JPH0857256A - Ammonia decomposition apparatus - Google Patents
Ammonia decomposition apparatusInfo
- Publication number
- JPH0857256A JPH0857256A JP6224103A JP22410394A JPH0857256A JP H0857256 A JPH0857256 A JP H0857256A JP 6224103 A JP6224103 A JP 6224103A JP 22410394 A JP22410394 A JP 22410394A JP H0857256 A JPH0857256 A JP H0857256A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- decomposition
- catalyst
- cylinder
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はアンモニア分解装置に関
し、さらに詳細には処理対象となるアンモニアガス中に
酸素が混入した場合にこれを検知すると同時に爆発など
の危険性を確実に防止しうるアンモニア分解装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia decomposing device, and more particularly to an ammonia decomposing device capable of detecting when oxygen is mixed in ammonia gas to be treated and at the same time reliably preventing the risk of explosion or the like. Decomposing device
【0002】[0002]
【従来の技術】従来、アンモニアの分解方法としては、
アンモニアまたはアンモニアを含有するガスを例えば、
アルミナなどの無機質担体にニッケル、鉄、パラジウム
または白金などの金属を担持させた分解用触媒と600
〜900℃のような高温で接触させてアンモニアを窒素
と水素に分解させる方法が一般的に用いられている。そ
して、これらの分解用触媒はアンモニアの分解に関する
限りは比較的効率がよいため、窒素および水素の製造、
あるいは、排ガス中などに有害成分として含まれるアン
モニアの分解によるガスの浄化などを目的とし、各種の
産業で広く使用されている。2. Description of the Related Art Conventionally, as a method of decomposing ammonia,
Ammonia or a gas containing ammonia, for example,
A decomposition catalyst in which a metal such as nickel, iron, palladium or platinum is supported on an inorganic carrier such as alumina, and 600
A method in which ammonia is decomposed into nitrogen and hydrogen by contacting at a high temperature such as ˜900 ° C. is generally used. And since these decomposition catalysts are relatively efficient as far as the decomposition of ammonia is concerned, the production of nitrogen and hydrogen,
Alternatively, it is widely used in various industries for the purpose of purifying gas by decomposing ammonia contained in exhaust gas as a harmful component.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、アンモ
ニアおよびその分解によって生成する水素はいずれも可
燃性であるが、特に、水素は燃焼範囲が広く、酸素が混
入する可能性のある場合には、着火温度(約550℃)
を超えるような高温でアンモニアの分解操作をおこなう
ことは危険である。このため、分解筒内に多少なりとも
酸素が混入し、爆発範囲に入る恐れのある場合には、こ
れを的確に検知すると同時に適切な安全処置を講ずる必
要がある。However, both ammonia and hydrogen produced by its decomposition are flammable. Especially, when hydrogen has a wide combustion range and oxygen is likely to be mixed, ignition occurs. Temperature (about 550 ℃)
It is dangerous to carry out the decomposition operation of ammonia at a high temperature exceeding 10 ° C. For this reason, if there is a possibility that oxygen will be mixed into the disassembly cylinder to some extent and enter the explosion range, it is necessary to accurately detect this and take appropriate safety measures.
【0004】ガス中に混入する酸素を検知する手段とし
ては、一般的にはガスクロマトグラフや種々な酸素分析
計を用いる方法があるが、いずれも構造、操作ともに複
雑で高価であるばかりでなく、アンモニアのようなガス
では検出端の腐食による故障などにより、酸素の混入を
見逃す恐れもある。一方、酸素の混入が検知された場合
にはアンモニアガスの分解筒への導入を停止することに
なるが、例えば半導体製造工程から連続的に排出される
排ガスなどはそのまま大気中に放出できないため、状況
によっては製造装置を一時的に停止しなければならない
という問題点がある。As a means for detecting oxygen mixed in the gas, there is generally a method using a gas chromatograph or various oxygen analyzers, but not only are both complicated in structure and operation and expensive, In the case of gas such as ammonia, there is a possibility that oxygen contamination may be missed due to a failure due to corrosion of the detection end. On the other hand, when the mixture of oxygen is detected, the introduction of ammonia gas into the decomposition cylinder is stopped, but for example, exhaust gas continuously discharged from the semiconductor manufacturing process cannot be released into the atmosphere as it is, Depending on the situation, there is a problem that the manufacturing apparatus must be temporarily stopped.
【0005】[0005]
【課題を解決するための手段】本発明者らはアンモニア
を効率よく分解すると同時に、万一、酸素が混入した場
合に、これを確実に検知するとともにガスを安全に処理
しうるアンモニア分解装置を得るべく研鑽を重ねた結
果、ニッケルなど酸素と接触して発熱する触媒および発
熱検知手段を備えた分解筒にアンモニアの除去筒を組み
合わせることにより、これらの目的を達成しうることを
見い出し、本発明を完成した。すなわち本発明は、アン
モニアガスの供給管と接続された分解筒であってアンモ
ニア分解用の触媒が充填され、かつ、ヒーターが配設さ
れた分解筒と、該分解筒の出口側と接続されたアンモニ
アの除去筒と、前記アンモニアガスの供給管から分岐
し、除去筒と接続されたバイパス管とを備えてなり、前
記アンモニア分解用の触媒のうち、少なくともガスの上
流側には酸素の存在によって発熱を生ずる触媒が充填さ
れ、かつ、該触媒の充填部に発熱検知用の温度計が取り
付けられたことを特徴とするアンモニア分解装置であ
る。本発明の装置はアンモニア単独、または、窒素、水
素、希ガスなどと混合されたアンモニア(以下総称して
アンモニアガスと記す)の分解および浄化に適用され
る。The present inventors have devised an ammonia decomposing device capable of decomposing ammonia efficiently and, at the same time, reliably detecting oxygen if it is mixed and safely treating gas. As a result of repeated studies to obtain the above, it was found that these objects can be achieved by combining an ammonia removal column with a decomposition column equipped with a catalyst and a heat generation detection unit that generate heat by contacting with oxygen such as nickel. Was completed. That is, the present invention is a decomposition tube connected to an ammonia gas supply pipe, filled with a catalyst for ammonia decomposition, and connected to a decomposition tube provided with a heater and an outlet side of the decomposition tube. An ammonia removing cylinder and a bypass pipe branching from the ammonia gas supply pipe and connected to the removing cylinder are provided, and among the catalysts for ammonia decomposition, at least the upstream side of the gas depends on the presence of oxygen. The ammonia decomposing apparatus is characterized in that it is filled with a catalyst that generates heat and a thermometer for detecting heat generation is attached to the filled portion of the catalyst. INDUSTRIAL APPLICABILITY The apparatus of the present invention is applied to the decomposition and purification of ammonia alone or ammonia mixed with nitrogen, hydrogen, a rare gas, etc. (hereinafter collectively referred to as ammonia gas).
【0006】本発明において、アンモニアの分解筒はガ
スの入口および出口を有する筒状、通常は円筒形の筒に
アンモニア分解用の触媒が充填されたものであり、その
入口はアンモニアガスの供給管と接続される。分解筒は
アンモニアに対する耐蝕性を有し、例えば1000℃程
度の高温の操作温度に耐えるものであればその材質には
特に制限はないが、一般的には耐蝕性のある金属が用い
られ、加工性のよさ、入手のし易さなどから例えばステ
ンレス鋼、インコネル(INCO社、ニッケル・クロム
合金)などが好適である。分解筒は1つの筒にアンモニ
ア分解用の触媒を充填したものであってもよく、また、
複数の筒を直列に連結し、それぞれにアンモニア分解用
の触媒を充填したものであってもよいが、通常は1つの
筒に触媒を充填したものが用いられる。In the present invention, the ammonia decomposition cylinder is a cylinder having an inlet and an outlet for gas, usually a cylindrical cylinder filled with a catalyst for ammonia decomposition, and its inlet is an ammonia gas supply pipe. Connected with. The decomposition cylinder has corrosion resistance to ammonia, and there is no particular limitation on the material as long as it can withstand a high operating temperature of, for example, about 1000 ° C., but generally a metal having corrosion resistance is used. For example, stainless steel, Inconel (INCO Co., nickel-chromium alloy) and the like are preferable in terms of good property and availability. The decomposition cylinder may be one cylinder filled with a catalyst for decomposing ammonia, and
A plurality of cylinders may be connected in series and each may be filled with a catalyst for decomposing ammonia, but usually one cylinder is filled with a catalyst.
【0007】本発明において分解筒にはアンモニアを窒
素と水素に分解するための触媒が充填されるが、少なく
ともガスの上流側には酸素の存在によって発熱する触媒
(以下、発熱性触媒と記す)が充填される。発熱性触媒
は、分解によって生ずる水素と爆発混合気を形成する酸
素濃度の下限値(約5%)よりも十分に低い濃度の酸素
が存在しても温度計で検知しうる程度の発熱を生ずるも
のであり、例えば、ニッケル、鉄および銅系の触媒など
が挙げられ、通常は、アルミナ、シリカ、シリカアルミ
ナ、アルミノシリケート、けいそう土などの無機質担体
にこれらの金属を触媒全体に対し、通常は5〜50wt
%、好ましくは10〜50wt%になるように担持させ
たものである。これらのうちでもアンモニアの分解効率
が高く、しかも、500〜1000ppmのような低濃
度の酸素の存在によっても敏感に反応して酸素を捕捉す
ると同時に顕著な発熱を生ずることなどからニッケル系
の触媒が特に好ましい。In the present invention, the decomposition cylinder is filled with a catalyst for decomposing ammonia into nitrogen and hydrogen, and at least the upstream side of the gas generates heat due to the presence of oxygen (hereinafter referred to as exothermic catalyst). Is filled. The exothermic catalyst produces heat that can be detected by a thermometer even if oxygen is present at a concentration sufficiently lower than the lower limit (about 5%) of the oxygen concentration that forms an explosive mixture with hydrogen generated by decomposition. Examples thereof include nickel-, iron- and copper-based catalysts and the like.Usually, an inorganic carrier such as alumina, silica, silica-alumina, aluminosilicate, diatomaceous earth, etc. Is 5 to 50 wt
%, Preferably 10 to 50 wt%. Among these, nickel-based catalysts have high decomposition efficiency of ammonia, and are sensitive to the presence of low-concentration oxygen such as 500 to 1000 ppm to trap oxygen and generate remarkable heat at the same time. Particularly preferred.
【0008】本発明において、アンモニア分解用の触媒
は下流側を含めて全体が上記のような発熱性触媒であっ
てもよく、また、下流側には酸素と接触しても発熱が小
さいか、ほとんど発熱しない触媒(以下、非発熱触媒と
記す)を充填してもよい。非発熱触媒としては白金、パ
ラジウムおよびルテニウムなど主として貴金属系の触媒
であり、前記のような無機質担体、例えば、α−アルミ
ナ、γ−アルミナなどに白金、パラジウムまたはルテニ
ウムなどが触媒全体に対し、0.1〜5wt%程度にな
るように担持されたものである。発熱性触媒と非発熱触
媒を併用する場合に、上流側に充填される発熱性触媒の
量は前記のような低濃度の酸素によっても温度計が確実
に検知しうる程度の発熱を生ずる量とされるが、例えば
分解筒における充填長で通常は10mm以上、好ましく
は30mm以上とされる。In the present invention, the catalyst for decomposing ammonia may be an exothermic catalyst as a whole including the downstream side, and whether or not the downstream side has a small heat generation even if it contacts oxygen. A catalyst that generates almost no heat (hereinafter referred to as a non-heat generating catalyst) may be filled. Non-exothermic catalysts are mainly noble metal-based catalysts such as platinum, palladium and ruthenium. Platinum, palladium or ruthenium or the like is added to the above-mentioned inorganic carrier such as α-alumina or γ-alumina with respect to the entire catalyst. It is supported so as to be about 1 to 5 wt%. When using both an exothermic catalyst and a non-exothermic catalyst, the amount of the exothermic catalyst that is filled upstream is the amount of heat that can be reliably detected by the thermometer even with the low concentration of oxygen as described above. However, for example, the filling length in the disassembling cylinder is usually 10 mm or more, preferably 30 mm or more.
【0009】アンモニアガスと触媒との接触温度は、発
熱性触媒、非発熱触媒ともに通常は600〜900℃程
度であるが、非発熱触媒のうちでルテニウム系のものは
300〜500℃のような比較的低温、すなわち酸素と
水素の混合ガスの着火温度よりも低い温度領域において
も優れた分解性能を有しているため、安全性などの点で
より好ましい。The contact temperature between the ammonia gas and the catalyst is usually about 600 to 900 ° C. for both the exothermic catalyst and the non-exothermic catalyst, but among the non-exothermic catalysts, the ruthenium type catalyst is 300 to 500 ° C. Since it has excellent decomposition performance even at a relatively low temperature, that is, in a temperature range lower than the ignition temperature of a mixed gas of oxygen and hydrogen, it is more preferable in terms of safety and the like.
【0010】本発明において、酸素の存在(混入)を監
視するために分解筒の上流側、すなわち、発熱性触媒の
充填部に温度計が取り付けられる。温度計の取り付け位
置は酸素との反応による触媒の発熱を的確に検知できる
位置とされ、検出端は分解筒の触媒層内に挿入された形
とすることが好ましい。温度計の種類にも特に制限はな
いが、感度が高く、かつ、耐久性のよい熱電対式温度
計、抵抗式温度計、膨張式温度計などであり、これらが
そのまま、あるいは保護管などに挿入されて取り付けら
れる。また、発熱を自動的に監視する目的などで、温度
計に警報器および各種の制御機器などを接続することも
可能であり、この場合の温度計としては熱電対式温度計
および抵抗式温度計などが好適である。In the present invention, in order to monitor the presence (mixing) of oxygen, a thermometer is attached on the upstream side of the decomposition tube, that is, at the filling portion of the exothermic catalyst. It is preferable that the thermometer is attached at a position where the heat generation of the catalyst due to the reaction with oxygen can be accurately detected, and the detection end is inserted in the catalyst layer of the decomposition cylinder. There are no particular restrictions on the type of thermometer, but thermocouple type thermometers, resistance type thermometers, expansion type thermometers, etc., which have high sensitivity and high durability, can be used as they are or as protective tubes. It is inserted and attached. It is also possible to connect an alarm device and various control devices to the thermometer for the purpose of automatically monitoring the heat generation.In this case, the thermometer is a thermocouple type thermometer or resistance type thermometer. Etc. are suitable.
【0011】分解筒のガスの出口側は、アンモニアの除
去筒の入口と接続されるが、同時にこの除去筒の入口
は、分解筒へのアンモニアガスの供給管ともバイパス管
によって直接に接続される。除去筒はガス中のアンモニ
アを確実に除去できるものであれば乾式、湿式のいずれ
でもよいが、構造が簡単で装置全体をコンパクトに製作
できることなどから乾式の除去筒が一般的に好ましい。
乾式の除去剤としてはアンモニアガスを効率よく除去し
うるものであればその種類には特に制限はないが、活性
炭または無機質の担体に銅(II)塩などを担持させた
ものなどが好ましく、例えば、椰子殻炭、木炭などの活
性炭100重量部当たりに硫酸銅を5水和物として3〜
80重量部担持させたもの、また、例えば、アルミナ、
シリカ、シリカアルミナ、ジルコニアなどの通常の触媒
担体または酸化銅、酸化マンガンなどの重金属酸化物を
担体とし、これに銅(II)塩として炭酸塩、硝酸塩、
硫酸塩、塩酸塩、蟻酸塩、酢酸塩、蓚酸塩などの無機お
よび有機塩類が上記のような担体100重量部に対し、
3〜80重量部担持されたものなどが好適である。除去
筒における処理温度は通常は常温であり、特に、加熱や
冷却は必要としない。The gas outlet side of the decomposition tube is connected to the inlet of the ammonia removal tube, and at the same time, the inlet of this removal tube is also directly connected to the ammonia gas supply pipe to the decomposition pipe by a bypass pipe. . The removal column may be either dry type or wet type as long as it can surely remove ammonia in the gas, but a dry type removal column is generally preferable because of its simple structure and compact manufacturing of the entire apparatus.
The dry type removing agent is not particularly limited as long as it can remove ammonia gas efficiently, but activated carbon or an inorganic carrier carrying a copper (II) salt or the like is preferable, for example, , Copper sulfate as pentahydrate per 100 parts by weight of activated carbon such as palm shell charcoal and charcoal.
80 parts by weight, or, for example, alumina,
Ordinary catalyst carriers such as silica, silica-alumina and zirconia or heavy metal oxides such as copper oxide and manganese oxide are used as carriers, on which carbonates and nitrates as copper (II) salts,
Inorganic and organic salts such as sulfate, hydrochloride, formate, acetate and oxalate are added to 100 parts by weight of the above carrier.
Those supported in an amount of 3 to 80 parts by weight are preferable. The treatment temperature in the removal tube is usually room temperature, and heating or cooling is not particularly required.
【0012】アンモニア分解装置の正常運転時にはアン
モニアの分解筒から出た分解ガスがこの除去筒に導か
れ、ガス中に残存する未分解のアンモニアが除去され
る。一方、分解筒に供給されるアンモニアガス中に何ら
かの原因で酸素が混入し、酸素と触媒との反応による発
熱が検知されたときには、アンモニアガスの分解筒への
供給が停止されると同時にバイパス管に切り換えられて
直接に除去筒に導かれ、ここで除去剤によってアンモニ
アが除去されるので、分解ガス中への酸素混入による危
険性が排除され、かつ、有害ガスの大気への放出が防止
される。上記のような乾式の除去剤が充填された除去筒
を用いる場合には、特に加熱や冷却は必要とせず、分解
筒から出る分解ガス中の残存アンモニアは勿論、酸素混
入による異常時に分解筒を通らずに直接導かれるアンモ
ニアについても所定の時間内はそのまま除去することが
可能である。During normal operation of the ammonia decomposing device, the decomposed gas discharged from the ammonia decomposing cylinder is guided to the removing cylinder, and the undecomposed ammonia remaining in the gas is removed. On the other hand, when oxygen is mixed in the ammonia gas supplied to the decomposition tube for some reason and heat generation due to the reaction between oxygen and the catalyst is detected, the supply of ammonia gas to the decomposition tube is stopped and the bypass pipe The ammonia is removed by the scavenger, and the danger of oxygen contamination in the decomposition gas is eliminated, and the emission of harmful gas to the atmosphere is prevented. It When using the removal cylinder filled with the dry type removing agent as described above, heating or cooling is not particularly required, and the decomposition cylinder is not only used in the residual ammonia in the decomposition gas discharged from the decomposition cylinder, but also in the case of an abnormality due to oxygen mixture. Ammonia that is directly led without passing through can be removed as it is within a predetermined time.
【0013】[0013]
【実施例】本発明の装置を図面によって例示し、さらに
具体的に説明する。図1は本発明のアンモニア分解装置
のフローシートである。図1において、ガスの入口1お
よび出口2を有し、外部にヒーター3が配設された円筒
形の筒の内部に、アンモニア分解用の触媒として上流側
に発熱性触媒4が、下流側に非発熱触媒5がそれぞれ充
填され、発熱性触媒4の充填部には温度計6が挿入さ
れ、温度計6には警報器7が接続されてアンモニアの分
解筒8とされ、分解筒8の入口1はバルブ9を介してア
ンモニアガスの供給管10と接続され、一方、出口2は
バルブ11の介在する連絡管12によってアンモニアの
除去剤13が充填された除去筒14の入口15と接続さ
れ、さらに、入口15はアンモニアガスの供給管10と
バイパス管16によって接続され、バイパス管16の途
中にはバルブ17が設けられ、全体として本発明のアン
モニア分解装置を形成している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus of the present invention is illustrated in the drawings and will be described more specifically. FIG. 1 is a flow sheet of the ammonia decomposing apparatus of the present invention. In FIG. 1, an exothermic catalyst 4 is provided on the upstream side as a catalyst for decomposing ammonia, and an exothermic catalyst 4 is provided on the downstream side inside a cylindrical tube having a gas inlet 1 and an outlet 2 and a heater 3 disposed outside. The non-exothermic catalyst 5 is filled in each, the thermometer 6 is inserted in the filled portion of the exothermic catalyst 4, the alarm device 7 is connected to the thermometer 6 to form the ammonia decomposition tube 8, and the inlet of the decomposition tube 8 1 is connected to an ammonia gas supply pipe 10 via a valve 9, while the outlet 2 is connected to an inlet 15 of a removing cylinder 14 filled with an ammonia removing agent 13 by a connecting pipe 12 in which a valve 11 is interposed, Further, the inlet 15 is connected to the ammonia gas supply pipe 10 by a bypass pipe 16, and a valve 17 is provided in the middle of the bypass pipe 16 to form the ammonia decomposing apparatus of the present invention as a whole.
【0014】アンモニア分解装置の運転はヒーター3に
よって分解筒8を所定の温度に加熱した状態でおこなわ
れる。例えば、半導体製造工程などから排出されるアン
モニア含有排ガスが供給管10、バルブ9、ガスの入口
1を経て分解筒8に入り、先ず、上流側に充填された発
熱性触媒4、続いて非発熱触媒5と接触するすることに
より、アンモニアの大部分は窒素と水素に分解される。
続いて、この分解ガスは出口2からバルブ11の介在す
る連絡管12および入口15を経て除去筒14に入り、
除去剤13と接触する間に分解ガス中に残存する未分解
のアンモニアが確実に除去され、無害化されて外部に排
出される。The ammonia decomposing device is operated while the decomposition tube 8 is heated to a predetermined temperature by the heater 3. For example, an ammonia-containing exhaust gas discharged from a semiconductor manufacturing process or the like enters a decomposition tube 8 via a supply pipe 10, a valve 9 and a gas inlet 1, and first, an exothermic catalyst 4 charged upstream and then non-heat generation. By coming into contact with the catalyst 5, most of the ammonia is decomposed into nitrogen and hydrogen.
Subsequently, this decomposed gas enters the removing cylinder 14 from the outlet 2 via the connecting pipe 12 and the inlet 15 in which the valve 11 is interposed,
While in contact with the remover 13, undecomposed ammonia remaining in the decomposed gas is surely removed, detoxified and discharged to the outside.
【0015】半導体製造工程における条件変動、その他
の異常原因により、アンモニアガス中に酸素が混入した
場合には、分解筒8に入ったガス中の酸素はニッケルな
どの発熱性触媒4と反応して捕捉されると同時に発熱を
生ずる。この発熱は温度計6によって検知され、警報器
7に伝達される。ここで分解筒8の入口のバルブ9およ
び連絡管12のバルブ11が閉じられ、バイパス管16
のバルブ17が開かれ、アンモニアガスは供給管10か
らバイパス管16を経て直接に除去筒14に導かれ、除
去剤13と接触してアンモニアが除去され、浄化されて
外部に排出される。上記のような装置において、警報器
7および各切替えバルブを連動させ、酸素の混入による
ガスの切替えを自動的におこないうることは勿論であ
る。When oxygen is mixed in the ammonia gas due to fluctuations in conditions in the semiconductor manufacturing process and other abnormal causes, the oxygen in the gas entering the decomposition tube 8 reacts with the exothermic catalyst 4 such as nickel. At the same time as being trapped, heat is generated. This heat generation is detected by the thermometer 6 and transmitted to the alarm device 7. Here, the valve 9 at the inlet of the disassembling cylinder 8 and the valve 11 of the connecting pipe 12 are closed, and the bypass pipe 16
The valve 17 is opened, and the ammonia gas is introduced from the supply pipe 10 through the bypass pipe 16 directly to the removal cylinder 14, where it comes into contact with the removal agent 13 to remove ammonia, and is purified and discharged to the outside. In the above-mentioned device, it goes without saying that the alarm device 7 and each switching valve can be interlocked to automatically switch gases by mixing oxygen.
【0016】本発明において、処理対象となるアンモニ
アガスにアンモニア以外の有害成分が含まれるような場
合には、そのまま分解筒に導いてもよいが、できれば事
前に有害成分を除去することが一般的に好ましい。例え
ば、アンモニアガスが半導体製造工程から排出される排
ガスであり、有害成分としてシランを含むような場合に
は、分解筒の上流側にシラン類の除去剤として酸化銅、
ソーダライムなどが充填された除害筒を設け、アンモニ
アガスをこの除害筒に通してシランを除去してからアン
モニアの分解筒に導くことが望ましい。In the present invention, when the ammonia gas to be treated contains harmful components other than ammonia, it may be directly introduced into the decomposition tube, but if possible, it is common to remove the harmful components in advance. Is preferred. For example, when ammonia gas is an exhaust gas discharged from a semiconductor manufacturing process and contains silane as a harmful component, copper oxide is used as a silane removing agent on the upstream side of the decomposition tube.
It is desirable to provide a detoxifying cylinder filled with soda lime or the like, pass ammonia gas through the detoxifying cylinder to remove silane, and then introduce the ammonia decomposing tube.
【0017】[0017]
【発明の効果】本発明の装置は下記のような優れた特徴
を有している。 アンモニアが効率よく分解されるとともに残存する
未分解のアンモニアは除去筒で確実に除去される。 酸素と接触して発熱するアンモニア分解触媒が使用
されるので、異常時などの酸素の混入を発熱によって的
確に検知することができる。 酸素の混入時にはアンモニアガスの分解筒への供給
は停止され、加熱することなくそのまま除去筒に導かれ
るので着火の危険性がなく安全で、しかも、アンモニア
は除去剤で除去されるので環境を汚染することがない。 酸素の検知に複雑で高価な分析計などを必要とせ
ず、装置全体の構造が簡単でコンパクトとなり、例えば
半導体製造工場のクリーンルーム内などの限られた空間
への設置も可能である。The device of the present invention has the following excellent features. Ammonia is efficiently decomposed and the remaining undecomposed ammonia is surely removed by the removing cylinder. Since the ammonia decomposition catalyst that generates heat by contacting with oxygen is used, it is possible to accurately detect the mixing of oxygen when an abnormality occurs due to heat generation. When oxygen is mixed, the supply of ammonia gas to the decomposition tube is stopped, and it is guided to the removal tube without heating, so there is no danger of ignition and it is safe, and ammonia is removed by the remover, which pollutes the environment. There is nothing to do. Oxygen detection does not require a complicated and expensive analyzer, the structure of the entire device is simple and compact, and it can be installed in a limited space such as a clean room of a semiconductor manufacturing factory.
【0018】[0018]
【図1】 アンモニア分解装置のフローシート。FIG. 1 is a flow sheet of an ammonia decomposing device.
1、15 入口 2 出口 3 ヒーター 4 発熱性触媒 5 非発熱触媒 6 温度計 7 警報器 8 分解筒 9、11、17 バルブ 10 供給管 12 連絡管 13 除去剤 14 除去筒 16 バイパス管 1, 15 Inlet 2 Outlet 3 Heater 4 Exothermic catalyst 5 Non-exothermic catalyst 6 Thermometer 7 Alarm device 8 Decomposition cylinder 9, 11, 17 Valve 10 Supply pipe 12 Communication pipe 13 Remover 14 Removal pipe 16 Bypass pipe
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/46 M 23/755 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01J 23/46 M 23/755
Claims (8)
解筒であってアンモニア分解用の触媒が充填され、か
つ、ヒーターが配設された分解筒と、該分解筒の出口側
と接続されたアンモニアの除去筒と、前記アンモニアガ
スの供給管から分岐し、除去筒と接続されたバイパス管
とを備えてなり、前記アンモニア分解用の触媒のうち、
少なくともガスの上流側には酸素の存在によって発熱を
生ずる触媒が充填され、かつ、該触媒の充填部に発熱検
知用の温度計が取り付けられたことを特徴とするアンモ
ニア分解装置。1. A decomposition tube connected to an ammonia gas supply pipe, which is filled with a catalyst for ammonia decomposition and which is connected with a heater, and is connected to an outlet side of the decomposition tube. Of the catalyst for ammonia decomposition, an ammonia removing cylinder and a bypass pipe branched from the ammonia gas supply pipe and connected to the removing cylinder are provided.
An ammonia decomposing apparatus characterized in that at least an upstream side of the gas is filled with a catalyst that generates heat due to the presence of oxygen, and a thermometer for detecting heat generation is attached to a filling portion of the catalyst.
発熱する触媒、下流側に非発熱性の触媒が充填された請
求項1に記載の分解装置。2. The decomposition apparatus according to claim 1, wherein the upstream side of the decomposition cylinder is filled with a catalyst that generates heat due to the presence of oxygen, and the downstream side is filled with a non-exothermic catalyst.
ケル系の触媒である請求項2に記載の分解装置。3. The decomposition apparatus according to claim 2, wherein the catalyst that generates heat due to the presence of oxygen is a nickel-based catalyst.
はルテニウム系の触媒である請求項2に記載の分解装
置。4. The decomposition apparatus according to claim 2, wherein the non-exothermic catalyst is a platinum, palladium or ruthenium-based catalyst.
た請求項1に記載の分解装置。5. The decomposition apparatus according to claim 1, wherein an alarm device is connected to a thermometer for detecting heat generation.
填された乾式の除去筒である請求項1に記載の分解装
置。6. The decomposition apparatus according to claim 1, wherein the ammonia removing cylinder is a dry-type removing cylinder having a removing agent filled therein.
(II)塩を担持したものである請求項6に記載の分解
装置。7. The decomposition apparatus according to claim 6, wherein the removing agent is an inorganic carrier or activated carbon supporting a copper (II) salt.
出されるアンモニア含有排ガスである請求項1に記載の
分解装置。8. The decomposition apparatus according to claim 1, wherein the ammonia gas is an ammonia-containing exhaust gas discharged from a semiconductor manufacturing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22410394A JP3532256B2 (en) | 1994-08-25 | 1994-08-25 | Ammonia decomposition equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22410394A JP3532256B2 (en) | 1994-08-25 | 1994-08-25 | Ammonia decomposition equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0857256A true JPH0857256A (en) | 1996-03-05 |
JP3532256B2 JP3532256B2 (en) | 2004-05-31 |
Family
ID=16808595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22410394A Expired - Fee Related JP3532256B2 (en) | 1994-08-25 | 1994-08-25 | Ammonia decomposition equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3532256B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010215457A (en) * | 2009-03-17 | 2010-09-30 | Nippon Shokubai Co Ltd | Ammonia decomposition apparatus, and ammonia decomposition method using the apparatus |
JP2010264406A (en) * | 2009-05-15 | 2010-11-25 | Japan Pionics Co Ltd | Ammonia decomposition tube |
US20140322124A1 (en) * | 2013-04-26 | 2014-10-30 | Japan Pionics Co., Ltd. | Method of processing discharge gas discharged from production process of gallium nitride compound semiconductor |
-
1994
- 1994-08-25 JP JP22410394A patent/JP3532256B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010215457A (en) * | 2009-03-17 | 2010-09-30 | Nippon Shokubai Co Ltd | Ammonia decomposition apparatus, and ammonia decomposition method using the apparatus |
JP2010264406A (en) * | 2009-05-15 | 2010-11-25 | Japan Pionics Co Ltd | Ammonia decomposition tube |
US20140322124A1 (en) * | 2013-04-26 | 2014-10-30 | Japan Pionics Co., Ltd. | Method of processing discharge gas discharged from production process of gallium nitride compound semiconductor |
US9815707B2 (en) | 2013-04-26 | 2017-11-14 | Japan Pionics Co., Ltd. | Method of processing discharge gas discharged from production process |
Also Published As
Publication number | Publication date |
---|---|
JP3532256B2 (en) | 2004-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4512238B2 (en) | Method for removing nitrogen oxides from a waste gas stream | |
US6331281B1 (en) | Process and apparatus for cleaning exhaust gas | |
KR20020013407A (en) | Removal of nitrogen oxides from gas streams | |
CA2374950C (en) | Method and device for the reduction of nitrogen protoxide | |
KR100318353B1 (en) | How to purify exhaust gas | |
JP3688314B2 (en) | Ammonia decomposition method | |
JP3532256B2 (en) | Ammonia decomposition equipment | |
JPH03106419A (en) | Treatment process for gas containing fluorocarbon and catalyst for decomposing fluorocarbon | |
EP1057518A3 (en) | Gas purification agent, method and device | |
EP1029580B1 (en) | Method for removing nitrogen oxides in exhaust gas | |
JP4635693B2 (en) | Exhaust gas purification method and exhaust gas purification device | |
JP4051277B2 (en) | Hazardous exhaust gas treatment system | |
JP2012030199A (en) | Method for treating gas containing nitrogen oxide | |
JP5918590B2 (en) | Method and apparatus for decomposing dioxins in exhaust gas | |
JP5345441B2 (en) | Method and apparatus for treating gas containing nitrogen oxides | |
JP2579633B2 (en) | Treatment method for waste gas containing carbon monoxide | |
JP7221057B2 (en) | Apparatus and method for treating gas containing nitrogen oxides | |
JP3999941B2 (en) | Method and apparatus for processing gas containing NH3 | |
JPH0686914A (en) | Method and apparatus for removing nitrogen oxide | |
EP0455773A1 (en) | Cold oxidation in gaseous phase | |
JP4028743B2 (en) | Method and apparatus for treating exhaust gas containing nitrogen oxides | |
JPH08215541A (en) | Exhaust gas treating device | |
RU2332251C2 (en) | Method of catalitic oxidation of methanol | |
JPH07116473A (en) | Denitration method | |
JPH07265668A (en) | Treating device for exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040303 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |