JPH0857976A - Production of composite optical element - Google Patents
Production of composite optical elementInfo
- Publication number
- JPH0857976A JPH0857976A JP21824194A JP21824194A JPH0857976A JP H0857976 A JPH0857976 A JP H0857976A JP 21824194 A JP21824194 A JP 21824194A JP 21824194 A JP21824194 A JP 21824194A JP H0857976 A JPH0857976 A JP H0857976A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- mold
- base material
- optical surface
- resin layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光学素子基材上に樹脂
層を形成する複合型光学素子の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a composite optical element in which a resin layer is formed on an optical element base material.
【0002】[0002]
【従来の技術】従来、複合型光学素子の製造方法とし
て、例えば特開平5−337959号公報記載の発明が
ある。上記発明は、図1に示す様に、金型1の光学面
(樹脂層を押圧する面)の有効径より外側へ中心軸に対
して軸対称形状を有する凹溝を設けるか、または図2に
示す様に、基材2の成形面(樹脂層を載置する面)の有
効径より外側へ中心軸に対して軸対称形状を有する凹溝
を設けることにより、金型1の光学面と基材2の成形面
により形成される空間を広げ、樹脂供給量にバラツキが
発生した場合、前記凹溝において樹脂供給量のバラツキ
を吸収して樹脂3の最外周部が前記成形空間からはみ出
さないようにする方法である。2. Description of the Related Art Conventionally, as a method for manufacturing a composite optical element, for example, there is an invention described in JP-A-5-337959. In the above invention, as shown in FIG. 1, a groove having an axially symmetric shape with respect to the central axis is provided outside the effective diameter of the optical surface (surface that presses the resin layer) of the mold 1, or FIG. As shown in FIG. 2, by providing a groove having an axisymmetric shape with respect to the central axis to the outside of the effective diameter of the molding surface (surface on which the resin layer is placed) of the base material 2, the optical surface of the mold 1 When the space formed by the molding surface of the base material 2 is widened and variations in the resin supply amount occur, variations in the resin supply amount are absorbed in the recessed grooves and the outermost peripheral portion of the resin 3 protrudes from the molding space. It's a way not to.
【0003】[0003]
【発明が解決しようとする課題】しかるに、前記従来技
術の方法では、基材2の成形面上に載置した樹脂3を押
圧して所望の樹脂層を形成する工程において、図1に示
す様な金型1の光学面の有効径より外側に凹溝が設けて
ある場合、樹脂3を凹溝に充填する時に溝の最も深く、
かつ中心軸に近い部分の空気が抜けず、図3に示す様
に、樹脂3が凹溝に完全に充填されない。したがって、
製造が完了した複合型光学素子の樹脂層の有効径外の突
起部(前記凹溝を反転した形状)に前記空気が気泡4と
して残ってしまうという問題点がある。ここで、この樹
脂層に混入した気泡4は有効径外にあり光学性能には直
接関係がないものの、目視で確認できる場合は製品とし
て使用することができず、製品の歩留まりの低下につな
がる。However, in the method of the prior art described above, in the step of pressing the resin 3 placed on the molding surface of the base material 2 to form a desired resin layer, as shown in FIG. When a concave groove is provided outside the effective diameter of the optical surface of the mold 1, when the resin 3 is filled in the concave groove, the deepest of the groove,
Moreover, the air in the portion close to the central axis does not escape, and as shown in FIG. 3, the resin 3 is not completely filled in the concave groove. Therefore,
There is a problem that the air remains as the bubbles 4 in the protrusion (the shape obtained by inverting the concave groove) outside the effective diameter of the resin layer of the composite optical element that has been manufactured. Here, the bubbles 4 mixed in the resin layer are outside the effective diameter and are not directly related to the optical performance, but if they can be visually confirmed, they cannot be used as a product, leading to a reduction in product yield.
【0004】一方、図2に示す様に、基材2の成形面の
有効径外に凹溝が設けてある場合、樹脂層に気泡4が混
入する等の外観を劣化させる問題は発生しないが、基材
の加工コストが高くなるので、結果的に複合型光学素子
の製造コストも高くなるという問題点がある。また、金
型や基材に凹溝を設けずに基材の直径を大きくすること
により樹脂の基材外へのはみ出しを防止する方法もある
が、製品全体が大型化するのでコンパクトカメラ等の場
合は製品のメリットが失われてしまう。On the other hand, as shown in FIG. 2, when a concave groove is provided outside the effective diameter of the molding surface of the base material 2, there is no problem that the appearance of the resin layer such as air bubbles 4 is deteriorated. However, since the processing cost of the base material increases, there is a problem that the manufacturing cost of the composite optical element also increases as a result. There is also a method of preventing resin from squeezing out of the base material by increasing the diameter of the base material without providing a concave groove in the mold or the base material. If you lose the benefits of the product.
【0005】請求項1の目的は、樹脂層の有効径より少
し大きな基材を用いた場合、基材に凹溝を設ける等の特
別な加工を施さなくても、樹脂供給量にバラツキが生じ
ても樹脂が金型の光学面と基材の成形面とにより形成さ
れる空間からはみ出すことがなく、かつ樹脂層の有効径
より外側の突起部において気泡の混入等による外観の劣
化がない複合型光学素子の製造方法を提供することにあ
る。The object of claim 1 is that when a base material slightly larger than the effective diameter of the resin layer is used, the resin supply amount varies even if no special processing such as providing a groove is formed in the base material. However, the resin does not protrude from the space formed by the optical surface of the mold and the molding surface of the base material, and the appearance does not deteriorate due to the inclusion of bubbles in the protrusions outside the effective diameter of the resin layer. It is to provide a method of manufacturing a mold optical element.
【0006】請求項2の目的は、樹脂層の有効径より少
し大きな基材を用いた場合、基材に凹溝を設ける等の特
別な加工を施さなくても、樹脂供給量にバラツキが生じ
ても樹脂が金型の光学面と基材の成形面とにより形成さ
れる空間からはみ出すことがなく、かる粘度が高い樹脂
の場合でも樹脂層の有効径より外側の突起部において気
泡の混入等による外観の劣化がない複合型光学素子の製
造方法を提供することにある。According to the second aspect of the present invention, when a base material having a diameter slightly larger than the effective diameter of the resin layer is used, the resin supply amount varies even if special processing such as providing a groove on the base material is not performed. However, the resin does not protrude from the space formed by the optical surface of the mold and the molding surface of the base material, and even when the resin has a high viscosity, air bubbles are mixed in at the protrusions outside the effective diameter of the resin layer. It is an object of the present invention to provide a method for manufacturing a composite optical element that does not deteriorate its appearance due to
【0007】[0007]
【課題を解決するための手段】本発明は、所望の樹脂層
表面を形成する有効面を有した内型とこれに嵌合する外
型のそれぞれが上下自在に形成された金型と、エネルギ
ー硬化型の樹脂が供給された基材とを近接させ、樹脂を
押圧して広げることにより樹脂層を形成した後、エネル
ギーの照射により樹脂層を硬化させて複合型光学素子を
得る製造方法において、金型と接触している樹脂の最外
周部が内型の光学面から外型の光学面に移行する時に前
記内型の光学面の最外周部と外型の光学面の最内周部と
が段差のない状態で樹脂を押圧するとともに、中心軸上
の樹脂の厚さが所望の値となる前に外型と基材とを相対
的に離反させることを特徴とする複合型光学素子の製造
方法である。また、前記エネルギー硬化型の樹脂の粘度
が3000cps以上の場合、1mm/sec以下の相
対離反速度で外型と基材とを相対的に離反させることを
特徴とする複合型光学素子の製造方法である。DISCLOSURE OF THE INVENTION The present invention provides a mold in which an inner mold having an effective surface for forming a desired resin layer surface and an outer mold fitted to the inner mold are formed so as to be vertically movable, and energy. In the manufacturing method for obtaining a composite type optical element, the curable resin is brought into close proximity to the substrate, the resin layer is formed by pressing and spreading the resin, and then the resin layer is cured by irradiation of energy. When the outermost peripheral portion of the resin in contact with the mold moves from the optical surface of the inner mold to the optical surface of the outer mold, the outermost peripheral portion of the optical surface of the inner mold and the innermost peripheral portion of the optical surface of the outer mold. Of the composite optical element characterized in that the outer mold and the base material are relatively separated before the thickness of the resin on the central axis reaches a desired value while pressing the resin in a state where there is no step. It is a manufacturing method. When the viscosity of the energy curable resin is 3000 cps or more, the outer mold and the base material are relatively separated from each other at a relative separation speed of 1 mm / sec or less. is there.
【0008】[0008]
【作用】請求項1の作用は、図4に示す様に、有効径よ
りも外側で互に上下動自在な内型1aと外型1bに分割
された金型1の光学面と基材2の成形面とを相対的に接
近させることにより樹脂3を押圧して中心から外側に広
げる場合、樹脂3の最外周部は内型1aの光学面1cと
基材2の成形面とに沿って外側に広がり、さらに、内型
1aの光学面1cと基材2の成形面との距離を徐々に近
づけると、やがて樹脂3の最外周部は外型1bの光学面
1dに到達する。The action of claim 1 is, as shown in FIG. 4, the optical surface of the die 1 and the substrate 2 which are divided into an inner die 1a and an outer die 1b which are vertically movable outside the effective diameter. When the resin 3 is pressed and spreads outward from the center by making the molding surface of the resin relatively close to each other, the outermost peripheral portion of the resin 3 extends along the optical surface 1c of the inner mold 1a and the molding surface of the base material 2. When the distance between the optical surface 1c of the inner mold 1a and the molding surface of the base material 2 is gradually reduced toward the outside, the outermost peripheral portion of the resin 3 eventually reaches the optical surface 1d of the outer mold 1b.
【0009】この時、内型1aの光学面1cの最外周部
(中心軸から最も遠い部分)より外型1bの光学面1d
の最内周部(中心軸に最も近い部分)が基材2から遠い
(嵌合部に段差がある)場合は、外型1bの光学面1d
の最内周部付近と内型1aの側面と樹脂3とにより囲ま
れた部分の空気は逃げるとができない。これは、図3に
示す様に、金型1の光学面の有効径より外側に凹溝を設
けた場合と同様であり、このまま樹脂層を硬化して複合
型光学素子を製造しても、前記空気が樹脂層内に気泡4
として残存してしまう。At this time, the optical surface 1d of the outer die 1b is more than the outermost peripheral portion (the portion farthest from the central axis) of the optical surface 1c of the inner die 1a.
If the innermost peripheral portion (the portion closest to the central axis) of the is far from the base material 2 (the fitting portion has a step), the optical surface 1d of the outer mold 1b.
The air in the vicinity of the innermost peripheral portion, the side surface of the inner mold 1a, and the portion surrounded by the resin 3 cannot escape. This is similar to the case where a groove is provided outside the effective diameter of the optical surface of the mold 1 as shown in FIG. 3, and even if the resin layer is cured as it is to manufacture the composite optical element, The air causes bubbles 4 in the resin layer.
Will remain as.
【0010】ところが、樹脂3の最外周部が内型1aの
光学面1cから外型1bの光学面1dに移行する時に、
図5に示す様に、内型1aの光学面1cの最外周部と外
型1bの光学面1dの最内周部とをツライチの(段差が
無い)状態にすると、外型1bの最内周部付近の樹脂3
中にも気泡4が混入することはない。しかし、樹脂3の
最外周部が外型1bの光学面1dに到達した後も内型1
aの最外周部と外型1bの最内周部とをツライチの状態
にしたまま樹脂層の中心軸上の厚さが所望の値になるま
で金型1の下降を継続すると、樹脂供給量が予め設定し
た値よりも多い場合には樹脂3が金型1の光学面と基材
2の成形面とで形成される空間からはみ出してしまう。However, when the outermost peripheral portion of the resin 3 moves from the optical surface 1c of the inner mold 1a to the optical surface 1d of the outer mold 1b,
As shown in FIG. 5, when the outermost peripheral portion of the optical surface 1c of the inner mold 1a and the innermost peripheral portion of the optical surface 1d of the outer mold 1b are set in a tritch (no step), the innermost portion of the outer mold 1b is formed. Resin 3 around the periphery
The bubbles 4 do not mix in the inside. However, even after the outermost peripheral portion of the resin 3 reaches the optical surface 1d of the outer mold 1b, the inner mold 1
When the die 1 is continuously lowered until the thickness on the central axis of the resin layer reaches a desired value while the outermost peripheral portion of a and the innermost peripheral portion of the outer die 1b are in a tlitche state, the resin supply amount Is larger than a preset value, the resin 3 will overflow from the space formed by the optical surface of the mold 1 and the molding surface of the base material 2.
【0011】そこで、樹脂3の最外周部が外型1bの光
学面1dに到達した後、中心軸上の樹脂層の厚さが所望
の値になる前に、図6に示す様に、外型1bと基材2と
を相対的に離反することにより、基材2の成形面と金型
1の光学面とにより形成される空間を広くする。この
時、外型1bの光学面1dの最内周部付近には常に樹脂
3が接触しているので、樹脂層内に気泡4が混入するこ
とはない。そして、外型1bと基材2との離反開始後、
または外型1bと基材2との離反開始と同時に、所望の
樹脂層が得られるまで内型1aと基材2とを接近させ
る。したがって、樹脂供給量が多くなっても、所望の樹
脂層の最外周部が金型1の光学面と基材2の成形面とに
より形成される空間からはみ出すことはない。Therefore, after the outermost peripheral portion of the resin 3 reaches the optical surface 1d of the outer mold 1b and before the thickness of the resin layer on the central axis reaches a desired value, as shown in FIG. By relatively separating the mold 1b and the base material 2, the space formed by the molding surface of the base material 2 and the optical surface of the mold 1 is widened. At this time, since the resin 3 is always in contact with the vicinity of the innermost peripheral portion of the optical surface 1d of the outer mold 1b, the bubbles 4 are not mixed in the resin layer. Then, after the separation of the outer mold 1b and the base material 2 is started,
Alternatively, at the same time when the outer mold 1b and the base material 2 start to separate from each other, the inner mold 1a and the base material 2 are brought close to each other until a desired resin layer is obtained. Therefore, even if the resin supply amount increases, the outermost peripheral portion of the desired resin layer does not protrude from the space formed by the optical surface of the mold 1 and the molding surface of the base material 2.
【0012】請求項2の作用は、図4に示す様に、有効
径よりも外側で互に上下動自在な内型1aと外型1bに
分割された金型1の光学面と基材2の成形面とを相対的
に接近させることにより樹脂3を押圧して中心から外側
に広げる場合、樹脂3の最外周部は内型1aの光学面1
cと基材2の成形面とに沿って外側に広がり、さらに内
型1aの光学面1cと基材2の成形面との距離を徐々に
近づけると、やがて樹脂3の最外周部は外型1bの光学
面1dに到達する。As shown in FIG. 4, the function of the second aspect is that the optical surface of the mold 1 and the substrate 2 divided into an inner mold 1a and an outer mold 1b that can move up and down relative to each other outside the effective diameter. When the resin 3 is pressed and spreads outward from the center by making the molding surface of the inner surface 1a relatively close to the molding surface, the outermost peripheral portion of the resin 3 is the optical surface 1 of the inner mold 1a.
c and the molding surface of the base material 2 are spread outward, and when the distance between the optical surface 1c of the inner mold 1a and the molding surface of the base material 2 is gradually reduced, the outermost peripheral portion of the resin 3 is eventually separated from the outer mold. The optical surface 1d of 1b is reached.
【0013】この時、内型1aの光学面1cの最外周部
より外型1bの光学面1dの最内周部が基材2から遠い
場合は、外型1bの光学面1dの最内周部付近と内型1
aの側面と樹脂3とにより囲まれた部分の空気は逃げる
とができない。これは、図3に示す様に、金型1の光学
面の有効径より外側に凹溝を設けた場合と同様であり、
このまま樹脂層を硬化して複合型光学素子を製造して
も、前記空気が樹脂層内に気泡4として残存してしま
う。At this time, if the innermost peripheral portion of the optical surface 1d of the outer mold 1b is farther from the base material 2 than the outermost peripheral portion of the optical surface 1c of the inner mold 1a, the innermost periphery of the optical surface 1d of the outer mold 1b. Area and inner mold 1
The air in the portion surrounded by the side surface of a and the resin 3 cannot escape. This is similar to the case where a concave groove is provided outside the effective diameter of the optical surface of the mold 1 as shown in FIG.
Even if the resin layer is cured as it is to manufacture a composite optical element, the air remains as bubbles 4 in the resin layer.
【0014】ところが、樹脂3の最外周部が内型1aの
光学面1cから外型1bの光学面1dに移行する時に、
図5に示す様に、内型1aの光学面1cの最外周部と外
型1bの光学面1dの最内周部とをツライチの(段差が
無い)状態にすると、外型1bの最内周部付近の樹脂3
中にも気泡4が混入することはない。しかし、樹脂3の
最外周部が外型1bの光学面1dに到達した後も内型1
aの最外周部と外型1bの最内周部とをツライチの状態
にしたまま樹脂層の中心軸上の厚さが所望の値になるま
で金型1の下降を継続すると、樹脂供給量が予め設定し
た値よりも多い場合には樹脂3が金型1の光学面と基材
2の成形面とで形成される空間からはみ出してしまう。However, when the outermost peripheral portion of the resin 3 moves from the optical surface 1c of the inner mold 1a to the optical surface 1d of the outer mold 1b,
As shown in FIG. 5, when the outermost peripheral portion of the optical surface 1c of the inner mold 1a and the innermost peripheral portion of the optical surface 1d of the outer mold 1b are set in a tritch (no step), the innermost portion of the outer mold 1b is formed. Resin 3 around the periphery
The bubbles 4 do not mix in the inside. However, even after the outermost peripheral portion of the resin 3 reaches the optical surface 1d of the outer mold 1b, the inner mold 1
If the die 1 is continuously lowered until the thickness on the central axis of the resin layer reaches a desired value while the outermost peripheral portion of a and the innermost peripheral portion of the outer die 1b are in a tritch state, the resin supply amount Is larger than a preset value, the resin 3 will overflow from the space formed by the optical surface of the mold 1 and the molding surface of the base material 2.
【0015】そこで、樹脂3の最外周部が外型1bの光
学面1dに到達した後、中心軸上の樹脂層の厚さが所望
の値になる前に、図6に示す様に、外型1bと基材2と
を相対的に離反することにより、基材2の成形面と金型
1の光学面とにより形成される空間を広くする。この
時、外型1bの光学面1dの最内周部付近には常に樹脂
3が接触しているので、樹脂層内に気泡4が混入するこ
とはない。また、外型1bと基材2との相対離反速度を
1mm/sec以下としているので、高粘度の樹脂3を
用いた場合でも外型1bと基材2とを離反させる工程に
おいて、図7に示す様に、外型1bの光学面1dに近い
部分の樹脂3aと基材2の成形面に近い樹脂3bとが分
段されることはない。そして、外型1bと基材2との離
反開始後、または外型1bと基材2との離反開始と同時
に所望の樹脂層が得られるまで内型1aと基材2とを接
近させる。したがって、樹脂供給量が多くなっても、所
望の樹脂層の最外周部が金型1の光学面と基材2の成形
面とにより形成される空間からはみ出すことはない。Therefore, after the outermost peripheral portion of the resin 3 reaches the optical surface 1d of the outer mold 1b and before the thickness of the resin layer on the central axis reaches a desired value, as shown in FIG. By relatively separating the mold 1b and the base material 2, the space formed by the molding surface of the base material 2 and the optical surface of the mold 1 is widened. At this time, since the resin 3 is always in contact with the vicinity of the innermost peripheral portion of the optical surface 1d of the outer mold 1b, the bubbles 4 are not mixed in the resin layer. In addition, since the relative separation speed between the outer mold 1b and the base material 2 is set to 1 mm / sec or less, in the step of separating the outer mold 1b and the base material 2 even when the high viscosity resin 3 is used, as shown in FIG. As shown, the resin 3a near the optical surface 1d of the outer mold 1b and the resin 3b near the molding surface of the substrate 2 are not separated. Then, after the separation of the outer mold 1b and the base material 2 is started, or at the same time as the separation of the outer mold 1b and the base material 2 is started, the inner mold 1a and the base material 2 are brought close to each other. Therefore, even if the resin supply amount increases, the outermost peripheral portion of the desired resin layer does not protrude from the space formed by the optical surface of the mold 1 and the molding surface of the base material 2.
【0016】[0016]
【実施例1】まず、図8に示す様に、両面が凹面のガラ
ス製の基材2の成形面に紫外線硬化型樹脂11を必要量
供給する。ここで、樹脂供給量にバラツキが生じた場合
でも樹脂11の最外周部が有効直径より外側に到達する
ように予め多めに設定しておく。また、基材2は成形面
の曲率半径が18mm,外径が25mmであり、基材2
の成形面の最外周部には中心軸に対して垂直で半径方向
の幅が1.5mmの端面2aが基材2の中心軸に対して
軸対称形状になるように設けられている。Example 1 First, as shown in FIG. 8, a required amount of ultraviolet curable resin 11 is supplied to the molding surface of a glass substrate 2 having concave surfaces on both sides. Here, a large amount is set in advance so that the outermost peripheral portion of the resin 11 reaches the outside of the effective diameter even when the resin supply amount varies. The base material 2 has a molding surface with a radius of curvature of 18 mm and an outer diameter of 25 mm.
At the outermost peripheral portion of the molding surface, an end surface 2a perpendicular to the central axis and having a radial width of 1.5 mm is provided so as to be axially symmetrical with respect to the central axis of the base material 2.
【0017】次に、図9に示す様に、所望の樹脂層12
を形成するための光学面を有し、かつ中心軸が基材2の
中心軸と同一で、樹脂層12表面(金型1で押圧した
面)の有効直径より外側を押圧する位置で互に上下動自
在な内型1a(直径19mm)と外型1b(内径D1=
19mm,外径D2=22mm)とに分割された金型1
を、内型1aと外型1bとの嵌合部がツライチの状態で
下降させて基材2に近づけることにより樹脂11を広
げ、樹脂11の最外周部を外型1bの光学面1dまで到
達させる。Next, as shown in FIG. 9, a desired resin layer 12 is formed.
Have an optical surface for forming the same, the central axis is the same as the central axis of the base material 2, and the outer diameter of the surface of the resin layer 12 (the surface pressed by the mold 1) is pressed to each other. Vertically movable inner die 1a (diameter 19 mm) and outer die 1b (inner diameter D1 =
Mold 1 divided into 19 mm and outer diameter D2 = 22 mm)
The resin 11 is spread by lowering the fitting portion of the inner die 1a and the outer die 1b in a tlitche state to bring it closer to the base material 2, and the outermost peripheral portion of the resin 11 reaches the optical surface 1d of the outer die 1b. Let
【0018】ここで、金型1の下降は樹脂供給量が予め
設定した値と同じ場合に樹脂11の最外周部が外型1b
の光学面1dの直径D1+(D2−D1)/2の位置に
到達するまで行う。したがって、樹脂供給量にバラツキ
が生じた場合でも、樹脂11の最外周部が内型1aと外
型1bの嵌合部より内側に入ったり、樹脂11の最外周
部が金型1と基材2とにより形成される空間からはみ出
すことはない。また、内型1aと外型1bの嵌合部には
段差がないので、樹脂11が内型1aから外型1bに移
行する時に樹脂11中に気泡が混入することはない。Here, when the die 1 is lowered, when the resin supply amount is the same as a preset value, the outermost peripheral portion of the resin 11 is the outer die 1b.
It is performed until the position of the diameter D1 + (D2-D1) / 2 of the optical surface 1d is reached. Therefore, even if the resin supply amount varies, the outermost peripheral portion of the resin 11 enters inside the fitting portion of the inner mold 1a and the outer mold 1b, or the outermost peripheral portion of the resin 11 and the mold 1 and the base material. It does not protrude from the space formed by 2 and. Further, since there is no step in the fitting portion between the inner mold 1a and the outer mold 1b, no bubbles are mixed into the resin 11 when the resin 11 is transferred from the inner mold 1a to the outer mold 1b.
【0019】内型1aの光学面1cは曲率半径16mm
の凸面形状をしており、外型1bの光学面1dは中心軸
に垂直な平面形状をしている。また、エネルギーを照射
する前の所望の樹脂層12の中心軸上の厚さは0.1m
m,外型1bの最内周部における中心軸に平行な方向の
基材2との距離は0.6mmであり、金型1の下降は樹
脂3が金型1と基材2とにより形成される空間からはみ
出すことを防止するために、中心軸上の内型の光学面1
cと基材2の成形面との距離が0.15mmの時点で停
止する。したがって、この時の外型1bの最内周部と基
材2の中心軸平行な方向の距離は0.45mmとなる。The optical surface 1c of the inner mold 1a has a radius of curvature of 16 mm.
The outer surface of the outer die 1b has a planar shape perpendicular to the central axis. In addition, the thickness of the desired resin layer 12 on the central axis before irradiation with energy is 0.1 m.
m, the distance between the outermost mold 1b and the base material 2 in the direction parallel to the central axis in the innermost peripheral portion is 0.6 mm, and the mold 1 is lowered by the resin 3 formed by the mold 1 and the base material 2. Inner optical surface 1 on the central axis in order to prevent it from protruding from the space
It stops when the distance between c and the molding surface of the substrate 2 is 0.15 mm. Therefore, the distance in the direction parallel to the central axis of the substrate 2 and the innermost peripheral portion of the outer die 1b at this time is 0.45 mm.
【0020】次に、図10に示す様に、外型1bを基材
2と反対方向に0.15mm離反する。この時の外型1
bと基材2の相対離反速度は6mm/secである。す
ると、外型1bの最内周部と基材2の距離は所望の値
(0.6mm)となる。この時、外型1bと基材2とに
より形成される空間は内型1aと外型1bの嵌合部に段
差がない場合に比べて広がっているので、樹脂供給量の
バラツキをこの部分で吸収して、樹脂11が前記空間か
らはみ出すことを防止することができる。また、外型1
bと基材2との離反開始直後に内型1aと基材2との相
対接近速度が2mm/secとなるようにして内型1a
の下降を再開し、中心軸上の樹脂層12の厚さも所望の
値(0.1mm)にする。Next, as shown in FIG. 10, the outer mold 1b is separated from the substrate 2 by 0.15 mm in the opposite direction. Outer mold 1 at this time
The relative separation speed between b and the substrate 2 is 6 mm / sec. Then, the distance between the innermost peripheral portion of the outer die 1b and the substrate 2 becomes a desired value (0.6 mm). At this time, the space formed by the outer mold 1b and the base material 2 is wider than that in the case where there is no step in the fitting portion of the inner mold 1a and the outer mold 1b, so that the variation in the resin supply amount at this portion. It is possible to absorb the resin and prevent the resin 11 from protruding from the space. Also, the outer mold 1
Immediately after the separation of b and the base material 2 is started, the inner mold 1a is adjusted so that the relative approach speed between the inner mold 1a and the base material 2 is 2 mm / sec.
Is resumed, and the thickness of the resin layer 12 on the central axis is set to a desired value (0.1 mm).
【0021】ここで、、外型1b基材2との離反は樹脂
11の最外周部を中心軸側に戻す働きがあり、内型1a
と基材2との接近は樹脂の最外周部を外側に広げる働き
をするので、両工程を同時に行うことにより、樹脂11
の最外周部が内型1aと外型1bの嵌合部より内側に入
ったり、金型1と基材2とにより形成される空間からは
み出すことはない。この後、基材2の下方より不図示の
手段により紫外線を照射して樹脂層12を硬化すると、
金型1,基材2および樹脂層12が一体となった密着体
が形成される。Here, the separation of the outer mold 1b from the base material 2 has a function of returning the outermost peripheral portion of the resin 11 to the central axis side.
Since the approach between the base material 2 and the base material 2 serves to expand the outermost peripheral portion of the resin to the outside, by performing both steps simultaneously, the resin 11
The outermost peripheral part of the above does not enter the inside of the fitting part of the inner mold 1a and the outer mold 1b, and does not protrude from the space formed by the mold 1 and the base material 2. After that, when the resin layer 12 is cured by irradiating ultraviolet rays from below the base material 2 by means not shown,
A contact body in which the mold 1, the base material 2 and the resin layer 12 are integrated is formed.
【0022】次に、図11に示す様に、前記密着体を上
昇させると、予め基材2の端面2aの一部の上方に設け
られていた剥離用の部材13が基材2の端面2aと面接
触する。ここで、剥離用の部材13の下部は基材2の端
面2aと平行な平面13aが形成されている。そして、
基材2の端面2a上の剥離用の部材13の平面13aが
接触した部分にまず荷重が集中し、その後荷重が基材2
全体に分散する。ここで、前記密着体の上昇を続ける
と、図12に示す様に、容易かつ瞬時に金型1より基材
2と樹脂層3とが一体となった複合型光学素子14が剥
離される。Next, as shown in FIG. 11, when the contact member is raised, the peeling member 13 previously provided above a part of the end surface 2a of the base material 2 is removed from the end surface 2a of the base material 2. Make surface contact with. Here, the lower surface of the peeling member 13 is formed with a flat surface 13a parallel to the end surface 2a of the base material 2. And
The load is first concentrated on a portion of the end surface 2a of the base material 2 where the flat surface 13a of the peeling member 13 is in contact, and then the load is applied to the base material 2
Disperse throughout. Here, as the contact body continues to rise, as shown in FIG. 12, the composite optical element 14 in which the base material 2 and the resin layer 3 are integrated is separated from the mold 1 easily and instantly.
【0023】本実施例によれば、基材2の凹溝を設ける
等の特別な加工を施さなくても、樹脂供給量にバラツキ
が生じても樹脂層12が金型1の光学面と基材2の成形
面により形成される空間からはみ出すことがなく、かつ
樹脂層12の有効径より外側の突起部において気泡の混
入等による外観の劣化がない。According to this embodiment, the resin layer 12 does not interfere with the optical surface of the mold 1 even if the resin supply amount varies even if no special processing such as forming a groove in the base material 2 is performed. It does not protrude from the space formed by the molding surface of the material 2, and the appearance of the resin layer 12 outside the effective diameter does not deteriorate due to the inclusion of air bubbles.
【0024】[0024]
【実施例2】まず、図13に示す様に、両面が凸面のガ
ラス製の基材2の成形面に紫外線硬化型樹脂11を必要
量供給する。ここで、基材2の成形面上に供給した樹脂
11が容易に流れ出さないように粘度が3000cps
以上の樹脂を用い、樹脂供給量はバラツキが生じた場合
でも樹脂11の最外周部が有効直径より外側に到達する
ように予め多めに設定しておく。また、基材2は成形面
の曲率半径が50mm,外径が30mmであり、基材2
の側面には幅3mm,深さ2mmのV型溝2bが基材2
の中心軸に対して軸対称形状になるように設けられてい
る。[Embodiment 2] First, as shown in FIG. 13, a necessary amount of the ultraviolet curable resin 11 is supplied to the molding surface of the glass base material 2 having convex surfaces on both sides. Here, the viscosity is 3000 cps so that the resin 11 supplied onto the molding surface of the base material 2 does not easily flow out.
The above resins are used, and the resin supply amount is set in advance so that the outermost peripheral portion of the resin 11 reaches the outside of the effective diameter even if variations occur. The base material 2 has a molding surface with a radius of curvature of 50 mm and an outer diameter of 30 mm.
A V-shaped groove 2b having a width of 3 mm and a depth of 2 mm is provided on the side surface of the base material 2
It is provided so as to have an axially symmetric shape with respect to the central axis of.
【0025】次に、図14に示す様に、所望の樹脂層1
2を形成するための光学面を有し、かつ中心軸が基材2
の中心軸と同一で、樹脂層12表面の有効直径より外側
を押圧する位置で互いに上下動自在な内型1a(直径2
2mm)と外型1b(内径D1=22mm,外径D2=
26mm)に分割された金型1を、内型1aと外型1b
の嵌合部がツライチの状態で下降させて基材2に近づけ
ることにより樹脂11を広げ、樹脂11の最外周部を外
型1bの光学面まで到達させる。Next, as shown in FIG. 14, the desired resin layer 1
2 has an optical surface for forming 2, and the central axis is the base material 2
Of the inner mold 1a (diameter 2
2 mm) and outer mold 1b (inner diameter D1 = 22 mm, outer diameter D2 =
The mold 1 divided into 26 mm) is divided into an inner mold 1a and an outer mold 1b.
The fitting portion is lowered in a tlitchi state to approach the base material 2 to spread the resin 11, and the outermost peripheral portion of the resin 11 reaches the optical surface of the outer mold 1b.
【0026】ここで、金型1の下降は樹脂供給量が予め
設定した値と同じ場合に樹脂11の最外周部が外型の光
学面1dの直径D1+(D2−D1)/2の位置に到達
するまで行う。したがって、樹脂供給量にバラツキが生
じた場合でも、樹脂11の最外周部が内型1aと外型1
bの嵌合部より内側に入ったり、樹脂11の最外周部が
金型1と基材2とにより形成される空間からはみ出すこ
とはない。また、内型1aと外型1bとの嵌合部には段
差がないので、樹脂11が内型1aから外型1bに移行
する時に樹脂11中に気泡が混入することはない。Here, when the die 1 is lowered, the outermost peripheral portion of the resin 11 is located at the position of the diameter D1 + (D2-D1) / 2 of the optical surface 1d of the outer die when the resin supply amount is the same as the preset value. Do it until you reach it. Therefore, even when the resin supply amount varies, the outermost peripheral portion of the resin 11 is located at the inner mold 1a and the outer mold 1.
It does not enter the inside of the fitting part of b or the outermost peripheral part of the resin 11 protrudes from the space formed by the mold 1 and the base material 2. Further, since there is no step in the fitting portion between the inner mold 1a and the outer mold 1b, air bubbles are not mixed in the resin 11 when the resin 11 is transferred from the inner mold 1a to the outer mold 1b.
【0027】内型1aの光学面1cは曲率半径54mm
の凹面形状をしており、外型1bの光学面1dは中心軸
に垂直な平面形状をしている。また、エネルギーを照射
する前の所望の樹脂層12の中心軸上の厚さは0.5m
m、外型1bの最内周部における中心軸に平行な方向の
基材2との距離は0.3mmであり、金型1の下降は樹
脂11が金型1と基材2とにより形成される空間からは
み出すことを防止するために、中心軸上の内径1aの光
学面1cと基材2の成形面との距離が0.1mmの時点
で停止する。したがって、この時の外型1bの最内周部
と基材2の中心軸に平行な方向の距離は0.15mmと
なる。The optical surface 1c of the inner mold 1a has a radius of curvature of 54 mm.
The optical surface 1d of the outer mold 1b has a planar shape perpendicular to the central axis. Further, the thickness on the central axis of the desired resin layer 12 before irradiation with energy is 0.5 m.
m, the distance from the innermost peripheral portion of the outer die 1b to the base material 2 in the direction parallel to the central axis is 0.3 mm, and the mold 1 is lowered by the resin 11 formed by the die 1 and the base material 2. In order to prevent the optical surface 1c having the inner diameter 1a on the central axis from the molding surface of the base material 2, it stops at a point of 0.1 mm in order to prevent it from protruding from the space. Therefore, the distance in the direction parallel to the central axis of the substrate 2 and the innermost peripheral portion of the outer die 1b at this time is 0.15 mm.
【0028】次に、図15に示す様に、外型1bを基材
2と反対方向に0.15mm離反する。この時の外型1
bと基材2との相対離反速度は0.75mm/secで
ある。すると、外型1bの最内周部と基材2の距離とは
所望の値(0.3mm)となる。この時、外型1bと基
材2とにより形成される空間は内型1aと外型1bの嵌
合部に段差がない場合に比べて広がっているので、樹脂
供給量のバラツキをこの部分で吸収して、樹脂11が前
記空間からはみ出すことを防止することができる。Next, as shown in FIG. 15, the outer mold 1b is separated from the substrate 2 by 0.15 mm in the opposite direction. Outer mold 1 at this time
The relative separation speed between b and the substrate 2 is 0.75 mm / sec. Then, the distance between the innermost peripheral portion of the outer die 1b and the base material 2 becomes a desired value (0.3 mm). At this time, the space formed by the outer mold 1b and the base material 2 is wider than that in the case where there is no step in the fitting portion of the inner mold 1a and the outer mold 1b, so that the variation in the resin supply amount at this portion. It is possible to absorb the resin and prevent the resin 11 from protruding from the space.
【0029】また、外型1bと基材2との相対離反速度
を0.75mm/secのように極めて遅くしているの
で、粘度が高い樹脂11を用いた場合でも外型1bと基
材2とを離反する時に外型1bと基材2との間の樹脂1
1が途中で分段されて樹脂11中に気泡が混入すること
はない。さらに、外型1bと基材2との離反開始直後に
内型1aと基材2との相対接近速度が0.25mm/s
ecとなるようにして内型1aの下降を再開し、中心軸
上の樹脂層12の厚さも所望の値(0.05mm)にす
る。Further, since the relative separation speed between the outer mold 1b and the base material 2 is extremely slow, such as 0.75 mm / sec, even when the resin 11 having a high viscosity is used, the outer mold 1b and the base material 2 are used. The resin 1 between the outer mold 1b and the base material 2 when separating the
There is no possibility that air bubbles are mixed in the resin 11 by dividing 1 in the middle. Immediately after the separation between the outer mold 1b and the base material 2 is started, the relative approach speed between the inner mold 1a and the base material 2 is 0.25 mm / s.
The lowering of the inner mold 1a is restarted so as to be ec, and the thickness of the resin layer 12 on the central axis is also set to a desired value (0.05 mm).
【0030】ここで、外型1bと基材2との離反は樹脂
11の最外周部を中心軸側に戻す働きがあり、内型1a
と基材2との接近は樹脂11の最外周部を外側に広げる
働きをするので、両工程を同時に行うことにより、樹脂
11の最外周部が内型1aと外型1bの嵌合部より内側
に入ったり、金型1と基材2とにより形成される空間か
らはみ出すことはない。この後、基材2の下方より不図
示の手段により紫外線を照射して樹脂層12を硬化する
と、金型1,基材2および樹脂層12が一体となった密
着体が形成される。Here, the separation between the outer mold 1b and the base material 2 has a function of returning the outermost peripheral portion of the resin 11 to the central axis side, and the inner mold 1a.
Since the approach between the base material 2 and the base material 2 serves to expand the outermost peripheral portion of the resin 11 to the outside, the outermost peripheral portion of the resin 11 can be moved from the fitting portion of the inner die 1a and the outer die 1b by performing both steps at the same time. It does not enter the inside or protrude from the space formed by the mold 1 and the base material 2. Then, the resin layer 12 is cured by irradiating ultraviolet rays from below the base material 2 by means (not shown) to form a contact body in which the mold 1, the base material 2 and the resin layer 12 are integrated.
【0031】次に、図16に示す様に、予め基材2の側
面の外周部に設けられており、先端部13bが基材2の
側面のV型溝2bを反転した形状の剥離用の部材13を
中心軸に対して接近させ、剥離用の部材13の先端部1
3bを基材2の側面のV型溝2bに接触させる。ここ
で、剥離用の部材13の位置は剥離用の部材13の先端
部13bが基材2の側面のv型溝2bに挿入可能なよう
に調整されているものとする。Next, as shown in FIG. 16, the tip portion 13b is provided in advance on the outer peripheral portion of the side surface of the base material 2, and the tip portion 13b is formed by inverting the V-shaped groove 2b on the side surface of the base material 2 for peeling. The member 13 is moved closer to the central axis, and the tip portion 1 of the peeling member 13 is
3b is brought into contact with the V-shaped groove 2b on the side surface of the base material 2. Here, the position of the peeling member 13 is adjusted so that the tip portion 13b of the peeling member 13 can be inserted into the v-shaped groove 2b on the side surface of the base material 2.
【0032】そして、前記密着体を上昇させると、基材
2の側面のV型溝2bの剥離用の部材13が接触する部
分にまず荷重が集中し、その後荷重が基材2全体に分散
する。ここで、前記密着体の上昇を続けると、図17に
示す様に、容易かつ瞬時に金型1より基材2と樹脂層1
2とが一体となった複合型光学素子14が剥離される。Then, when the contact member is raised, the load is first concentrated on a portion of the side surface of the base material 2 where the peeling member 13 of the V-shaped groove 2b contacts, and then the load is dispersed over the entire base material 2. . Here, as the contact body continues to rise, as shown in FIG. 17, the base material 2 and the resin layer 1 are easily and instantly removed from the mold 1.
The composite optical element 14 in which 2 and 1 are integrated is peeled off.
【0033】本実施例によれば、基材2に凹溝を設ける
等の特別な加工を施さなくても、樹脂供給量にバラツキ
が生じても樹脂層12が金型1の光学面と基材2の成形
面とにより形成される空間からはみ出すことがなく、か
つ樹脂層12の有効径より外側の突起部において気泡の
混入等による外観の劣化がない。また、樹脂11の粘度
が高い場合でも樹脂11中に気泡が混入することがな
く、成形面が凸面で曲率半径が小さい場合でも同様な効
果が得られる。According to this embodiment, the resin layer 12 and the optical surface of the mold 1 can be formed on the base surface of the mold 1 without any special processing such as providing a groove on the base material 2 even if the resin supply amount varies. There is no protrusion from the space formed by the molding surface of the material 2, and there is no deterioration of the appearance due to the inclusion of bubbles in the protrusions outside the effective diameter of the resin layer 12. Further, even when the viscosity of the resin 11 is high, bubbles are not mixed in the resin 11, and the same effect can be obtained even when the molding surface is convex and the radius of curvature is small.
【0034】[0034]
【実施例3】まず、図18に示す様に、成形面が凹面で
非成形面(樹脂層を載置しない面)が凸面のガラス製の
基材2の成形面に紫外線硬化型樹脂11を必要量供給す
る。ここで、樹脂供給量はバラツキが生じた場合でも樹
脂11の最外周部が有効直径より外側に到達するように
予め多めに設定しておく。また、基材2は成形面の曲率
半径が18mm,外径が25mmであり、基材2の成形
面の最外周部には中心軸に対して垂直で半径方向の幅が
1.5mmの端面2aが基材2の中心軸に対して軸対称
形状になるように設けられている。[Embodiment 3] First, as shown in FIG. 18, the ultraviolet curable resin 11 is applied to the molding surface of a glass base material 2 having a concave molding surface and a convex non-molding surface (the surface on which the resin layer is not placed). Supply the required amount. Here, the resin supply amount is set to a large amount in advance so that the outermost peripheral portion of the resin 11 reaches the outside of the effective diameter even if variations occur. The base material 2 has a molding surface with a radius of curvature of 18 mm and an outer diameter of 25 mm, and the outermost peripheral portion of the molding surface of the base material 2 has an end surface perpendicular to the central axis and having a radial width of 1.5 mm. 2a is provided so as to have an axially symmetrical shape with respect to the central axis of the base material 2.
【0035】次に、図19に示す様に、所望の樹脂層1
2を形成するための光学面を有し、かつ中心軸が基材2
の中心軸と同一で、樹脂層12表面(金型1で押圧した
面)の有効直径より外側を押圧する位置で互いに上下動
自在な内型1a(直径19mm)と外型1b(内径D1
=19mm、外径D2=22mm)とに分割された金型
1を、内型1aと外型1bの嵌合部がツライチの状態で
下降させて基材2に近づけることにより樹脂11を広
げ、樹脂11の最外周部を外型1bの光学面1dまで到
達させる。また、金型1の下降は樹脂供給量が予め設定
した値と同じ場合に樹脂の最外周部が外型1bの光学面
1dの直径D1+2(D2−D1)/3の位置に到達す
るまで行う。Next, as shown in FIG. 19, the desired resin layer 1
2 has an optical surface for forming 2, and the central axis is the base material 2
The center axis of the inner mold 1a (diameter 19 mm) and the outer mold 1b (inner diameter D1) are vertically movable at a position that presses the outside of the effective diameter of the surface of the resin layer 12 (the surface pressed by the mold 1).
= 19 mm, outer diameter D2 = 22 mm), and the resin 11 is spread by lowering the mold 1 with the fitting portion of the inner mold 1a and the outer mold 1b being in the state of tritch to approach the base material 2. The outermost peripheral portion of the resin 11 reaches the optical surface 1d of the outer mold 1b. Further, the die 1 is lowered until the outermost peripheral portion of the resin reaches the position of the diameter D1 + 2 (D2-D1) / 3 of the optical surface 1d of the outer die 1b when the resin supply amount is the same as the preset value. .
【0036】したがって、樹脂供給量のバラツキが大き
い場合でも樹脂11の最外周部が内型1aと外型1bの
嵌合部より内側に入ったり、樹脂11の最外周部が金型
1と基材2とにより形成される空間からはみ出すること
はない。また、内型1aと外型1bの嵌合部には段差が
ないので、樹脂11が内型1aから外型1bに移行する
時に樹脂11中に気泡が混入することはない。ここで、
内型1aの光学面1cは曲率半径16mmの凸面形状を
しており、外型1bの光学面1dは中心軸に垂直な平面
形状をしている。Therefore, even when the variation in the resin supply amount is large, the outermost peripheral portion of the resin 11 enters inside the fitting portion of the inner mold 1a and the outer mold 1b, or the outermost peripheral portion of the resin 11 and the mold 1 are the same. It does not protrude from the space formed by the material 2. Further, since there is no step in the fitting portion between the inner mold 1a and the outer mold 1b, no bubbles are mixed into the resin 11 when the resin 11 is transferred from the inner mold 1a to the outer mold 1b. here,
The optical surface 1c of the inner die 1a has a convex shape with a radius of curvature of 16 mm, and the optical surface 1d of the outer die 1b has a planar shape perpendicular to the central axis.
【0037】また、エネルギーを照射する前の所望の樹
脂層12の中心軸上の厚さは0.1mm、外型1bの最
内周部における中心軸に平行な方向の基材2との距離は
0.6mmであり、金型1の下降は樹脂11が金型1と
基材2とにより形成される空間からはみ出すことを防止
するために、中心軸上の内型1aの光学面1cと基材2
の成形面との距離が0.15mmの時点で停止する。し
たがって、この時の外型1bの最内周部と基材2の中心
軸とに平行な方向の距離は0.45mmとなる。The thickness of the desired resin layer 12 on the central axis before irradiation with energy is 0.1 mm, and the distance from the base material 2 in the direction parallel to the central axis in the innermost peripheral portion of the outer die 1b. Is 0.6 mm, and in order to prevent the resin 11 from falling out of the space formed by the mold 1 and the base material 2 when the mold 1 descends, the optical surface 1c of the inner mold 1a on the central axis is Base material 2
It stops when the distance from the molding surface is 0.15 mm. Therefore, the distance in the direction parallel to the innermost peripheral portion of the outer die 1b and the central axis of the base material 2 at this time is 0.45 mm.
【0038】次に、図20に示す様に、外型1bを基材
2と反対方向に0.15mm離反する。この時の外型1
bと基材2との相対離反速度は6mm/secである。
すると、外型1bの最内周部と基材2との距離は所望の
値(0.6mm)となる。この時、外型1bと基材2と
により形成される空間は内型1aと外型1bの嵌合部に
段差がない場合に比べて広がっているので、樹脂供給量
のバラツキをこの部分で吸収して、樹脂11が前記空間
からはみ出すことを防止することができる。また、外型
1bと基材2との離反開始直後に内型1aと基材2との
相対接近速度が2mm/secとなるようにして内型1
aの下降を再開し、中心軸上の樹脂層12の厚さを所望
の値(0.1mm)にする。Next, as shown in FIG. 20, the outer mold 1b is separated from the base material 2 by 0.15 mm in the opposite direction. Outer mold 1 at this time
The relative separation speed between b and the substrate 2 is 6 mm / sec.
Then, the distance between the innermost peripheral portion of the outer mold 1b and the base material 2 becomes a desired value (0.6 mm). At this time, the space formed by the outer mold 1b and the base material 2 is wider than that in the case where there is no step in the fitting portion of the inner mold 1a and the outer mold 1b, so that the variation in the resin supply amount at this portion. It is possible to absorb the resin and prevent the resin 11 from protruding from the space. Immediately after the separation between the outer mold 1b and the base material 2 is started, the inner mold 1a is adjusted so that the relative approach speed between the inner mold 1a and the base material 2 becomes 2 mm / sec.
The descent of “a” is restarted to set the thickness of the resin layer 12 on the central axis to a desired value (0.1 mm).
【0039】ここで、外型1bの基材2との離反は樹脂
11の最外周部を中心軸側に戻す働きがあり、内型1a
と基材2との接近は樹脂11の最外周部を外側に広げる
働きをするので、両工程を同時に行うことにより、樹脂
11の最外周部が内型1aと外型1bの嵌合部より内側
に入ったり、金型1と基材2とにより形成される空間か
らはみ出すことはない。次に、基材2の下方より不図示
の手段により紫外線を照射して樹脂層12を硬化する
と、金型1,基材2および樹脂層12が一体となった密
着体が形成される。Here, the separation of the outer mold 1b from the base material 2 has a function of returning the outermost peripheral portion of the resin 11 to the central axis side.
Since the approach between the base material 2 and the base material 2 serves to expand the outermost peripheral portion of the resin 11 to the outside, the outermost peripheral portion of the resin 11 can be moved from the fitting portion of the inner die 1a and the outer die 1b by performing both steps at the same time. It does not enter the inside or protrude from the space formed by the mold 1 and the base material 2. Next, the resin layer 12 is cured by irradiating ultraviolet rays from below the base material 2 by means (not shown) to form a contact body in which the mold 1, the base material 2 and the resin layer 12 are integrated.
【0040】次に、図21に示す様に、前記密着体を上
昇させると、予め基材2の端面2aの一部の上方に設け
られていた剥離用の部材13が基材2の端面2aと面接
触する。ここで、剥離用の部材13の下部は基材2の端
面2aと平行な平面13aが形成されている。そして、
基材2の端面2a上の剥離用の部材13の平面13aが
接触した部分にまず荷重が集中し、その後荷重が基材2
全体に分散する。ここで、前記密着体の上昇を続ける
と、図22に示す様に、容易かつ瞬時に金型1より基材
2と樹脂層12とが一体となった複合型光学素子14が
剥離される。Next, as shown in FIG. 21, when the contact member is raised, the peeling member 13 previously provided above a part of the end surface 2a of the base material 2 is removed from the end surface 2a of the base material 2. Make surface contact with. Here, the lower surface of the peeling member 13 is formed with a flat surface 13a parallel to the end surface 2a of the base material 2. And
The load is first concentrated on a portion of the end surface 2a of the base material 2 where the flat surface 13a of the peeling member 13 is in contact, and then the load is applied to the base material 2
Disperse throughout. Here, as the contact body continues to rise, as shown in FIG. 22, the composite optical element 14 in which the base material 2 and the resin layer 12 are integrated is easily and instantly peeled off from the mold 1.
【0041】本実施例によれば、基材2に凹溝を設ける
等の特別な下降を施さなくても、樹脂供給量にバラツキ
が生じても樹脂層12が金型1の光学面と基材2の成形
面とにより形成される空間からはみ出すことがなく、か
つ樹脂層12の有効径より外側の突起部において気泡の
混入等による外観の劣化がない。According to the present embodiment, the resin layer 12 and the optical surface of the mold 1 are not affected by the resin layer 12 even if the resin supply amount varies even if the substrate 2 is not lowered, for example. There is no protrusion from the space formed by the molding surface of the material 2, and there is no deterioration of the appearance due to the inclusion of bubbles in the protrusions outside the effective diameter of the resin layer 12.
【0042】[0042]
【発明の効果】請求項1の効果は、基材に凹溝を設ける
等の特別な加工を施さなくても、樹脂供給量にバラツキ
が生じても樹脂が金型の光学面と基材の成形面とにより
形成される空間からはみ出すことがなく、かつ樹脂層の
有効径より外側の突起部において気泡の混入等による外
観の劣化がない複合型光学素子を製造可能なことであ
る。The effect of the present invention is that even if the resin is not supplied with a special process such as forming a groove, the resin is not mixed with the optical surface of the mold and the substrate even if the resin supply amount varies. It is possible to manufacture a composite optical element that does not protrude from the space formed by the molding surface and does not deteriorate in appearance due to inclusion of air bubbles in the protrusions outside the effective diameter of the resin layer.
【0043】請求項2の効果は、基材に凹溝を設ける等
の特別な加工を施さなくても、樹脂供給量にバラツキが
生じても樹脂が金型の光学面と基材の成形面とにより形
成される空間からはみ出すことがなく、かつ粘度が高い
樹脂の場合でも樹脂層の有効径より外側の突起部におい
て気泡の混入等による外観の劣化がない複合型光学素子
を製造可能なことである。The effect of claim 2 is that, even if no special processing such as forming a groove in the base material is performed, even if the resin supply amount varies, the resin is used as the optical surface of the mold and the molding surface of the base material. It is possible to manufacture a composite type optical element that does not protrude from the space formed by and does not deteriorate in appearance due to inclusion of bubbles in protrusions outside the effective diameter of the resin layer even when the resin has high viscosity. Is.
【図1】従来例を示す半截断面図である。FIG. 1 is a half cross-sectional view showing a conventional example.
【図2】従来例を示す半截断面図である。FIG. 2 is a half sectional view showing a conventional example.
【図3】従来例を示す半截断面図である。FIG. 3 is a half sectional view showing a conventional example.
【図4】本発明を示す半截断面図である。FIG. 4 is a half sectional view showing the present invention.
【図5】本発明を示す半截断面図である。FIG. 5 is a half sectional view showing the present invention.
【図6】本発明を示す半截断面図である。FIG. 6 is a half sectional view showing the present invention.
【図7】本発明を示す半截断面図である。FIG. 7 is a half sectional view showing the present invention.
【図8】実施例1を示す断面図である。FIG. 8 is a cross-sectional view showing the first embodiment.
【図9】実施例1を示す断面図である。FIG. 9 is a cross-sectional view showing the first embodiment.
【図10】実施例1を示す断面図である。FIG. 10 is a cross-sectional view showing the first embodiment.
【図11】実施例1を示す断面図である。FIG. 11 is a cross-sectional view showing the first embodiment.
【図12】実施例1を示す断面図である。FIG. 12 is a cross-sectional view showing the first embodiment.
【図13】実施例2を示す断面図である。FIG. 13 is a cross-sectional view showing a second embodiment.
【図14】実施例2を示す断面図である。FIG. 14 is a cross-sectional view showing a second embodiment.
【図15】実施例2を示す断面図である。FIG. 15 is a cross-sectional view showing a second embodiment.
【図16】実施例2を示す断面図である。FIG. 16 is a cross-sectional view showing a second embodiment.
【図17】実施例2を示す断面図である。FIG. 17 is a cross-sectional view showing a second embodiment.
【図18】実施例3を示す断面図である。FIG. 18 is a cross-sectional view showing a third embodiment.
【図19】実施例3を示す断面図である。FIG. 19 is a cross-sectional view showing a third embodiment.
【図20】実施例3を示す断面図である。FIG. 20 is a cross-sectional view showing a third embodiment.
【図21】実施例3を示す断面図である。FIG. 21 is a cross-sectional view showing a third embodiment.
【図22】実施例3を示す断面図である。FIG. 22 is a cross-sectional view showing a third embodiment.
1 金型 2 基材 3,11 樹脂 4 気泡 12 樹脂層 13 剥離用の部材 14 複合型光学素子 DESCRIPTION OF SYMBOLS 1 Mold 2 Base material 3,11 Resin 4 Bubble 12 Resin layer 13 Member for peeling 14 Composite optical element
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 105:20 105:32 B29L 11:00 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area // B29K 105: 20 105: 32 B29L 11:00
Claims (2)
した内型とこれに嵌合する外型のそれぞれが上下自在に
形成された金型と、エネルギー硬化型の樹脂が供給され
た基材とを近接させ、樹脂を押圧して広げることにより
樹脂層を形成した後、エネルギーの照射により樹脂層を
硬化させて複合型光学素子を得る製造方法において、金
型と接触している樹脂の最外周部が内型の光学面から外
型の光学面に移行する時に前記内型の光学面の最外周部
と外型の光学面の最内周部とが段差のない状態で樹脂を
押圧するとともに、中心軸上の樹脂の厚さが所望の値と
なる前に外型と基材とを相対的に離反させることを特徴
とする複合型光学素子の製造方法。1. A mold in which an inner mold having an effective surface for forming a desired resin layer surface and an outer mold fitted to the inner mold are vertically formed, and an energy curable resin is supplied. In the manufacturing method for obtaining a composite type optical element by forming a resin layer by bringing the resin close to the base material and pressing and spreading the resin, the resin in contact with the mold in the manufacturing method for curing the resin layer by irradiation of energy When the outermost peripheral part of the inner mold optical surface transitions from the outer mold optical surface to the outer mold optical surface of the inner mold and the outermost optical part of the outer mold optical surface without a step A method for manufacturing a composite-type optical element, characterized in that the outer die and the base material are relatively separated from each other while being pressed and before the thickness of the resin on the central axis reaches a desired value.
000cps以上の場合、1mm/sec以下の相対離
反速度で外型と基材とを相対的に離反させることを特徴
とする請求項1記載の複合型光学素子の製造方法。2. The energy-curable resin has a viscosity of 3
The method for producing a composite optical element according to claim 1, wherein, in the case of 000 cps or more, the outer mold and the base material are relatively separated from each other at a relative separation speed of 1 mm / sec or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21824194A JPH0857976A (en) | 1994-08-19 | 1994-08-19 | Production of composite optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21824194A JPH0857976A (en) | 1994-08-19 | 1994-08-19 | Production of composite optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0857976A true JPH0857976A (en) | 1996-03-05 |
Family
ID=16716810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21824194A Withdrawn JPH0857976A (en) | 1994-08-19 | 1994-08-19 | Production of composite optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0857976A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100906637B1 (en) * | 2007-12-17 | 2009-07-10 | 삼성전기주식회사 | Core to manufacture Master Substrate and Manufacturing Method using it |
WO2018061331A1 (en) * | 2016-09-29 | 2018-04-05 | 富士フイルム株式会社 | Composite optical element |
JP2019164267A (en) * | 2018-03-20 | 2019-09-26 | 富士フイルム株式会社 | Compound lens |
-
1994
- 1994-08-19 JP JP21824194A patent/JPH0857976A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100906637B1 (en) * | 2007-12-17 | 2009-07-10 | 삼성전기주식회사 | Core to manufacture Master Substrate and Manufacturing Method using it |
WO2018061331A1 (en) * | 2016-09-29 | 2018-04-05 | 富士フイルム株式会社 | Composite optical element |
JPWO2018061331A1 (en) * | 2016-09-29 | 2019-07-04 | 富士フイルム株式会社 | Composite optical element |
JP2019164267A (en) * | 2018-03-20 | 2019-09-26 | 富士フイルム株式会社 | Compound lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940006613A (en) | How to manufacture quasi-new golf balls from used golf balls | |
JP2012192698A (en) | In-mold molded product, in-mold molding film, and method for producing in-mold molded product | |
JPH0857976A (en) | Production of composite optical element | |
US20070197143A1 (en) | Polishing pad of a chemical mechanical polishing apparatus and method of manufacturing the same | |
JP4839031B2 (en) | Optical element molding method and optical element | |
JP2006263975A (en) | Manufacturing method of optical element | |
JP3999870B2 (en) | Method for producing metal-rubber composite member | |
JP3753372B2 (en) | Manufacturing method of compound aspherical lens | |
JPH0872161A (en) | Production of composite type optical element | |
JP3988421B2 (en) | Manufacturing method and manufacturing apparatus for resin bonded optical element | |
JPS61132315A (en) | Manufacture of molding for vehicle | |
JP3998763B2 (en) | Meniscus lens mold and molding method | |
JP2757897B2 (en) | Optical element manufacturing method | |
JPH0768569A (en) | Manufacture of composite type optical element | |
JPS61108027A (en) | Shaping of terminal of molding | |
JP3544587B2 (en) | Method for manufacturing composite optical element | |
JPH0939109A (en) | Manufacture of composite optical element | |
JP4171936B2 (en) | Resin-molding mold for resin-bonded optical element and manufacturing method | |
US20050230865A1 (en) | Method and apparatus for manufacturing imitation pearl beads | |
JPH08281821A (en) | Manufacture of composite optical element | |
JP4060902B2 (en) | Composite optical element and method for manufacturing the same | |
JP2007307782A (en) | Sheet and its manufacturing method | |
JPH10177105A (en) | Composite optical element | |
JPS5993308A (en) | Method of coloring inorganic extrusion shape | |
JPS61183135A (en) | Forming device of optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011106 |