JP3118748B2 - Method and apparatus for controlling feed rate of NC machine tool - Google Patents

Method and apparatus for controlling feed rate of NC machine tool

Info

Publication number
JP3118748B2
JP3118748B2 JP07221097A JP22109795A JP3118748B2 JP 3118748 B2 JP3118748 B2 JP 3118748B2 JP 07221097 A JP07221097 A JP 07221097A JP 22109795 A JP22109795 A JP 22109795A JP 3118748 B2 JP3118748 B2 JP 3118748B2
Authority
JP
Japan
Prior art keywords
tool
feed
machining
feed speed
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07221097A
Other languages
Japanese (ja)
Other versions
JPH0947941A (en
Inventor
和雄 山崎
順 吉田
啓 川名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP07221097A priority Critical patent/JP3118748B2/en
Publication of JPH0947941A publication Critical patent/JPH0947941A/en
Application granted granted Critical
Publication of JP3118748B2 publication Critical patent/JP3118748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、NC工作機械の送
り速度制御方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a feed speed of an NC machine tool.

【0002】[0002]

【従来の技術】金型などの自由曲面を有するワークの加
工をボールエンドミル等の工具を用いて行う場合、加工
負荷が増大することがある。加工負荷の増大により、工
具系の剛性および主軸系の剛性に応じた工具の切れ刃部
の変位量も大きくなり、その結果、加工精度が低下す
る。また、一定の指令送り速度で送り軸を送ると、加工
形状の急変部などでは加工負荷が変動する。この加工負
荷の変動が許容値を越えると工具破損を生じることがあ
る。よって、加工精度を高め、かつ、工具破損防止のた
めに、通常は指令送り速度を低い値に設定し、全体の加
工能率を犠牲にする傾向があった。この問題点を解決す
るための1つの従来技術として特開平5−200653
号公報に開示される技術がある。これは加工中の負荷に
より、回転しているフライス工具がたわみ、そのたわみ
量を非接触の変位計で計測し、その計測結果をインプロ
セスでワークの加工精度制御に反映させるものである。
2. Description of the Related Art When a workpiece having a free-form surface such as a die is machined using a tool such as a ball end mill, the machining load may increase. Due to the increase in the processing load, the displacement of the cutting edge of the tool in accordance with the rigidity of the tool system and the rigidity of the spindle system also increases, and as a result, the processing accuracy decreases. In addition, when the feed axis is fed at a constant command feed speed, the processing load fluctuates in a sudden change in the processing shape. If the change in the processing load exceeds an allowable value, tool breakage may occur. Therefore, in order to increase machining accuracy and prevent tool breakage, the command feed speed is normally set to a low value, and there is a tendency to sacrifice overall machining efficiency. One prior art for solving this problem is disclosed in Japanese Patent Application Laid-Open No. 5-200653.
There is a technology disclosed in Japanese Unexamined Patent Publication (Kokai) No. H10-26095. In this method, a rotating milling tool bends due to a load during processing, the amount of the bending is measured by a non-contact displacement meter, and the measurement result is reflected in the in-process processing accuracy control of the workpiece.

【0003】[0003]

【発明が解決しようとする課題】この特開平5−200
653号公報の技術は、実際に加工しなければ工具のた
わみ量が計測されず、基本的にフィードバック制御であ
る。フィードバック制御は制御の遅れが不可避的に存在
し、もし指令送り速度が速すぎてある時点の加工負荷が
大きくなり工具が所定値以上にたわみ、次の瞬間フィー
ドバック制御により所定のたわみに落ち付いたとして
も、そのある時点の加工精度は悪化することになる。ま
た加工領域近傍に変位計を設置しなければならずワーク
形状、加工箇所等によっては、変位計を設置するスペー
スが確保できなかったり、切屑や加工液の飛散により正
確な計測ができなかったりする。変位計を設置すること
自体が加工領域近傍の構成をいたずらに複雑化する。更
に、加工負荷が急増して、工具が破損する場合もあり、
このような急激な負荷変動にはフィードバック制御では
追従できないという問題点もある。
The problem to be solved by the present invention is disclosed in Japanese Patent Laid-Open No. 5-200.
The technique disclosed in Japanese Patent No. 653 does not measure the amount of deflection of a tool unless machining is actually performed, and is basically feedback control. In the feedback control, the control delay inevitably exists, and if the command feed speed is too fast, the machining load at a certain point increases, the tool bends to a predetermined value or more, and the next instant feedback control has settled to a predetermined deflection. Even so, the processing accuracy at that point in time will be degraded. In addition, a displacement gauge must be installed in the vicinity of the processing area, and depending on the shape of the work, the processing location, etc., a space for installing the displacement gauge cannot be secured, or accurate measurement cannot be performed due to scattering of chips or machining fluid. . The installation of the displacement meter itself unnecessarily complicates the configuration near the processing area. In addition, the processing load may increase rapidly and the tool may be damaged,
There is also a problem that feedback control cannot follow such a sudden load change.

【0004】そこで本発明の目的は、遅れがなく、工具
の切れ刃部の変位量が所定値になるように送り速度を制
御可能なNC工作機械の送り速度制御方法および装置を
提供することである。他の目的は、NC加工プログラム
等によって各加工箇所に合った送り速度を予め設定しな
くても、能率よく、かつ目標加工精度が達成できる最適
な送り速度を自動的に決定できるようにすることであ
る。また他の目的は、急激な負荷変動で工具の破損が生
じない送り速度制御を達成することである。更に他の目
的は、変位計等の計測手段を用いず、加工領域近傍を複
雑化しないようにすることである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a feed rate control method and apparatus for an NC machine tool capable of controlling the feed rate so that the displacement of a cutting edge of a tool has a predetermined value without delay. is there. Another object of the present invention is to automatically determine an optimum feed speed that achieves the target machining accuracy efficiently and without setting a feed speed suitable for each processing portion in advance by an NC processing program or the like. It is. Still another object is to achieve a feed rate control in which tool breakage does not occur due to a sudden load change. Still another object is to avoid using a measuring means such as a displacement gauge and to make the vicinity of a processing area not complicated.

【0005】[0005]

【課題を解決するための手段】前述の課題を解決するた
め、本発明は、実加工に先行して逐次工具に作用する負
荷を演算し、その演算した負荷から工具の切れ刃部の予
測変位量を求め、その予測変位量と目標加工精度に対応
した工具の切れ刃部の目標変位量とを比較し、工具の切
れ刃部の変位量を左右する送り速度を自動的に制御し
て、工具の切れ刃部の実加工における変位量が目標変位
量を越えないようにしたものである。また、予測変位量
変化率を演算し、この予測変位量変化率に対応した工具
破損の生じない送り速度を求め、この送り速度で加工す
ることにより工具破損を未然に防止したものである。な
お、上記工具の切れ刃部の予測変位量は、工具や工具ホ
ルダなどを含む工具系全体の剛性と、工具を装着する主
軸や主軸頭などを含む機械系全体の剛性とを考慮した工
具の加工ポイントにおける総合的な変位量のことであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention calculates a load acting on a tool sequentially prior to actual machining, and calculates a predicted displacement of a cutting edge portion of the tool from the calculated load. Determine the amount, compare the predicted displacement amount and the target displacement amount of the cutting edge of the tool corresponding to the target machining accuracy, automatically control the feed rate that affects the displacement of the cutting edge of the tool, The displacement of the cutting edge portion of the tool in actual machining is set so as not to exceed the target displacement. Further, a predicted displacement amount change rate is calculated, a feed speed corresponding to the predicted displacement amount change rate that does not cause tool breakage is obtained, and tool breakage is prevented by machining at this feed speed. The predicted displacement of the cutting edge portion of the tool is determined by considering the rigidity of the entire tool system including the tool and the tool holder, and the rigidity of the entire mechanical system including the main spindle and the spindle head on which the tool is mounted. It is the total displacement at the processing point.

【0006】すなわち、ワークと、回転主軸に装着した
工具との間で送り軸による相対送りを与えてワークを加
工するNC工作機械において、ワーク形状、ワーク材
質、工具形状、工具材質等の加工データおよび主軸回転
速度、送り速度等の加工条件と、送り軸の位置指令とか
ら実加工に先行して逐次前記工具に作用する負荷を演算
し、演算した工具に作用する負荷から工具の切れ刃部の
予測変位量を求め、前記求めた工具の切れ刃部の予測変
位量と、予め設定した目標加工精度に対応した工具の切
れ刃部の目標変位量とを比較し、比較結果に応じて前記
相対送りの送り速度を制御して所望の加工精度を得るよ
うにしたNC工作機械の送り速度制御方法が提供され
る。
That is, in an NC machine tool for machining a workpiece by giving relative feed by a feed shaft between the workpiece and a tool mounted on a rotary spindle, machining data such as a workpiece shape, a workpiece material, a tool shape, and a tool material. And machining conditions such as spindle rotation speed, feed speed, etc., and a feed shaft position command, sequentially calculate the load acting on the tool prior to actual machining, and calculate the cutting edge of the tool from the calculated load acting on the tool. The predicted displacement amount of the cutting edge portion of the tool is compared with the target displacement amount of the cutting edge portion of the tool corresponding to a preset target machining accuracy. Provided is a feed speed control method for an NC machine tool that controls a feed speed of a relative feed to obtain a desired machining accuracy.

【0007】また、ワークと、回転主軸に装着した工具
との間で送り軸による相対送りを与えてワークを加工す
るNC工作機械において、ワーク形状、ワーク材質、工
具形状、工具材質等の加工データおよび主軸回転速度、
送り速度等の加工条件と、送り軸の位置指令とから実加
工に先行して逐次前記工具に作用する負荷を演算し、演
算した工具に作用する負荷から工具の切れ刃部の予測変
位量を求め、前記求めた予測変位量から予測変位量変化
率を演算し、工具の切れ刃部の変位量変化率と工具破損
が生じない送り速度との予め記憶した関係から前記演算
した予測変位量変化率に対応した送り速度を求め、前記
求めた送り速度を実加工送り速度とするようにしたNC
工作機械の送り速度制御方法が提供される。
Further, in an NC machine tool for machining a workpiece by giving a relative feed by a feed shaft between the workpiece and a tool mounted on a rotary spindle, machining data such as workpiece shape, workpiece material, tool shape, tool material, etc. And spindle speed,
Machining conditions such as feed speed and a feed shaft position command are used to sequentially calculate the load acting on the tool prior to actual machining, and the predicted displacement of the cutting edge portion of the tool is calculated from the calculated load acting on the tool. The calculated predicted displacement amount change rate is calculated from the calculated predicted displacement amount, and the calculated predicted displacement amount change is calculated from a previously stored relationship between the displacement amount change rate of the cutting edge portion of the tool and the feed speed at which tool breakage does not occur. NC that determines a feed rate corresponding to the feed rate and sets the determined feed rate as an actual machining feed rate.
A method for controlling a feed rate of a machine tool is provided.

【0008】また、ワークと、回転主軸に装着した工具
との間で送り軸による相対送りを与えてワークを加工す
るNC工作機械において、ワーク形状、ワーク材質、工
具形状、工具材質等の加工データおよび主軸回転速度、
送り速度等の加工条件と、送り軸の位置指令とから実加
工に先行して逐次前記工具に作用する予測負荷を演算
し、演算した工具に作用する負荷から工具の切れ刃部の
予測変位量を求め、前記求めた予測変位量から予測変位
量変化率を演算し、前記求めた工具の切れ刃部の予測変
位量と、予め設定した目標加工精度に対応した工具の切
れ刃部の目標変位量とを比較し、比較結果に応じて第1
の送り速度を求め、工具の切れ刃部の変位量変化率と工
具破損が生じない送り速度との予め記憶した関係から前
記演算した予測変位量変化率に対応した第2の送り速度
を求め、前記第1の送り速度と第2の送り速度とを比較
し、小さい方の送り速度を実加工送り速度とするように
したNC工作機械の送り速度制御方法が提供される。
In an NC machine tool for machining a workpiece by giving a relative feed by a feed shaft between the workpiece and a tool mounted on a rotary spindle, machining data such as a workpiece shape, a workpiece material, a tool shape, and a tool material are provided. And spindle speed,
A predicted load acting on the tool is sequentially calculated prior to actual machining from machining conditions such as a feed speed and a feed shaft position command, and a predicted displacement amount of a cutting edge portion of the tool is calculated from the calculated load acting on the tool. Is calculated from the obtained predicted displacement amount to calculate the predicted displacement amount change rate, and the calculated predicted displacement amount of the cutting edge portion of the tool and the target displacement of the cutting edge portion of the tool corresponding to a preset target machining accuracy. Amount and compare the amount to the first
Determine the feed speed of, the second feed speed corresponding to the calculated predicted change amount change rate from the previously stored relationship between the change amount change rate of the cutting edge portion of the tool and the feed speed at which tool breakage does not occur, A feed speed control method for an NC machine tool is provided in which the first feed speed is compared with the second feed speed, and the smaller feed speed is used as the actual machining feed speed.

【0009】また、ワークと、回転主軸に装着した工具
との間で送り軸による相対送りを与えてワークを加工す
るNC工作機械において、ワーク形状、ワーク材質、工
具形状、工具材質等の加工データを予め記憶する記憶手
段と、前記記憶手段に記憶した加工データと、NC加工
プログラムによって指令される主軸回転速度、送り速度
等の加工条件および送り軸の位置指令とから実加工に先
行して逐次前記工具に作用する負荷を演算する負荷演算
手段と、前記負荷演算手段で演算した工具に作用する負
荷から工具の切れ刃部の予測変位量および予測変位量変
化率を演算する変位量演算手段と、前記演算した工具の
切れ刃部の予測変位量と、予め設定した目標加工精度に
対応した工具の切れ刃部の目標変位量とを比較し、比較
結果に応じて第1の送り速度を求め、工具の切れ刃部の
変位量変化率と工具破損が生じない送り速度との予め記
憶した関係から前記演算した予測変位量変化率に対応し
た第2の送り速度を求め、前記第1の送り速度と第2の
送り速度とを比較し、小さい方の送り速度が実加工送り
速度となるように送り速度制御を行う送り速度制御手段
と、を具備したNC工作機械の送り速度制御装置が提供
される。
In an NC machine tool for machining a workpiece by giving a relative feed by a feed shaft between the workpiece and a tool mounted on a rotary spindle, machining data such as a workpiece shape, a workpiece material, a tool shape, and a tool material are provided. From the machining data stored in the storage means, machining conditions such as the spindle rotation speed and feed speed commanded by the NC machining program, and the feed shaft position command. Load calculation means for calculating the load acting on the tool, displacement amount calculation means for calculating the predicted displacement amount and the predicted displacement amount change rate of the cutting edge portion of the tool from the load acting on the tool calculated by the load calculation means; Comparing the calculated predicted displacement of the cutting edge portion of the tool with the target displacement amount of the cutting edge portion of the tool corresponding to a preset target machining accuracy, and according to the comparison result, The feed rate is determined, and a second feed rate corresponding to the calculated predicted displacement rate is calculated from a relationship stored in advance between the rate of change of the cutting edge portion of the tool and the feed rate at which tool breakage does not occur. Feed speed control means for comparing the first feed speed and the second feed speed, and controlling the feed speed so that the smaller feed speed becomes the actual machining feed speed. A control device is provided.

【0010】[0010]

【作用】負荷演算手段によって、加工データと、加工条
件と、位置指令とから、実加工に先行して逐次工具に作
用する負荷が演算される。そして変位量演算手段は、予
め記憶されている工具切れ刃部の変位量と工具に作用す
る負荷との関係から、前記演算された負荷に対応する工
具の切れ刃部の予測変位量を求める。この予測変位量と
予め設定した目標変位量とを比較して、予測変位量が目
標変位量以下の場合は、指令送り速度で加工を進行し、
予測変位量が目標変位量より大きい場合は、送り速度を
下げて実際の変位量がほぼ目標変位量と等しくなるよう
に送り速度制御をして加工を進行させる。このような送
り速度の制御を逐次行うことによって、加工負荷が変動
するような加工であっても目標加工精度を維持した加工
が行える。この場合の実加工時の送り速度を第1の送り
速度とする。
The load acting on the tool is calculated by the load calculating means from the processing data, the processing conditions and the position command, prior to the actual processing. Then, the displacement calculating means obtains a predicted displacement of the cutting edge of the tool corresponding to the calculated load from the relationship between the displacement of the tool cutting edge stored in advance and the load acting on the tool. By comparing the predicted displacement amount with a preset target displacement amount, if the predicted displacement amount is equal to or less than the target displacement amount, the machining proceeds at the commanded feed speed,
When the predicted displacement amount is larger than the target displacement amount, the feed speed is reduced, and the feed speed is controlled so that the actual displacement amount becomes substantially equal to the target displacement amount, and the machining is advanced. By sequentially performing such control of the feed speed, it is possible to perform the processing while maintaining the target processing accuracy even in the processing in which the processing load varies. The feed speed at the time of actual machining in this case is defined as a first feed speed.

【0011】また、記憶手段には、工具の切れ刃部の変
位量変化率と工具破損の生じない送り速度との関係が予
め記憶される。この関係を参照して、変位量演算手段で
演算された予測変位量変化率に対応した送り速度が求め
られ、この送り速度を第2の送り速度として送り速度制
御手段へ送出する。すると、実加工時の送り速度が当該
第2の送り速度となり、工具破損が生じることがなくな
る。更に、上記第1の送り速度および第2の送り速度を
求め、そのうち小さい方の送り速度を実加工時の送り速
度とすることにより、加工精度が目標精度におさまり、
かつ工具破損の生じない加工が行える。
The relationship between the rate of change of the amount of displacement of the cutting edge of the tool and the feed rate at which tool breakage does not occur is stored in the storage means in advance. With reference to this relationship, a feed rate corresponding to the predicted displacement rate change rate calculated by the displacement quantity calculation means is obtained, and this feed rate is sent to the feed rate control means as a second feed rate. Then, the feed speed at the time of actual machining becomes the second feed speed, and tool breakage does not occur. Further, the first feed speed and the second feed speed are obtained, and the smaller one of the first feed speed and the second feed speed is set as the feed speed at the time of actual processing, whereby the processing accuracy falls below the target accuracy.
In addition, machining that does not cause tool breakage can be performed.

【0012】[0012]

【発明の実施の形態】次に、本発明について図面を参照
しながら説明する。図1は、本発明によるNC工作機械
の送り速度制御装置の一例を示す構成ブロック図、図2
は、本発明によるNC工作機械の送り速度制御方法の一
例を示すフローチャート、図3は、工具の切れ刃部の変
位量と工具に作用する負荷との関係の一例を表したグラ
フ、図4は、工具の切れ刃部の変位量変化率と工具破損
が生じない送り速度との関係の一例を表したグラフであ
る。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example of a feed rate control device for an NC machine tool according to the present invention.
FIG. 3 is a flowchart illustrating an example of a feed speed control method for an NC machine tool according to the present invention. FIG. 3 is a graph illustrating an example of a relationship between a displacement amount of a cutting edge portion of a tool and a load acting on the tool. 5 is a graph showing an example of a relationship between a displacement rate of a cutting edge portion of a tool and a feed speed at which tool breakage does not occur.

【0013】本発明のNC工作機械は、図1に示すよう
にNC加工プログラム1をNC装置3へ入力し、工作機
械5を制御する基本構成でまず成っている。一方、送り
速度制御に必要なデータを予め入力手段7から記憶手段
9へ記憶させる。その記憶するデータは、工具番号、工
具ホルダの種類、工具種類(スクエアエンドミル、ボー
ルエンドミルなど)、工具寸法(長さ、直径、先端球部
半径、刃数など)、工具材質、ならびにワーク番号、ワ
ーク形状、ワーク材質などの加工データである。また後
述する工具の切れ刃部の変位量と工具に作用する負荷と
の関係、および工具の切れ刃部の変位量変化率と工具破
損の生じない送り速度との関係も、主軸の種類、工具ホ
ルダの種類、工具の種類等に対応して記憶される。負荷
演算手段11は、NC装置3で読取・解釈されたNC加
工プログラムからワーク番号、工具番号、主軸回転速度
や送り速度等の加工条件、および各送り軸の位置指令を
受け取ると共に、ワーク番号、工具番号に対応した加工
データを記憶手段9から受け取り、実加工に先行して逐
次当該工具に作用する負荷を演算する。
As shown in FIG. 1, the NC machine tool according to the present invention has a basic configuration in which an NC machining program 1 is inputted to an NC device 3 and a machine tool 5 is controlled. On the other hand, data necessary for the feed speed control is stored in the storage means 9 from the input means 7 in advance. The data to be stored include tool number, tool holder type, tool type (square end mill, ball end mill, etc.), tool dimensions (length, diameter, tip sphere radius, number of teeth, etc.), tool material, work number, Processing data such as work shape and work material. The relationship between the displacement of the cutting edge of the tool and the load acting on the tool, and the relationship between the rate of change of the displacement of the cutting edge of the tool and the feed rate at which tool breakage does not occur, are described below. It is stored corresponding to the type of the holder, the type of the tool, and the like. The load calculating means 11 receives a work number, a tool number, machining conditions such as a spindle rotation speed and a feed speed, and a position command of each feed axis from the NC machining program read and interpreted by the NC device 3, and receives a work number, Machining data corresponding to the tool number is received from the storage means 9, and a load acting on the tool is sequentially calculated prior to actual machining.

【0014】変位量演算手段13は、負荷演算手段11
から負荷の演算結果を受け取り、予め記憶手段9に記憶
してある工具の切れ刃部の変位量と負荷との関係(テー
ブルで与える場合、数式で与える場合、関係曲線で与え
る場合等がある)に照らして、予測変位量を演算する。
その演算結果を送り速度制御手段15へ送出すると、送
り速度制御手段15では、まず予め記憶されている目標
加工精度に対応する工具の切れ刃部の目標変位量と比較
する。そしてその比較結果に応じて当該実加工時の送り
速度を制御する指令をNC装置3へ発し、実加工時の工
具の切れ刃部の変位量が目標変位量とほぼ等しくなるよ
うにしている。速度を制御する指令には、NCのサーボ
制御部に指令する方法、NC加工プログラムのブロック
を自動的に分割変更して速度指令を制御する方法等があ
る。なお、変位量演算手段13で求める工具の切れ刃部
の予測変位量は、工具や工具ホルダなどを含む工具系全
体の剛性と、工具を装着する主軸や主軸頭などを含む機
械系全体の剛性とを考慮した工具の加工ポイントにおけ
る総合的な変位量である。
The displacement calculating means 13 includes a load calculating means 11
And the relationship between the load and the displacement of the cutting edge of the tool stored in advance in the storage means 9 (in a table, in a mathematical expression, in a relation curve, etc.). Then, the predicted displacement amount is calculated.
When the calculation result is sent to the feed speed control means 15, the feed speed control means 15 first compares the calculated result with the target displacement of the cutting edge of the tool corresponding to the target machining accuracy stored in advance. Then, a command for controlling the feed speed during the actual machining is issued to the NC device 3 in accordance with the comparison result, so that the displacement of the cutting edge portion of the tool during the actual machining is substantially equal to the target displacement. Examples of the command for controlling the speed include a method of instructing the servo control unit of the NC, a method of automatically dividing and changing blocks of the NC machining program to control the speed command, and the like. The predicted displacement of the cutting edge portion of the tool obtained by the displacement calculating means 13 is determined by the rigidity of the entire tool system including the tool and the tool holder, and the rigidity of the entire mechanical system including the spindle and the spindle head on which the tool is mounted. And the total displacement at the machining point of the tool taking into account

【0015】更に、変位量演算手段13は、上記演算し
た予測変位量を時間で微分し、予測変位量変化率を演算
する。そして記憶手段9に予め記憶してある工具の切れ
刃部の変位量変化率と工具破損の生じない送り速度との
関係を用い、予測変位量変化率に対応した送り速度を求
め送り速度制御手段15に送出する。送り速度制御手段
ではこの送り速度を実加工時の送り速度とすることによ
り、工具破損の生じない送り速度でワークを加工でき
る。
Further, the displacement calculating means 13 differentiates the calculated predicted displacement with respect to time to calculate a predicted displacement change rate. A feed rate corresponding to the predicted change rate of change is determined by using a relationship between the change rate of the displacement of the cutting edge portion of the tool and the feed rate at which no tool breakage is stored in advance in the storage means 9. 15 By using the feed speed as the feed speed at the time of actual machining, the feed speed control means can process the workpiece at a feed speed at which tool breakage does not occur.

【0016】次に本発明の作用を図2のフローチャート
を用いて説明する。まず負荷演算手段11はワーク形
状、ワーク材質、工具形状、工具材質等の加工データ、
主軸回転速度、送り速度等の加工条件、および送り軸の
位置指令を読み込み(ステップS1)、工具に作用する
負荷を所定の論理で演算する(ステップS2)。次に変
位量演算手段13でその負荷に対応した工具の切れ刃部
の予測変位量および予測変位量変化率を演算する(ステ
ップS3)。演算した予測変位量と予め与えられる目標
加工精度に対応した工具の切れ刃部の目標変位量とを比
較し(ステップS4)、予測変位量が目標変位量以下の
場合は、指令送り速度のままで加工を進行させてもよ
く、この送り速度を第1の送り速度Faとする(ステッ
プS5)。つまり、工具に作用する負荷は加工精度を目
標値以上に低下させる程の大きさではないということで
ある。
Next, the operation of the present invention will be described with reference to the flowchart of FIG. First, the load calculating means 11 processes machining data such as a work shape, a work material, a tool shape, and a tool material;
Processing conditions such as the spindle rotation speed and the feed speed, and the position command of the feed shaft are read (step S1), and the load acting on the tool is calculated by a predetermined logic (step S2). Next, the displacement calculating means 13 calculates a predicted displacement and a predicted displacement change rate of the cutting edge portion of the tool corresponding to the load (step S3). The calculated predicted displacement is compared with the target displacement of the cutting edge of the tool corresponding to the target machining accuracy given in advance (step S4). If the predicted displacement is equal to or less than the target displacement, the command feed speed is maintained. The processing may be advanced by using the first feed speed Fa (step S5). That is, the load acting on the tool is not large enough to reduce the machining accuracy to a target value or more.

【0017】またステップS4で予測変位量が目標変位
量を越える場合は、ステップS6で指令送り速度に次の
ように算出されるオーバライドをかけて減速制御した第
1の送り速度Faを求める。ステップS6における減速
制御の実施例を図3を用いて説明する。図3のグラフは
工具の切れ刃部の変位量と工具に作用する加工負荷との
関係を表す一例であるが、上記の減速制御の減速率すな
わちオーバライドは、目標変位量での加工負荷の値を予
測変位量での加工負荷の値で割った値に等しいことがわ
かる。よって実加工時には指令送り速度にこのオーバラ
イドをかけることによって減速され、結果として工具の
切れ刃部の変位量が目標変位量とほぼ等しくなり加工精
度が目標加工精度に維持されるのである。
If the predicted displacement exceeds the target displacement in step S4, a first feed speed Fa obtained by performing a deceleration control by applying an override calculated as follows to the commanded feed speed is obtained in step S6. An embodiment of the deceleration control in step S6 will be described with reference to FIG. The graph of FIG. 3 is an example showing the relationship between the displacement amount of the cutting edge portion of the tool and the machining load acting on the tool. The deceleration rate of the above-mentioned deceleration control, that is, the override, is the value of the machining load at the target displacement amount. Is divided by the machining load value at the predicted displacement amount. Therefore, during actual machining, the command feed speed is decelerated by applying this override, and as a result, the displacement of the cutting edge of the tool is substantially equal to the target displacement, and the machining accuracy is maintained at the target machining accuracy.

【0018】次に、図4に例示する工具の切れ刃部の変
位量変化率と工具破損が生じない送り速度との関係から
予測変位量変化率に対応した第2の送り速度Fbを求め
る(ステップS7)。ステップS8では、ステップS5
またはS6で求めた第1の送り速度FaとステップS7
で求めた第2の送り速度Fbとを比較し、FaがFb以
下の場合は、実加工時の送り速度Fを第1の送り速度F
aとし(ステップS9)、FaがFbより大きい場合
は、実加工時の送り速度Fを第2の送り速度Fbとする
(ステップS10)。そしてステップS2で負荷を演算
した部位の実加工を送り速度Fで行い(ステップS1
1)、全加工が完了するまでステップS1からの処理を
繰り返し(ステップS12)、常時最適送り速度で加工
が進むように送り速度制御を行う。
Next, a second feed speed Fb corresponding to the predicted change rate of the displacement is obtained from the relationship between the change rate of the displacement of the cutting edge of the tool illustrated in FIG. 4 and the feed rate at which the tool is not damaged (FIG. 4). Step S7). In step S8, step S5
Or, the first feed speed Fa obtained in S6 and the step S7
Is compared with the second feed speed Fb obtained in the above, and when Fa is equal to or less than Fb, the feed speed F at the time of actual machining is set
a (step S9), and when Fa is larger than Fb, the feed speed F during actual machining is set to the second feed speed Fb (step S10). Then, the actual machining of the portion where the load is calculated in step S2 is performed at the feed speed F (step S1).
1) The processing from step S1 is repeated until all machining is completed (step S12), and feed speed control is performed so that machining always proceeds at the optimum feed speed.

【0019】ここで、請求項1に記載の発明は、ステッ
プS5またはS6で求めた送り速度Faで加工を行うも
のであり、加工精度が目標加工精度を越えないための送
り速度制御に関するものである。請求項2に記載の発明
は、ステップS7で求めた送り速度Fbで加工を行うも
のであり、工具破損防止のための送り速度制御に関する
ものである。請求項3および4に記載の発明は、本実施
例で説明した一連のステップでなる発明で、加工精度の
確保および工具破損防止のための送り速度制御に関する
ものである。
The first aspect of the present invention relates to processing at the feed rate Fa determined in step S5 or S6, and relates to feed rate control for ensuring that the processing accuracy does not exceed the target processing accuracy. is there. The second aspect of the present invention relates to machining at the feed rate Fb obtained in step S7, and relates to feed rate control for preventing tool breakage. The invention according to claims 3 and 4 is an invention comprising a series of steps described in the present embodiment, and relates to a feed speed control for securing machining accuracy and preventing tool breakage.

【0020】なお、本実施例では、送り速度Fを求める
のに、工具に作用する負荷から一旦工具の切れ刃部の予
測変位量および予測変位量変化率を求め、その後送り速
度Fを求めるための種々の処理を行う場合を述べたが、
工具に作用する負荷から求める方法もある。すなわち、
負荷演算手段11で演算した負荷を予測負荷とし、その
時間微分値から予測負荷変化率を演算する。そして予測
負荷と、予め設定した目標加工精度に対応した工具に作
用する目標負荷とを比較して第1の送り速度を決めるの
である。また記憶手段9に、工具に作用する負荷と工具
破損が生じない送り速度との関係を予め記憶し、上記予
測負荷変化率に対応する送り速度を求め、これを第2の
送り速度Fbとするのである。そして、加工精度と工具
破損防止の両方を対象とする場合には、FaとFbの小
さい方の送り速度を実加工時の送り速度Fとする処理は
本実施例と同様である。
In this embodiment, in order to obtain the feed rate F, the predicted displacement amount and the predicted displacement rate change rate of the cutting edge of the tool are once determined from the load acting on the tool, and then the feed rate F is determined. Although the case of performing various processing of was described,
There is also a method of obtaining from the load acting on the tool. That is,
The load calculated by the load calculating means 11 is used as the predicted load, and the predicted load change rate is calculated from the time differential value. Then, the first feed speed is determined by comparing the predicted load with the target load acting on the tool corresponding to the preset target machining accuracy. Further, the relationship between the load acting on the tool and the feed speed at which no tool breakage occurs is stored in the storage means 9 in advance, and a feed speed corresponding to the predicted load change rate is obtained, and this is set as a second feed speed Fb. It is. When both the processing accuracy and the prevention of tool breakage are targeted, the process of setting the smaller one of Fa and Fb as the feed speed F in actual machining is the same as that of the present embodiment.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、実
加工に先行して逐次工具の切れ刃部の予測変位量が求め
られるので、これを目標変位量と比較することにより、
実際の工具の切れ刃部の変位量が目標変位量を越えない
ような第1の送り速度が自動的に決まり、送り速度制御
が行える。よって制御の遅れのない高精度な加工が実現
する。またNC加工プログラム作成時に、加工箇所に応
じて送り速度を設定するというわずらわしさがなくな
る。一方、予測変位量変化率から工具破損が生じない第
2の送り速度が求められ、この送り速度で実加工を行う
ことにより工具破損が未然に防止できる。そして、第1
の送り速度と第2の送り速度とを比較して、小さい方の
送り速度で実加工を行うことにより加工精度と工具破損
防止とを満足する送り速度制御が行える。更に工具の変
位量を直接計測するような変位計を用いる必要がないの
で、加工領域近傍が複雑な構成になることはない。
As described above, according to the present invention, the predicted displacement amount of the cutting edge portion of the tool is sequentially obtained prior to the actual machining, and is compared with the target displacement amount.
The first feed speed at which the actual displacement of the cutting edge of the tool does not exceed the target displacement is automatically determined, and the feed speed can be controlled. Therefore, high-precision machining without control delay is realized. Further, when the NC machining program is created, the trouble of setting the feed speed in accordance with the machining location is eliminated. On the other hand, a second feed speed at which tool breakage does not occur is determined from the predicted displacement amount change rate, and tool breakage can be prevented by performing actual machining at this feed speed. And the first
By comparing actual feed speed with the second feed speed and performing actual machining at the smaller feed speed, feed speed control satisfying machining accuracy and prevention of tool breakage can be performed. Further, since there is no need to use a displacement meter that directly measures the amount of displacement of the tool, the vicinity of the processing area does not have a complicated configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるNC工作機械の送り速度制御装置
の一例を示す構成ブロック図である。
FIG. 1 is a configuration block diagram illustrating an example of a feed speed control device for an NC machine tool according to the present invention.

【図2】本発明によるNC工作機械の送り速度制御方法
の一例を示すフローチャートである。
FIG. 2 is a flowchart illustrating an example of a feed speed control method for an NC machine tool according to the present invention.

【図3】工具の切れ刃部の変位量と工具に作用する負荷
との関係の一例を表したグラフである。
FIG. 3 is a graph showing an example of a relationship between a displacement amount of a cutting edge portion of a tool and a load acting on the tool.

【図4】工具の切れ刃部の変位量変化率と工具破損が生
じない送り速度との関係の一例を表したグラフである。
FIG. 4 is a graph illustrating an example of a relationship between a displacement rate of a cutting edge portion of a tool and a feed speed at which tool breakage does not occur.

【符号の説明】[Explanation of symbols]

3 NC装置 5 工作機械 9 記憶手段 11 負荷演算手段 13 変位量演算手段 15 送り速度制御手段 Reference Signs List 3 NC device 5 Machine tool 9 Storage means 11 Load calculation means 13 Displacement calculation means 15 Feed speed control means

フロントページの続き (56)参考文献 特開 平7−51996(JP,A) 特開 平3−161240(JP,A) 特開 平9−38843(JP,A) 特開 平2−108105(JP,A) 特開 平9−16265(JP,A) 特開 平8−152908(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23Q 15/00 - 15/28 G05B 19/18 - 19/46 B23Q 5/00 - 5/58 B23Q 17/00 - 23/00 Continuation of front page (56) References JP-A-7-51996 (JP, A) JP-A-3-161240 (JP, A) JP-A-9-38843 (JP, A) JP-A-2-108105 (JP) , A) JP-A-9-16265 (JP, A) JP-A-8-152908 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B23Q 15/00-15/28 G05B 19/18-19/46 B23Q 5/00-5/58 B23Q 17/00-23/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ワークと、回転主軸に装着した工具との
間で送り軸による相対送りを与えてワークを加工するN
C工作機械において、 ワーク形状、ワーク材質、工具形状、工具材質等の加工
データおよび主軸回転速度、送り速度等の加工条件と、
送り軸の位置指令とから実加工に先行して逐次前記工具
に作用する負荷を演算し、 演算した工具に作用する負荷から工具の切れ刃部の予測
変位量を求め、 前記求めた工具の切れ刃部の予測変位量と、予め設定し
た目標加工精度に対応した工具の切れ刃部の目標変位量
とを比較し、 比較結果に応じて前記相対送りの送り速度を制御して所
望の加工精度を得るようにしたことを特徴とするNC工
作機械の送り速度制御方法。
1. A method of machining a work by giving a relative feed by a feed shaft between the work and a tool mounted on a rotary spindle.
In the C machine tool, machining data such as work shape, work material, tool shape, tool material, and machining conditions such as spindle rotation speed and feed speed;
The load acting on the tool is sequentially calculated prior to actual machining from the feed shaft position command, and the predicted displacement of the cutting edge portion of the tool is calculated from the calculated load acting on the tool. The predicted displacement amount of the blade portion is compared with a target displacement amount of the cutting edge portion of the tool corresponding to a preset target machining accuracy, and a feed speed of the relative feed is controlled according to the comparison result to obtain a desired machining accuracy. And a feed speed control method for an NC machine tool.
【請求項2】 ワークと、回転主軸に装着した工具との
間で送り軸による相対送りを与えてワークを加工するN
C工作機械において、 ワーク形状、ワーク材質、工具形状、工具材質等の加工
データおよび主軸回転速度、送り速度等の加工条件と、
送り軸の位置指令とから実加工に先行して逐次前記工具
に作用する負荷を演算し、 演算した工具に作用する負荷から工具の切れ刃部の予測
変位量を求め、 前記求めた予測変位量から予測変位量変化率を演算し、 工具の切れ刃部の変位量変化率と工具破損が生じない送
り速度との予め記憶した関係から前記演算した予測変位
量変化率に対応した送り速度を求め、 前記求めた送り速度を実加工送り速度とするようにした
ことを特徴とするNC工作機械の送り速度制御方法。
2. A method of machining a workpiece by giving a relative feed by a feed axis between the workpiece and a tool mounted on a rotating spindle.
In the C machine tool, machining data such as work shape, work material, tool shape, tool material, and machining conditions such as spindle rotation speed and feed speed;
The load acting on the tool is sequentially calculated from the feed shaft position command prior to actual machining, and the predicted displacement of the cutting edge portion of the tool is calculated from the calculated load acting on the tool. From the relationship between the change rate of the displacement of the cutting edge portion of the tool and the feed rate at which tool breakage does not occur, a feed rate corresponding to the calculated change rate of the calculated displacement is calculated from A feed rate control method for an NC machine tool, wherein the determined feed rate is used as an actual machining feed rate.
【請求項3】 ワークと、回転主軸に装着した工具との
間で送り軸による相対送りを与えてワークを加工するN
C工作機械において、 ワーク形状、ワーク材質、工具形状、工具材質等の加工
データおよび主軸回転速度、送り速度等の加工条件と、
送り軸の位置指令とから実加工に先行して逐次前記工具
に作用する予測負荷を演算し、 演算した工具に作用する負荷から工具の切れ刃部の予測
変位量を求め、 前記求めた予測変位量から予測変位量変化率を演算し、 前記求めた工具の切れ刃部の予測変位量と、予め設定し
た目標加工精度に対応した工具の切れ刃部の目標変位量
とを比較し、比較結果に応じて第1の送り速度を求め、 工具の切れ刃部の変位量変化率と工具破損が生じない送
り速度との予め記憶した関係から前記演算した予測変位
量変化率に対応した第2の送り速度を求め、 前記第1の送り速度と第2の送り速度とを比較し、小さ
い方の送り速度を実加工送り速度とするようにしたこと
を特徴とするNC工作機械の送り速度制御方法。
3. A method of machining a workpiece by giving a relative feed by a feed axis between the workpiece and a tool mounted on a rotating spindle.
In the C machine tool, machining data such as work shape, work material, tool shape, tool material, and machining conditions such as spindle rotation speed and feed speed;
A predicted load acting on the tool is sequentially calculated from the feed shaft position command prior to actual machining, and a predicted displacement amount of the cutting edge portion of the tool is calculated from the calculated load acting on the tool. The predicted displacement amount change rate is calculated from the amount, and the calculated predicted displacement amount of the cutting edge portion of the tool is compared with the target displacement amount of the cutting edge portion of the tool corresponding to a preset target machining accuracy, and the comparison result is obtained. A first feed speed is obtained in accordance with the following formula, and a second feed rate corresponding to the calculated predicted change rate change rate is calculated from a previously stored relationship between the change rate of the displacement of the cutting edge portion of the tool and the feed rate at which tool breakage does not occur. A feed speed control method for an NC machine tool, wherein a feed speed is obtained, the first feed speed is compared with a second feed speed, and a smaller feed speed is set as an actual machining feed speed. .
【請求項4】 ワークと、回転主軸に装着した工具との
間で送り軸による相対送りを与えてワークを加工するN
C工作機械において、 ワーク形状、ワーク材質、工具形状、工具材質等の加工
データを予め記憶する記憶手段と、 前記記憶手段に記憶した加工データと、NC加工プログ
ラムによって指令される主軸回転速度、送り速度等の加
工条件および送り軸の位置指令とから実加工に先行して
逐次前記工具に作用する負荷を演算する負荷演算手段
と、 前記負荷演算手段で演算した工具に作用する負荷から工
具の切れ刃部の予測変位量および予測変位量変化率を演
算する変位量演算手段と、 前記演算した工具の切れ刃部の予測変位量と、予め設定
した目標加工精度に対応した工具の切れ刃部の目標変位
量とを比較し、比較結果に応じて第1の送り速度を求
め、工具の切れ刃部の変位量変化率と工具破損が生じな
い送り速度との予め記憶した関係から前記演算した予測
変位量変化率に対応した第2の送り速度を求め、前記第
1の送り速度と第2の送り速度とを比較し、小さい方の
送り速度が実加工送り速度となるように送り速度制御を
行う送り速度制御手段と、を具備したことを特徴とする
NC工作機械の送り速度制御装置。
4. A method of machining a workpiece by giving a relative feed by a feed axis between the workpiece and a tool mounted on a rotating spindle.
In a C machine tool, storage means for storing processing data such as a work shape, a work material, a tool shape, and a tool material in advance; processing data stored in the storage means; a spindle rotation speed and a feed commanded by an NC processing program; Load calculating means for sequentially calculating a load acting on the tool prior to actual machining from processing conditions such as speed and a feed shaft position command; and cutting of the tool from the load acting on the tool calculated by the load calculating means. A displacement amount calculating means for calculating a predicted displacement amount and a predicted displacement amount change rate of the blade portion; and the calculated predicted displacement amount of the cutting edge portion of the tool, and a cutting edge portion of the tool corresponding to a preset target machining accuracy. The first feed speed is determined based on the comparison result with the target displacement amount, and the first feed speed is determined from the previously stored relationship between the displacement change rate of the cutting edge portion of the tool and the feed speed at which tool breakage does not occur. A second feed speed corresponding to the calculated predicted displacement amount change rate is obtained, the first feed speed and the second feed speed are compared, and feed is performed so that the smaller feed speed becomes the actual machining feed speed. A feed speed control device for an NC machine tool, comprising: feed speed control means for performing speed control.
JP07221097A 1995-08-07 1995-08-07 Method and apparatus for controlling feed rate of NC machine tool Expired - Lifetime JP3118748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07221097A JP3118748B2 (en) 1995-08-07 1995-08-07 Method and apparatus for controlling feed rate of NC machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07221097A JP3118748B2 (en) 1995-08-07 1995-08-07 Method and apparatus for controlling feed rate of NC machine tool

Publications (2)

Publication Number Publication Date
JPH0947941A JPH0947941A (en) 1997-02-18
JP3118748B2 true JP3118748B2 (en) 2000-12-18

Family

ID=16761449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07221097A Expired - Lifetime JP3118748B2 (en) 1995-08-07 1995-08-07 Method and apparatus for controlling feed rate of NC machine tool

Country Status (1)

Country Link
JP (1) JP3118748B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375543B1 (en) * 2000-03-09 2003-03-10 정융호 A method for cutting force prediction in ball end milling
JP5874261B2 (en) * 2011-09-14 2016-03-02 株式会社ジェイテクト Machining error calculation device, machining error calculation method, machining control device, and machining control method
CN103392156B (en) 2011-09-14 2015-03-11 株式会社捷太格特 Processing control apparatus, and processing control method
JP5163838B1 (en) * 2011-09-14 2013-03-13 株式会社ジェイテクト Machining error calculation device, machining error calculation method, machining control device, and machining control method
JP7412158B2 (en) * 2019-12-18 2024-01-12 オークマ株式会社 Machine tool feed axis diagnosis device and feed axis diagnosis method

Also Published As

Publication number Publication date
JPH0947941A (en) 1997-02-18

Similar Documents

Publication Publication Date Title
KR100221043B1 (en) Numerical control device
EP0093955B1 (en) Control apparatus for a grinding machine
US6438445B1 (en) Machining processor
JP2749197B2 (en) Dynamic correction method of servo tracking error in computer numerical controller and fixed cycle by using the method
US6266572B1 (en) Apparatus for generating a numerical control command according to cut resistance value and cut torque value of machining simulation
US4131837A (en) Machine tool monitoring system
US4757457A (en) Numerical control method and apparatus with feedrate difference
US4570386A (en) Regulating wheel dressing system in centerless grinder
JPH03111168A (en) Method for honing bore and honing machine for working said method
EP0530032B1 (en) Method and apparatus for controlling feed rate at arcuate portions
US5746643A (en) Method of grinding and machining non-circular workpiece and apparatus for the same
JP3118748B2 (en) Method and apparatus for controlling feed rate of NC machine tool
JPWO2004087359A1 (en) Threading control method and apparatus
JP2002096243A (en) Numerical controller and cam system
JPH0649260B2 (en) Synchronous control device
JPH1190769A (en) Accelerating/decelerating controller and method for machine tool
JPH11202926A (en) Method and device for feed speed control in numerical control
KR860001679B1 (en) Numerical control device
JP4982170B2 (en) Machining control device and machining control program
JP3520142B2 (en) Quadrant projection correction parameter determination device
JPH0857748A (en) Numerical control system
KR101714173B1 (en) System and method for controlling working speed of machine tool
JPH0777692B2 (en) Thread cutting method
JP3185464B2 (en) Grinding equipment
KR820000965B1 (en) Tool wear detecting system for a numerically controlled machine tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 13

EXPY Cancellation because of completion of term