JPH0857748A - Numerical control system - Google Patents

Numerical control system

Info

Publication number
JPH0857748A
JPH0857748A JP21324094A JP21324094A JPH0857748A JP H0857748 A JPH0857748 A JP H0857748A JP 21324094 A JP21324094 A JP 21324094A JP 21324094 A JP21324094 A JP 21324094A JP H0857748 A JPH0857748 A JP H0857748A
Authority
JP
Japan
Prior art keywords
tool
feed
axis
spindle
end mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21324094A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okuda
和博 奥田
Takahiro Yamaguchi
隆宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP21324094A priority Critical patent/JPH0857748A/en
Publication of JPH0857748A publication Critical patent/JPH0857748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE: To make the cutting speed constant regardless of the cutting point of a ball end mill and enable feed synchronous with the rotating speed change of a spindle tool in a numerical control system for a machining center using the ball end mill as the spindle tool and having X-axis, Y-axis and Z-axis feed shafts performing die-machining according to a machining program. CONSTITUTION: A tool radius ratio computing part 11 obtains a tool radius ratio RR, a ratio between the radius of a ball end mill at a cutting point and a tool diameter, from the moving quantity of each feed shaft outputted from a shaft distributor 4. A rotating speed computing part 12 obtains a spindle tool rotating speed command S' from the tool radius ratio RR and the command spindle tool rotating speed S read by an interpreting part 2. A feed speed computing part 10 obtains the command feed speed Ft per minute from the spindle tool rotating speed command S' and the command feed speed Fs per every rotation read by the interpreting part 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主軸工具にボールエン
ドミルを用いて金型などの型加工を行なうマシニングセ
ンタの数値制御装置に係わり、特に加工形状の変化に合
わせて主軸工具の回転数を変化させることで工具の切削
速度を一定にし、さらに主軸工具の回転数に同期した送
りを可能にした数値制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a numerical control device of a machining center for machining a die or the like by using a ball end mill as a spindle tool, and particularly, the number of revolutions of the spindle tool is changed according to the change of the machining shape. The present invention relates to a numerical control device that makes a cutting speed of a tool constant by making it possible, and further enables a feed synchronized with the rotation speed of a spindle tool.

【0002】[0002]

【従来の技術】図5は従来のマシニングセンタの数値制
御装置の一例を示すブロック図であり、同図に従って従
来の技術を説明する。まず解釈部2は、オペレータが予
め作成した加工プログラム1を1ブロックずつ読込み、
そのブロックBLから指令送り速度Ftや指令位置G、
指令主軸工具回転数Sなどを読みとる。送り単位量決定
部7は指令送り速度Ftから、関数発生周期当たりの送
り単位量ΔFtを算出する。関数発生部3は関数発生周
期毎に指令位置Gまでの経路を送り単位量ΔFtに従っ
て補間し、移動量ΔPを求める。軸分配器4は移動量Δ
Pを各送り軸の移動量Δx,Δy,Δzに分配する。そ
して各送り軸のサーボ5x,5y,5zはそれぞれΔ
x,Δy,Δzに従って各送り軸のモータ6x,6y,
6zを駆動する。一方、主軸サーボ8は、加工プログラ
ム1により指令された主軸工具回転数(以下、指令主軸
工具回転数と称する)Sに従って主軸モータ9を回転さ
せる。
2. Description of the Related Art FIG. 5 is a block diagram showing an example of a conventional numerical control device for a machining center. The conventional technique will be described with reference to FIG. First, the interpretation unit 2 reads the machining program 1 created in advance by the operator block by block,
From the block BL, the command feed speed Ft and the command position G,
The command spindle tool rotation speed S and the like are read. The feed unit amount determination unit 7 calculates the feed unit amount ΔFt per function generation period from the command feed speed Ft. The function generator 3 interpolates the path to the command position G for each function generation cycle according to the feed unit amount ΔFt to obtain the movement amount ΔP. The axis distributor 4 has a movement amount Δ
P is distributed to the movement amounts Δx, Δy, and Δz of the respective feed axes. The servos 5x, 5y, 5z of each feed axis are Δ
According to x, Δy, Δz, the motors 6x, 6y,
Drive 6z. On the other hand, the spindle servo 8 rotates the spindle motor 9 according to the spindle tool rotation speed S (hereinafter, referred to as a command spindle rotation speed) instructed by the machining program 1.

【0003】このように従来の数値制御装置は、指令主
軸工具回転数に従い主軸工具を回転させながら、加工プ
ログラムの指令経路に沿って工具を動かすという制御を
し、工作物の加工を行なうようになっている。
As described above, the conventional numerical control device controls the movement of the tool along the instruction path of the machining program while rotating the spindle tool in accordance with the instructed spindle tool rotation speed to machine the workpiece. Has become.

【0004】[0004]

【発明が解決しようとする課題】普通、曲面の多い金型
などの型加工では工具にボールエンドミルが使用される
が、これはボールエンドミルの先端が半球状になってお
りいずれの部分でも切削できるためである。図3のボー
ルエンドミルの断面図に示すように、例えば傾斜Aの加
工面では点aが加工面に接するので、点aで切削がなさ
れる。実際にはボールエンドミルが回転して切削するの
であるが、便宜上このような点を“切削点”と称する。
同様に傾斜Bの加工面では切削点bで切削がなされる。
ところが上述した従来の数値制御装置では、主軸工具は
加工プログラムによって指令される主軸工具回転数どお
りに回転するので、指令主軸工具回転数が一定ならば、
回転軸までの距離Raが長い切削点aに比べて回転軸ま
での距離Rbが短い切削点bの方が切削速度が遅くな
る。従って、回転数を一定とした切削方法で曲面の多い
型加工を行なうと、切削点の位置すなわち加工面の傾き
により切削速度のムラが生じることになる。このことは
加工表面に反映されるので仕上がりが不均一になり、上
記の切削方法では加工した型の品質をあげられないとい
う問題があった。さらに、工具自体も摩耗にムラが生じ
ることになり、全体の工具寿命が伸びずコストがかかる
という問題があった。特に切削速度が極めて遅い工具の
先端近くでは、大きな負荷がかかるため欠損しやすく、
一層の工具寿命の低下を招いている。対応策として加工
プログラム作成時に指令経路の変化にあわせて主軸工具
の指令回転数を記述するという方法もあるが、この方法
を適用した場合、型加工のための加工プログラムは一般
に長大であるため、加工プログラム作成作業に大変な手
間がかかるという問題があった。
Generally, a ball end mill is used as a tool in the machining of a mold having many curved surfaces, but the tip of the ball end mill has a hemispherical shape so that any part can be cut. This is because. As shown in the cross-sectional view of the ball end mill in FIG. 3, for example, on a processing surface having an inclination A, a point a is in contact with the processing surface, so that cutting is performed at the point a. Actually, the ball end mill rotates and cuts, but such a point is referred to as a "cutting point" for convenience.
Similarly, cutting is performed at the cutting point b on the processing surface having the slope B.
However, in the conventional numerical control device described above, since the spindle tool rotates according to the spindle tool rotation speed commanded by the machining program, if the commanded spindle tool rotation speed is constant,
The cutting speed is slower at the cutting point b having a shorter distance Rb to the rotation axis than at the cutting point a having a long distance Ra to the rotation axis. Therefore, when die machining with a large number of curved surfaces is performed by a cutting method with a constant number of revolutions, the cutting speed becomes uneven due to the position of the cutting point, that is, the inclination of the machined surface. Since this is reflected on the processed surface, the finish becomes uneven, and there is a problem that the quality of the processed die cannot be improved by the above cutting method. Further, there is a problem in that the tool itself also becomes uneven in wear, the overall tool life is not extended, and the cost is high. Especially near the tip of a tool with an extremely slow cutting speed, a large load is applied, so it is easy to chip,
This leads to a further reduction in tool life. As a countermeasure, there is a method to describe the command rotation speed of the spindle tool according to the change of the command path when creating the machining program, but when this method is applied, the machining program for die machining is generally long, There was a problem that it took a lot of time and effort to create a machining program.

【0005】本発明は上記の問題点に鑑みてなされたも
ので、本発明の目的は、切削速度をボールエンドミルの
切削点によらず一定にし、さらに主軸工具の回転数に同
期させた送りを可能とする数値制御装置を提供すること
にある。
The present invention has been made in view of the above problems, and an object of the present invention is to make the cutting speed constant irrespective of the cutting point of the ball end mill, and further to perform the feed synchronized with the rotational speed of the spindle tool. It is to provide a numerical control device that enables the numerical control.

【0006】[0006]

【課題を解決するための手段】本発明は、主軸工具にボ
ールエンドミルを用いると共に、加工プログラムに従っ
て型加工を行なうX軸、Y軸およびZ軸の各送り軸を有
するマシニングセンタの数値制御装置に関するものであ
り、本発明の上記目的は、軸分配器から出力される前記
X軸、Y軸およびZ軸の各送り軸の移動量から、前記ボ
ールエンドミルの切削点から前記ボールエンドミルの回
転軸までの距離と前記ボールエンドミルの工具径との比
である工具半径比を求める工具半径比算出部と、前記工
具半径比と前記加工プログラムにより指令された主軸工
具回転数とから主軸工具回転数指令を求め主軸サーボ系
へ出力する回転数演算部と、前記主軸工具回転数指令と
前記加工プログラムにより指令された毎回転当たりの指
令送り速度とから毎分当たりの指令送り速度を求める送
り速度演算部とを備えることによって達成される。
SUMMARY OF THE INVENTION The present invention relates to a numerical control device for a machining center having a ball end mill as a main spindle tool and having respective feed axes of X-axis, Y-axis and Z-axis for performing die machining according to a machining program. The above-mentioned object of the present invention is from the movement amount of each feed shaft of the X-axis, Y-axis and Z-axis output from the shaft distributor, from the cutting point of the ball end mill to the rotation axis of the ball end mill. A tool radius ratio calculation unit for obtaining a tool radius ratio which is a ratio of a distance and a tool diameter of the ball end mill, and a spindle tool rotation speed command is obtained from the tool radius ratio and a spindle tool rotation speed commanded by the machining program. From the rotation speed calculation unit that outputs to the spindle servo system, the spindle tool rotation speed command, and the command feed speed per revolution commanded by the machining program It is achieved by providing a feeding speed calculating unit for obtaining a feedrate per minute.

【0007】[0007]

【作用】本発明の数値制御装置によれば、軸分配器から
出力される各送り軸の移動量から、ボールエンドミルの
切削点からボールエンドミルの回転軸までの距離(以
下、切削点における半径と称する)と工具径との比であ
る工具半径比を求め、前記工具半径比によって主軸工具
回転数を変化させることにより切削速度を一定にするこ
とができるので、加工形状によって切削速度が小さくな
ることがなくなり、かつ主軸工具の回転数に同期させて
送り速度も変化させることができる。
According to the numerical controller of the present invention, the distance from the cutting point of the ball end mill to the rotation axis of the ball end mill (hereinafter referred to as the radius at the cutting point, based on the movement amount of each feed shaft output from the shaft distributor). (Named) and the tool radius, which is the ratio between the tool radius and the tool radius, and the cutting speed can be kept constant by changing the spindle tool rotation speed according to the tool radius ratio. And the feed rate can be changed in synchronization with the rotation speed of the spindle tool.

【0008】[0008]

【実施例】切削速度は主軸工具の半径と回転数によって
決まる。半径をボールエンドミルの工具径R、回転数を
指令主軸工具回転数Sとしたときの切削速度Vは数1で
表される。
EXAMPLE The cutting speed is determined by the radius and the number of revolutions of the spindle tool. When the radius is the tool diameter R of the ball end mill and the rotation speed is the command spindle tool rotation speed S, the cutting speed V is expressed by Equation 1.

【数1】V=2πR×S また、実際に切削を行なう切削点における半径がR′で
主軸工具回転数がS′のときには切削速度V′は数1と
同様に数2で表される。
## EQU1 ## V = 2.pi.R.times.S Further, when the radius at the cutting point at which the actual cutting is performed is R'and the spindle tool rotation speed is S ', the cutting speed V'is expressed by the same equation 2 as the equation 2.

【数2】V′=2πR′×S′ 切削速度を数1のVで一定に保つには、V′=Vとすれ
ばよく、数1および数2より数3となる。
## EQU2 ## V '= 2.pi.R'.times.S' In order to keep the cutting speed constant at V of the formula 1, V '= V is set, and the formula 3 is obtained from the formulas 1 and 2.

【0009】[0009]

【数3】2πR′×S′=2πR×S 数3を変形して主軸工具回転数S′を導くと、数4のよ
うになる。
## EQU00003 ## 2.pi.R'.times.S '= 2.pi.R.times.S When the formula 3 is transformed to derive the spindle tool rotation speed S', the formula 4 is obtained.

【数4】 S′=(2πR×S)/2πR′ =(R/R′)×S すなわち工具半径の比であるR/R′を指令主軸工具回
転数Sの係数とすることでS′が決まる。以下、R/
R′を“工具半径比RR”と称する。
## EQU00004 ## S '= (2.pi.R.times.S) /2.pi.R' = (R / R '). Times.S, that is, R / R', which is the ratio of the tool radii, is used as the coefficient of the command spindle tool rotation speed S to obtain S '. Is decided. Below, R /
R'is referred to as "tool radius ratio RR".

【0010】ここで、図4において主軸工具回転軸をZ
軸、切削点をW、ボールエンドミルの先端の半球部の中
心をO、切削点から工具の回転軸に下ろした垂線の足を
H、送り軸移動量ΔPの終点をE、切削点から点Eを含
むX−Y平面に下ろした垂線の足をVとしたとき、2つ
の直角三角形△WOHと△WEVは相似関係にあり、工
具半径比RRであるWO/WHはWE/WVに等しい。
そしてWEは送り軸移動量ΔPの大きさ、WVはZ軸の
移動量Δzの大きさにそれぞれ等しいことから、工具半
径比RRは数5で得ることができる。
Here, in FIG. 4, the spindle rotation axis of the tool is Z
Axis, cutting point is W, the center of the hemisphere at the tip of the ball end mill is O, the foot of the perpendicular line drawn from the cutting point to the tool rotation axis is H, the end point of the feed axis movement amount ΔP is E, and the cutting point is point E When the foot of the perpendicular line drawn on the XY plane including is V, the two right triangles ΔWOH and ΔWEV have a similar relationship, and the tool radius ratio RR WO / WH is equal to WE / WV.
Since WE is equal to the feed axis movement amount ΔP and WV is equal to the Z axis movement amount Δz, the tool radius ratio RR can be obtained by Equation 5.

【数5】 RR=R/R′ =WO/WH =WE/WV =|ΔP|/|Δz| =√(Δx2 +Δy2 +Δz2 )/|Δz| このように工具半径比RRを指令主軸工具回転数Sの係
数とすることで、切削速度を一定にするための主軸工具
回転数S′が決まる。
RR = R / R '= WO / WH = WE / WV = | ΔP | / | Δz | = √ (Δx 2 + Δy 2 + Δz 2 ) / | Δz | In this way, the tool radius ratio RR is commanded By setting the coefficient of the tool rotation speed S, the spindle tool rotation speed S ′ for keeping the cutting speed constant is determined.

【0011】図1は上述の考えに基づいた本発明の数値
制御装置の構成の一例を示すブロック図である。なお加
工プログラム1、解釈部2、関数発生部3、軸分配器
4、各送り軸サーボ5x,5y,5z、各送り軸モータ
6x,6y,6z、送り単位量決定部7、主軸サーボ8
および主軸モータ9は、既に説明した従来技術の同一符
合のものと同じであるため説明を省略する。工具半径比
算出部11は、軸分配器4から入力した各送り軸の移動
量Δx,Δy,Δzにより前記のごとく工具半径比RR
を求める。回転数演算部12は工具半径比算出部11で
求められた工具半径比RRと加工プログラム1により指
令された主軸工具回転数Sを乗算して主軸工具回転数指
令S′を求め、主軸サーボ8と送り速度演算部10に出
力する。ただし、求めたS′が機械の最大主軸工具回転
数を越えたときには、機械の最大主軸工具回転数をS′
とする。主軸サーボ8は与えられた主軸工具回転数指令
S′で主軸工具を回転させる。また、送り速度演算部1
0は、前記の主軸工具回転数指令S′と毎回転当たりの
指令送り速度Fsを乗算し、毎分当たりの指令送り速度
Ftを求める。そして、求めたFtを指令送り速度とし
て関数発生する。こうすることによって送り速度が主軸
工具回転数に同期し、ボールエンドミル1刃当たりの切
り込み量が一定となる。
FIG. 1 is a block diagram showing an example of the configuration of a numerical controller according to the present invention based on the above-mentioned idea. The machining program 1, the interpreter 2, the function generator 3, the axis distributor 4, the feed axis servos 5x, 5y, 5z, the feed axis motors 6x, 6y, 6z, the feed unit amount determiner 7, and the spindle servo 8 are provided.
Since the spindle motor 9 is the same as the one in the prior art which has already been described, the description thereof will be omitted. The tool radius ratio calculation unit 11 uses the movement amounts Δx, Δy, and Δz of the respective feed shafts input from the shaft distributor 4, as described above.
Ask for. The rotation speed calculation unit 12 multiplies the tool radius ratio RR obtained by the tool radius ratio calculation unit 11 and the spindle tool rotation speed S instructed by the machining program 1 to obtain a spindle tool rotation speed command S ′, and the spindle servo 8 Is output to the feed rate calculation unit 10. However, when the obtained S'exceeds the maximum spindle tool rotation speed of the machine, the maximum spindle tool rotation speed of the machine is changed to S '.
And The spindle servo 8 rotates the spindle tool according to the given spindle tool rotation speed command S '. In addition, the feed rate calculation unit 1
In the case of 0, the spindle tool rotation speed command S'is multiplied by the command feed speed Fs per revolution to obtain the command feed speed Ft per minute. Then, a function is generated with the obtained Ft as the command feed speed. By doing so, the feed rate is synchronized with the rotational speed of the spindle tool, and the cutting amount per blade of the ball end mill becomes constant.

【0012】図2は本発明の数値制御装置の一関数発生
周期での動作例を示すフローチャートである。送り速度
演算部10が毎回転当たりの指令送り速度Fsと主軸工
具回転数指令S′とを乗じて毎分当たりの指令送り速度
Ftを求める(ステップS1)。送り単位量決定部7は
毎分当たりの指令送り速度Ftより関数発生周期当たり
の送り単位量ΔFtを求める(ステップS2)。関数発
生部3は指令位置Gと送り単位量ΔFtより指令経路に
沿った送り軸移動量ΔPを求める(ステップS3)。軸
分配器4は、送り軸移動量ΔPを各送り軸の移動量Δ
x,Δy,Δzに分配して各送り軸のサーボに出力する
(ステップS4)。各送り軸の移動量Δx,Δy,Δz
は工具半径比算出部11にも出力され、これらの値をも
とに工具半径比RRが算出される(ステップS5)。回
転数演算部12では、工具半径比RRと指令主軸工具回
転数Sを乗じて主軸工具回転数指令S′を求めて主軸サ
ーボ8に出力し、さらに次の関数発生周期における毎分
当たりの指令送り速度Ftを求めるために送り速度演算
部10にも送出する(ステップS6)。なお、工具半径
比算出部11が受けとる各送り軸の移動量Δx,Δy,
Δzと、送り速度演算部10が受けとる主軸工具回転数
指令S′は、それぞれ各送り軸のサーボ、主軸サーボの
出力から得るようにすることもできる。
FIG. 2 is a flow chart showing an example of the operation in one function generation cycle of the numerical controller according to the present invention. The feed speed calculation unit 10 multiplies the command feed speed Fs per revolution and the spindle tool rotation speed command S ′ to obtain the command feed speed Ft per minute (step S1). The feed unit amount determination unit 7 obtains the feed unit amount ΔFt per function generation cycle from the command feed speed Ft per minute (step S2). The function generator 3 obtains the feed axis movement amount ΔP along the command path from the command position G and the feed unit amount ΔFt (step S3). The shaft distributor 4 calculates the moving amount ΔP of the feed axis by the moving amount Δ of each feed axis.
It is distributed to x, Δy, and Δz and is output to the servo of each feed axis (step S4). Movement amount of each feed axis Δx, Δy, Δz
Is also output to the tool radius ratio calculation unit 11, and the tool radius ratio RR is calculated based on these values (step S5). In the rotation speed calculation unit 12, a tool radius ratio RR and a command spindle tool rotation speed S are multiplied to obtain a spindle tool rotation speed command S ', which is output to the spindle servo 8 and a command per minute in the next function generation cycle. It is also sent to the feed speed calculation unit 10 to obtain the feed speed Ft (step S6). In addition, the movement amounts Δx, Δy of the respective feed axes received by the tool radius ratio calculation unit 11,
The Δz and the spindle tool rotation speed command S ′ received by the feed speed calculation unit 10 can be obtained from the outputs of the servos of the feed axes and the spindle servo, respectively.

【0013】[0013]

【発明の効果】以上のように本発明の数値制御装置によ
れば、工具の切削点に応じて主軸工具の回転数を決定す
ることで切削速度を一定にすることができるので、加工
プログラムを修正することなしに、且つ従来と全く同様
な加工操作で良好な加工面が得られる。さらに、工具自
体の摩耗もムラが少なくなり工具寿命も伸びる。その
上、変化する主軸工具の回転数に同期して送り速度を変
化させるので、一刃当たりの切り込み量が一定となり、
すくい目の揃った一層良好な加工面が得られる。
As described above, according to the numerical control device of the present invention, the cutting speed can be made constant by determining the rotational speed of the spindle tool according to the cutting point of the tool. A good machined surface can be obtained without any modification and by the same machining operation as the conventional one. Furthermore, the wear of the tool itself is reduced and the tool life is extended. Moreover, the feed rate is changed in synchronization with the changing number of revolutions of the spindle tool, so the amount of cutting per blade is constant,
It is possible to obtain a better machined surface with uniform rakes.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の数値制御装置の一実施例を示すブロッ
ク図である。
FIG. 1 is a block diagram showing an embodiment of a numerical controller according to the present invention.

【図2】本発明の数値制御装置の一関数発生周期での動
作例を示すフローチャートである。
FIG. 2 is a flowchart showing an operation example in one function generation cycle of the numerical control device of the present invention.

【図3】切削点によって切削速度が異なることを示す図
である。
FIG. 3 is a diagram showing that the cutting speed differs depending on the cutting point.

【図4】工具半径比と送り軸移動量の関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a tool radius ratio and a feed shaft movement amount.

【図5】従来の数値制御装置の構成例を示すブロック図
である。
FIG. 5 is a block diagram showing a configuration example of a conventional numerical control device.

【符号の説明】[Explanation of symbols]

10 送り速度演算部 11 工具半径比算出部 12 回転数演算部 10 Feed rate calculation unit 11 Tool radius ratio calculation unit 12 Rotation speed calculation unit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05B 19/416 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G05B 19/416

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】主軸工具にボールエンドミルを用いると共
に、加工プログラムに従って型加工を行なうX軸、Y軸
およびZ軸の各送り軸を有するマシニングセンタの数値
制御装置において、軸分配器から出力される前記X軸、
Y軸およびZ軸の各送り軸の移動量から、前記ボールエ
ンドミルの切削点から前記ボールエンドミルの回転軸ま
での距離と前記ボールエンドミルの工具径との比である
工具半径比を求める工具半径比算出部と、前記工具半径
比と前記加工プログラムにより指令された主軸工具回転
数とから主軸工具回転数指令を求め主軸サーボ系へ出力
する回転数演算部とを備え、前記ボールエンドミルの回
転数を前記距離の変化に応じて変化させることで切削速
度を一定とすることを特徴とする数値制御装置。
1. A numerical control device for a machining center having a ball end mill as a main spindle tool and having X-axis, Y-axis and Z-axis feed axes for performing die machining according to a machining program, which is output from an axis distributor. X axis,
A tool radius ratio for obtaining a tool radius ratio, which is a ratio of a distance from a cutting point of the ball end mill to a rotation axis of the ball end mill and a tool diameter of the ball end mill, based on a movement amount of each of the Y-axis and Z-axis feed axes. The rotation speed of the ball end mill is calculated by a calculation unit and a rotation speed calculation unit that outputs a spindle tool rotation speed command from a spindle radius rotation speed commanded by the machining program and the machining program to a spindle servo system. A numerical controller characterized in that a cutting speed is made constant by changing the distance according to a change in the distance.
【請求項2】前記主軸工具回転数指令と前記加工プログ
ラムにより指令された毎回転当たりの指令送り速度とか
ら毎分当たりの指令送り速度を求める送り速度演算部を
備え、前記毎分当たりの指令送り速度に従って前記ボー
ルエンドミルの移動量を関数発生することで前記ボール
エンドミルの回転数と送り速度とを同期させるようにし
た請求項1に記載の数値制御装置。
2. A feed rate calculation unit for obtaining a command feed rate per minute from the spindle tool rotational speed instruction and a command feed rate per revolution commanded by the machining program, and the per minute instruction The numerical controller according to claim 1, wherein the rotation speed of the ball end mill and the feed speed are synchronized by generating a function of the movement amount of the ball end mill according to the feed speed.
JP21324094A 1994-08-16 1994-08-16 Numerical control system Pending JPH0857748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21324094A JPH0857748A (en) 1994-08-16 1994-08-16 Numerical control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21324094A JPH0857748A (en) 1994-08-16 1994-08-16 Numerical control system

Publications (1)

Publication Number Publication Date
JPH0857748A true JPH0857748A (en) 1996-03-05

Family

ID=16635846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21324094A Pending JPH0857748A (en) 1994-08-16 1994-08-16 Numerical control system

Country Status (1)

Country Link
JP (1) JPH0857748A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225772B1 (en) 1997-11-07 2001-05-01 Fanuc Ltd. Acceleration/deceleration control method for numerical control, and numerical control device
JP2011022898A (en) * 2009-07-17 2011-02-03 Doshisha Cutting method for work material
JP2012232385A (en) * 2011-05-06 2012-11-29 Jtekt Corp Numerical control device and machining method
CN103372788A (en) * 2012-04-16 2013-10-30 大连数控技术研究院 Ratio control method for realizing different processing strategies
JP2018086697A (en) * 2016-11-28 2018-06-07 ファナック株式会社 Numerical control device of machine tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225772B1 (en) 1997-11-07 2001-05-01 Fanuc Ltd. Acceleration/deceleration control method for numerical control, and numerical control device
JP2011022898A (en) * 2009-07-17 2011-02-03 Doshisha Cutting method for work material
JP2012232385A (en) * 2011-05-06 2012-11-29 Jtekt Corp Numerical control device and machining method
CN103372788A (en) * 2012-04-16 2013-10-30 大连数控技术研究院 Ratio control method for realizing different processing strategies
JP2018086697A (en) * 2016-11-28 2018-06-07 ファナック株式会社 Numerical control device of machine tool

Similar Documents

Publication Publication Date Title
JP5737970B2 (en) Machine tool control system
JP2009098982A (en) Working simulation device and its program
JP4796936B2 (en) Processing control device
JP4802170B2 (en) Machining time calculation device and program thereof
JPS62237504A (en) Numerical controller
JPH05301154A (en) Grinding method for noncircular work and its device
JP6487490B2 (en) Numerical controller
CN106338968A (en) Numerical controller capable of compensating error in consideration of axis movement direction
JPH0857748A (en) Numerical control system
WO2010134532A1 (en) Numerical control device
EP0487738A1 (en) System for correcting quantity of deformation of tool
JPH0649260B2 (en) Synchronous control device
JPH06246615A (en) Numerical control device for working non-circular work
JPH0825178A (en) Cutting method for rotary cutting tool
JP3118748B2 (en) Method and apparatus for controlling feed rate of NC machine tool
JP2661942B2 (en) NC data creation device
WO2022185640A1 (en) Program, cl data editing device, and machine tool
JP6997126B2 (en) Servo controller
CN109129176B (en) Control device
JPH06262484A (en) Feed control device for numerically controlled machine tool
JP2004174620A (en) Cutting device and setting program for travel path data for cutting
JPH06262483A (en) Numerically controlled machine tool
JPH07334223A (en) Tool spindle attitude control system
JPH08249036A (en) Nc data preparation method
TW202316212A (en) Machine tool and method of deciding tool moving path