ファイバが好適である。この時の溶融
条件は、放電パワ−としての放電電流が15.1mA、
放電時間が2.5秒である。その後、光ファイバ溶融装
置2に備え付けたファイバカッタ−で溶融接続した位置
から異なるファイバ側の約1mm付近を切断する。この
接続した1mm長の光ファイバの先端部を溶融加熱し
て、わずかにボ−ルアップさせた後、先球レンズ作成用
の光ファイバ10の他端に光源装置1のLED(波長:
1.3μm)の信号光40を導入し、ボ−ルアップ端から
出射させた。そして、前記光源装置1からの例えば電気
的な参照信号41を光検出装置3に導入し、また、光検
出装置3に接続した焦点距離の光検出用光ファイバ11
を光ファイバ溶融装置2の光軸上で先球が形成される位
置から約1mm離れたところにセッテングした。1mm
の焦点距離を得るようにした場合、放電パワ−としての
放電電流を19.3mAにセットして切断面を放電加熱
し、図2(a)に示す様に先球化した。この場合、先球
から出射した光は光軸上に焦点を持つが、平均曲率半径
Rが、まだ小さいので先球先端からコア終端部51まで
の距離Lが先球の平均曲率半径Rの3倍よりも長く、図
3の放電時間に対する受光強度のグラフをみてわかるよ
うに放電時間に受光強度が依存する。そして、一定の放
電電流で溶融していくと受光強度は次第に強くなり、あ
る時間(tf)でピ−クを持つ。この時、図2(b)に
示す様に先球先端から出射した光は、焦点距離の光検出
用光ファイバ11の端面に焦点を持ち、コア52に導波
させ、本実施例での焦点距離を、1mmに設定した時に
は、光検出用光ファイバ11にカップリングした光強度
が最大(約0.2μW)を示し、この時、電気的なフィ
−ドバック信号42により放電が止まるように制御し
た。その結果、焦点距離が約1mmの先球ファイバレン
ズ20を作成することができた。また、この時、光検出
用光ファイバ11を光ファイバ溶融装置2の光軸上で先
球が形成される位置から十分離れたところにセッテイン
グすれば平行光線を得ることも可能である。更に放電を
続けると図2(c)に示すように、平均曲率半径Rは、
大きくなるので先球先端からコア終端部51までの距離
Lは先球に平均曲率半径Rの3倍よりも短くなり、先球
を出射した光は発散し、図3で示すように受光強度は減
少していく。
Embodiment 1 FIG. 1 shows a block diagram of an apparatus used for carrying out the present invention. First, a single-mode optical fiber (core diameter 10 μm, cladding diameter 125 μm) is used as the optical fiber 10, and is cut by a fiber cutter perpendicular to the central axis thereof, and a core end portion 51 is formed on the cut surface. Similarly, different optical fibers are cut into the optical fiber 10, and the cut surface of the optical fiber 10 and the end surface of the different optical fiber are abutted and melted and connected by the optical fiber melting device 2. Here, the different optical fibers to be connected are
Optical fibers without a core are preferred. The melting condition at this time is that the discharge current as the discharge power is 15.1 mA,
The discharge time is 2.5 seconds. Then, about 1 mm on the different fiber side is cut from the fusion-spliced position with a fiber cutter provided in the optical fiber melting device 2. The tip of this connected 1 mm-long optical fiber is melted and heated to slightly raise the ball, and then the LED of the light source device 1 (wavelength:
The signal light 40 of 1.3 μm) was introduced and emitted from the ball-up end. Then, for example, an electrical reference signal 41 from the light source device 1 is introduced into the photodetecting device 3, and the photodetection optical fiber 11 having a focal length connected to the photodetecting device 3 is introduced.
Was set on the optical axis of the optical fiber melting device 2 at a position about 1 mm away from the position where the front ball was formed. 1 mm
When the focal length of 1 was obtained, the discharge current as the discharge power was set to 19.3 mA, and the cut surface was discharge-heated to be spherical as shown in FIG. 2 (a). In this case, the light emitted from the tip sphere has a focal point on the optical axis, but the average radius of curvature R is still small, so the distance L from the tip of the tip sphere to the core end portion 51 is 3 of the average radius of curvature R of the tip sphere. It is longer than twice, and the light receiving intensity depends on the discharge time as can be seen from the graph of the light receiving intensity with respect to the discharge time in FIG. When the light is melted with a constant discharge current, the intensity of the received light gradually increases, and the light has a peak at a certain time (tf). At this time, as shown in FIG. 2B, the light emitted from the tip of the front sphere has a focus on the end face of the optical fiber 11 for detecting light having a focal length, is guided to the core 52, and is focused in the present embodiment. When the distance is set to 1 mm, the intensity of light coupled to the optical fiber 11 for light detection shows the maximum (about 0.2 μW), and at this time, the electric feedback signal 42 controls the discharge to stop. did. As a result, the front spherical fiber lens 20 having a focal length of about 1 mm could be produced. At this time, if the light detecting optical fiber 11 is set on the optical axis of the optical fiber melting device 2 at a position sufficiently distant from the position where the front sphere is formed, it is possible to obtain a parallel light beam. When the discharge is further continued, the average radius of curvature R is as shown in FIG.
Since the distance L from the tip of the front sphere to the end of the core 51 becomes shorter than three times the average radius of curvature R, the light emitted from the front sphere diverges and the received light intensity is as shown in FIG. Will decrease.

【0014】[0014]

【実施例2】図4に、本発明を実施するために使用され
る装置のもう一つの構成図を示す。使用するファイバ
は、実施例1と同じである。また、作成方法もほぼ同じ
であるが、焦点距離の検出方法が異なる。ここでは、光
源装置1のLEDからの光信号を伝送する光ファイバ1
3をビ−ムスプリッタ5に接続し、信号光40を分岐さ
せ、一方を切断した先球レンズ作成用の光ファイバ10
の他端に導入し(40A)、切断面から放射させる。そ
して、他方を光信号を伝送する光ファイバ12に導入し
て信号光40Bとする。そして、信号光40Bを光検出
器4に導入し、例えば電気信号などの参照信号41に変
換する。そして、参照信号41は、光検出装置3に導入
する。また、光検出装置3に接続した焦点距離の光検出
用光ファイバ11を光ファイバ溶融装置2の光軸上で先
球が形成される位置から約5mm離れたところにセッテ
ングした。放電電流を19.3mAにセットして切断面
を溶融加熱し、先球化した。そして、光強度が最大(約
0.2μW)になるところで例えば電気的なフィ−ドバ
ック信号42により放電が止まるように制御した。その
結果、平行光線とみなせる領域がおよそ5mmまでの先
球ファイバレンズ20を作成することができた。
[Embodiment 2] FIG. 4 shows another structural diagram of an apparatus used for carrying out the present invention. The fibers used are the same as in Example 1. Moreover, although the creation method is almost the same, the detection method of the focal length is different. Here, the optical fiber 1 for transmitting an optical signal from the LED of the light source device 1
3 is connected to the beam splitter 5, the signal light 40 is branched, and one of them is cut to produce an optical fiber 10 for producing a spherical lens.
Is introduced at the other end (40A) and emitted from the cut surface. Then, the other is introduced into the optical fiber 12 that transmits an optical signal to form the signal light 40B. Then, the signal light 40B is introduced into the photodetector 4 and converted into a reference signal 41 such as an electric signal. Then, the reference signal 41 is introduced into the photodetector 3. In addition, the optical fiber 11 for light detection having the focal length connected to the light detection device 3 was set on the optical axis of the optical fiber melting device 2 at a position about 5 mm away from the position where the front sphere was formed. The discharge current was set to 19.3 mA and the cut surface was melted and heated to be spherical. Then, when the light intensity reaches the maximum (about 0.2 μW), for example, the electric feedback signal 42 is controlled so that the discharge is stopped. As a result, the front spherical fiber lens 20 whose area that can be regarded as a parallel light beam is up to about 5 mm could be produced.

【0015】上述の実施例では、光検出用光ファイバ1
1を所定開口面積の光学スリットとして使用していた
が、ここで図示しないが、実際にピンホ−ルなどの光学
スリットを形成し、信号光を通すバンドパスフィルタを
介して光センサに導入しても良い。
In the above embodiment, the optical fiber 1 for photodetection is used.
Although 1 was used as an optical slit having a predetermined opening area, although not shown here, an optical slit such as a pinhole is actually formed and introduced into the optical sensor through a bandpass filter that passes signal light. Is also good.

【0016】尚、本発明の特定の実施例を本明細書で説
明図示してきたが、当業者には修正や変更が容易にでき
ることが認められる。従って請求の範囲は、上述の実施
例以外でも、この様な修正や等価物を覆うものと解釈す
べき意図である。
While particular embodiments of the present invention have been illustrated and illustrated herein, it will be appreciated by those skilled in the art that modifications and changes can be readily made. Therefore, the claims are intended to be construed to cover such modifications and equivalents other than the above-described embodiments.

【0017】[0017]

【効果】本発明によれば先球ファイバから出射する光線
を、ほぼ平行光線にしたり、所定の焦点距離を持つよう
な先球ファイバレンズ20を作成するのに、光ファイバ
溶融装置2の放電電流及び放電時間などを調節すること
で容易に、且つ高精度に作成することができる。
According to the present invention, the discharge current of the optical fiber melting device 2 is used to make the light beam emitted from the front-end fiber into a substantially parallel light beam or to form the front-end fiber lens 20 having a predetermined focal length. Also, by adjusting the discharge time and the like, it can be easily and highly accurately prepared.

【0018】また、ファイバと各種センサ等のデバイス
との接続などの用途に応じた先球ファイバレンズ20を
提供でき、その応用範囲は広がる。
Further, it is possible to provide the front spherical fiber lens 20 according to the use such as connecting the fiber to devices such as various sensors, and the range of application thereof is expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するために使用される装置の構成
図で、光源装置1からの信号光40を光ファイバ10の
先端球から出射させ光検出装置3で受光し、同時に光源
装置1からの電気信号などの参照信号41を前記光検出
装置3に導入し、信号を同期させて光強度が最大のとこ
ろで放電が止まるように光ファイバ溶融装置2にフィ−
ドバック信号42を送る。
FIG. 1 is a configuration diagram of an apparatus used for carrying out the present invention, in which a signal light 40 from a light source device 1 is emitted from a tip sphere of an optical fiber 10 and is received by a photodetector device 3, and at the same time, the light source device 1 is used. A reference signal 41 such as an electric signal from the optical fiber is introduced into the photo-detecting device 3, and the signals are synchronized to the optical fiber melting device 2 so that the discharge is stopped at the maximum light intensity.
Send a feedback signal 42.

【図2】先球ファイバレンズ20形成時の距離Lと平均
曲率半径Rと焦点距離fの関係を説明した図である。 (a)先球の溶融初期で距離Lが平均曲率半径Rの3倍
よりも長く、焦点距離fが先球ファイバレンズ20と光
ファイバ11の間にある場合。 (b)先球の溶融時間を調整して距離Lと平均曲率半径
Rの大きさの関係で先球先端から光ファイバ11までの
距離Dと焦点距離fが等しくなった場合。 (c)先球の溶融時間が長すぎた場合に、距離Lが平均
曲率半径Rの3倍よりも短く、負の焦点距離を持ち、光
が発散した場合。
FIG. 2 is a diagram illustrating a relationship among a distance L, an average radius of curvature R, and a focal length f when the front spherical fiber lens 20 is formed. (A) When the distance L is longer than three times the average radius of curvature R at the initial stage of melting of the front ball and the focal length f is between the front fiber lens 20 and the optical fiber 11. (B) When the melting time of the tip ball is adjusted and the distance D from the tip of the tip ball to the optical fiber 11 is equal to the focal length f due to the relationship between the distance L and the average radius of curvature R. (C) When the melting time of the front sphere is too long, the distance L is shorter than three times the average radius of curvature R, has a negative focal length, and the light diverges.

【図3】検出用光ファイバにおける受光強度Iと放電時
間tとの関係(放電パワ−は一定)。t=tfの時、受
光強度が最大になる。
FIG. 3 shows the relationship between the received light intensity I and the discharge time t in the detection optical fiber (the discharge power is constant). When t = tf, the received light intensity becomes maximum.

【図4】本発明を実施するために使用される装置のもう
一つの構成図で光源装置1からの信号光40をビ−ムス
プリッタ5で分岐させ、一方を光ファイバ10の先端球
から出射させ(信号光40A)、検出装置3で受光し、
他方(信号光B)を同時に光検出器4に導入し電気信号
などの参照信号41に変換し、光検出装置3に導入す
る。そして、信号を同期させて光強度が最大のところで
放電が止まるように光ファイバ溶融装置2にフィ−ドバ
ック信号42を送る。
FIG. 4 is another configuration diagram of an apparatus used for carrying out the present invention, in which a signal light 40 from a light source device 1 is branched by a beam splitter 5 and one is emitted from a tip sphere of an optical fiber 10. (Signal light 40A), the detection device 3 receives the light,
The other (signal light B) is simultaneously introduced into the photodetector 4, converted into a reference signal 41 such as an electric signal, and introduced into the photodetector 3. Then, a feedback signal 42 is sent to the optical fiber melting device 2 by synchronizing the signals so that the discharge is stopped at the maximum light intensity.

【符号の説明】[Explanation of symbols]

1.光源装置 2.光ファイバ溶融装置 3.光検出装置 4.光検出器 5.ビ−ムスプリッタ 10.光ファイバ 11.光ファイバ 12.光ファイバ 13.光ファイバ 20.先球ファイバレンズ 30.放電加工針 40.信号光 40A.信号光 40B.信号光 41.参照信号 42.フィ−ドバック信号 50.先球ファイバのコア 51.先球ファイバのコア終端部 52.光ファイバのコア 1. Light source device 2. Optical fiber melting device 3. Photodetector 4. Photodetector 5. Beam splitter 10. Optical fiber 11. Optical fiber 12. Optical fiber 13. Optical fiber 20. Tip spherical fiber lens 30. Electric discharge machining needle 40. Signal light 40A. Signal light 40B. Signal light 41. Reference signal 42. Feedback signal 50. Core of the spherical fiber 51. 52. End of the core of the spherical fiber 52. Optical fiber core

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮川 久行 宮城県柴田郡川崎町大字川内字北川原山 228 株式会社東北中谷内 (72)発明者 遠藤 浩司 宮城県柴田郡川崎町大字川内字北川原山 228 株式会社東北中谷内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisayuki Miyagawa Kitagawa Harayama, Kawauchi, Kawasaki, Shibata-gun, Miyagi Prefecture 228 Tohoku Nakataniuchi Co., Ltd. (72) Koji Endo Kawasaki, Shibata-cho, Miyagi Prefecture 228 Tohoku Nakatani Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの先端を溶融してボ−ルア
ップし、これをレンズにさせる先球ファイバレンズの作
成方法において、光ファイバ(10)の先端を放電加熱
してボ−ルアップさせる光ファイバ溶融装置(2)と光
源装置(1)と、該光源装置(1)からの光を前記光フ
ァイバ(10)の他端に導入し、この光を光ファイバ
(10)のボ−ルアップ端から放射させておき、この放
射光を検出して焦点距離を定める光検出装置(3)とを
備え、前記光ファイバ溶融装置(2)に前記光検出装置
(3)からの信号をフィ−ドバックして、前記光ファイ
バ溶融装置(2)の放電パワ−、放電時間などを調節し
て、所定の焦点距離が得られるようにしたことを特徴と
する先球ファイバレンズ(20)の作成方法。
1. A method for producing a front-end fiber lens in which the tip of an optical fiber is melted and balled up to form a lens, which is used as a lens, in which the tip of the optical fiber (10) is discharge-heated and balled up. The melting device (2), the light source device (1), and light from the light source device (1) are introduced into the other end of the optical fiber (10), and this light is emitted from the ball-up end of the optical fiber (10). The optical fiber melting device (2) is provided with a photodetector (3) that emits light and detects the emitted light to determine the focal length, and feeds back the signal from the photodetector (3) to the optical fiber melting device (2). Then, the discharge power, discharge time, etc. of the optical fiber melting device (2) are adjusted so that a predetermined focal length can be obtained.
【請求項2】 光源装置(1)から光ファイバ(1
0)内に導入する光を信号光とした請求項1記載の先球
ファイバレンズ(20)の作成方法。
2. A light source device (1) to an optical fiber (1
The method for producing a front spherical fiber lens (20) according to claim 1, wherein the light introduced into 0) is signal light.
【請求項3】 光源装置(1)からの信号に同期した
電気または光の信号を参照信号として利用する請求項2
記載の先球ファイバレンズ(20)の作成方法。
3. An electric or optical signal synchronized with a signal from the light source device (1) is used as a reference signal.
A method for producing the described spherical fiber lens (20).
【請求項4】 所定の開口面積を持つ光学スリットの
背後に光センサを設け、所定の焦点距離が得られるよう
にした光検出装置(3)を備えた請求項1記載の先球フ
ァイバレンズ(20)の作成方法。
4. The front spherical fiber lens according to claim 1, further comprising a photodetector (3) provided with an optical sensor behind an optical slit having a predetermined opening area so as to obtain a predetermined focal length. 20) How to create.
【請求項5】 所定の開口面積を持つ光学スリットと
して光ファイバ(11)を用いた請求項4記載の先球フ
ァイバレンズ(20)の作成方法。
5. The method for producing a front spherical fiber lens (20) according to claim 4, wherein an optical fiber (11) is used as an optical slit having a predetermined opening area.
【請求項6】 二本以上の光ファイバを用い、その少
なくとも一本を光ファイバレンズ(20)の光軸に配置
し、これらの光ファイバを通る光の情報から焦点距離を
定めるようにした請求項5記載の先球ファイバレンズ
(20)の作成方法。
6. A method in which two or more optical fibers are used, at least one of which is arranged on the optical axis of an optical fiber lens (20), and the focal length is determined from information of light passing through these optical fibers. Item 5. A method for producing a spherical lens (20) having a spherical tip.
JP6141577A 1994-06-23 1994-06-23 Formation of spherical end fiber lens Pending JPH085864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6141577A JPH085864A (en) 1994-06-23 1994-06-23 Formation of spherical end fiber lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6141577A JPH085864A (en) 1994-06-23 1994-06-23 Formation of spherical end fiber lens

Publications (1)

Publication Number Publication Date
JPH085864A true JPH085864A (en) 1996-01-12

Family

ID=15295226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6141577A Pending JPH085864A (en) 1994-06-23 1994-06-23 Formation of spherical end fiber lens

Country Status (1)

Country Link
JP (1) JPH085864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833532B1 (en) * 2000-12-19 2004-12-21 Axsun Technologies, Inc. Method and system for feedback control of optical fiber lens fusing
JP2013097366A (en) * 2011-10-27 2013-05-20 Kazuo Noda Method for processing optical fiber front end by inter-electrode discharge (arc discharge)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833532B1 (en) * 2000-12-19 2004-12-21 Axsun Technologies, Inc. Method and system for feedback control of optical fiber lens fusing
JP2013097366A (en) * 2011-10-27 2013-05-20 Kazuo Noda Method for processing optical fiber front end by inter-electrode discharge (arc discharge)

Similar Documents

Publication Publication Date Title
CN1797049B (en) Optical device and fabrication method and apparatus for the same
AU2003289188A1 (en) Laser processing device
CN108044231A (en) A kind of laser welding head of coaxial optical path
US5563969A (en) Apparatus and method for forming a hemispherical microlens at the end of optical fiber
JP2005521069A (en) Fiber with thermoforming lens
US9566752B2 (en) Methods of forming a TIR optical fiber lens
CN104977779B (en) A kind of device and method of auto-focusing
GB2332318A (en) Low power output monitoring tap
US20030026539A1 (en) Optical fiber having a light converging function and method of manufacturing the same
US5897803A (en) Optical fiber attenuator made by fusion splicing offset fiber ends with extended heating after fusing
JPH085864A (en) Formation of spherical end fiber lens
US5117474A (en) Device for injecting the light energy of a laser beam into a fibre-optic optical waveguide and a method for adjusting and monitoring the position of the end of the fibre-optic optical waveguide
WO2002074706A1 (en) Attachment of optical elements
EP1199026A3 (en) Aberration-free delivery system
US6608276B2 (en) Apparatus for heating a small area of an object to a high temperature and for accurately maintaining this temperature
CN105676362A (en) Optical fiber fusion splicing method and device thereof
JP2001138084A (en) Device and method for adjusting position of attaching optical fiber
CA1245072A (en) Method and apparatus for measuring single mode fiber mode field radius
JPH08220376A (en) Formation of spherically ended fiber lens
JPH0682663A (en) Method for machining end surface part of optical fiber
JPS63263438A (en) Optical inspection device
US6833532B1 (en) Method and system for feedback control of optical fiber lens fusing
US20040223705A1 (en) Bidirectional transmitting and receiving device
JP3022132B2 (en) Fusion splicing method between silica glass waveguide element and optical fiber
JP3576798B2 (en) How to adjust the optical axis of the light receiving module