JPH0856053A - Forming method of optical thin film and its forming equipment - Google Patents
Forming method of optical thin film and its forming equipmentInfo
- Publication number
- JPH0856053A JPH0856053A JP18808394A JP18808394A JPH0856053A JP H0856053 A JPH0856053 A JP H0856053A JP 18808394 A JP18808394 A JP 18808394A JP 18808394 A JP18808394 A JP 18808394A JP H0856053 A JPH0856053 A JP H0856053A
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- thin film
- optical thin
- forming
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光素子用の光学薄膜の形
成方法に係り、特に、化合物半導体発光素子の光出射面
に形成する光学薄膜の形成方法及び形成装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an optical thin film for an optical device, and more particularly to a method and an apparatus for forming an optical thin film formed on a light emitting surface of a compound semiconductor light emitting device.
【0002】[0002]
【従来の技術】化合物半導体レーザではへき開により作
製した共振器の端面に光学薄膜を形成する。光学薄膜の
役割は各端面における反射率の調整及び端面のパッシベ
ーションである。光学薄膜として、発振波長に対して透
明なSiO2 膜或いはAl2O3膜などの誘電体薄膜をレ
ーザ共振器の端面上に形成する。誘電体膜の形成には高
周波スパッタリング技術がしばしば用いられている。2. Description of the Related Art In a compound semiconductor laser, an optical thin film is formed on the end face of a resonator produced by cleavage. The role of the optical thin film is to adjust the reflectance on each end face and to passivate the end faces. As the optical thin film, a dielectric thin film such as a SiO 2 film or an Al 2 O 3 film which is transparent to the oscillation wavelength is formed on the end face of the laser resonator. A high frequency sputtering technique is often used for forming the dielectric film.
【0003】高周波スパッタリング法により成膜を行う
場合、例えば、ヴイエルエスアイ・テクノロジ(VLSI TE
CHNOLOGY),S.M.Sze編集,McGraw-Hill Book Comp
any,(1983),358頁に記載されているように、
成膜の前処理として試料ステージ側に高周波印加を行い
イオン照射により試料表面の酸化膜の除去を行う。前処
理技術は、半導体層上にスパッタ金属膜を形成して電気
的にコンタクトをとるときに特に重要な技術であり、通
常スパッタ・エッチングと呼ばれる。When the film is formed by the high frequency sputtering method, for example, VLSI technology (VLSI TE) is used.
CHNOLOGY), S.M.Sze editing, McGraw-Hill Book Comp
as described in any, (1983), p. 358,
As a pretreatment for film formation, a high frequency is applied to the sample stage side to remove the oxide film on the sample surface by ion irradiation. The pretreatment technique is a particularly important technique when a sputtered metal film is formed on a semiconductor layer to make electrical contact, and is usually called sputter etching.
【0004】レーザ共振器の端面にSiO2 膜或いはA
l2O3膜などの光学薄膜をスパッタリングにより形成す
る場合にも、端面を構成する化合物半導体の表面酸化膜
を除去することにより表面酸化膜による光吸収が無く、
接着強度の大きい光学薄膜を形成することが可能にな
る。A SiO 2 film or A is formed on the end face of the laser resonator.
Even when an optical thin film such as an l 2 O 3 film is formed by sputtering, there is no light absorption by the surface oxide film by removing the surface oxide film of the compound semiconductor forming the end face,
It becomes possible to form an optical thin film having high adhesive strength.
【0005】[0005]
【発明が解決しようとする課題】上述したように光学薄
膜をスパッタ成膜する前に、スパッタ・エッチング技術
を用いて化合物半導体の表面酸化膜の除去を行うとプラ
ズマ中から飛来するイオン(通常Arイオン)の衝撃に
より化合物半導体表面に所謂プラズマ損傷が生じる。プ
ラズマ損傷領域には非発光センタ等の欠陥による準位が
導入されているためレーザの発光効率低下や素子の劣化
を招くという課題がある。As described above, when the surface oxide film of the compound semiconductor is removed by the sputter etching technique before the optical thin film is formed by sputtering, the ions (usually Ar) So-called plasma damage occurs on the surface of the compound semiconductor due to the impact of ions. Since a level due to a defect such as a non-radiative center is introduced into the plasma damaged region, there is a problem that the emission efficiency of the laser is lowered and the element is deteriorated.
【0006】[0006]
【課題を解決するための手段】第1の真空室に投入され
たレーザ共振器の端面に対して高周波放電により生成し
たHラジカルを照射することによりレーザ共振器の端面
を構成する化合物半導体の表面酸化膜を除去する。試料
を大気に曝すことなく第2の真空室に移動・投入した
後、表面酸化膜を除去したレーザ共振器の端面に対し通
常の高周波スパッタリング技術を用いてSiO2 膜或い
はAl2O3膜などの光学薄膜を所定の厚さだけ形成す
る。A surface of a compound semiconductor forming an end face of a laser resonator by irradiating the end face of the laser resonator placed in a first vacuum chamber with H radicals generated by high frequency discharge. The oxide film is removed. After moving and loading the sample into the second vacuum chamber without exposing it to the atmosphere, the SiO 2 film or Al 2 O 3 film etc. is applied to the end face of the laser resonator from which the surface oxide film has been removed, using the usual high frequency sputtering technique. The optical thin film is formed to a predetermined thickness.
【0007】[0007]
【作用】本発明によれば、高周波放電により生成した低
エネルギのHラジカルの拡散流をレーザ共振器の端面に
照射して化合物半導体の表面酸化膜を除去している為、
化合物半導体表面に欠陥等の損傷を生じることなく表面
酸化膜の除去が可能である。表面酸化膜を除去した試料
を大気に曝さず、引き続きSiO2 膜、或いは、Al2
O3膜をスパッタ成膜している為、表面酸化膜のないレ
ーザ共振器端面に光学薄膜を形成できる。According to the present invention, the surface oxide film of the compound semiconductor is removed by irradiating the end face of the laser resonator with the diffused flow of low energy H radicals generated by the high frequency discharge.
The surface oxide film can be removed without causing damage such as defects on the surface of the compound semiconductor. The sample from which the surface oxide film has been removed is not exposed to the air, and the SiO 2 film or Al 2
Since the O 3 film is formed by sputtering, an optical thin film can be formed on the end facet of the laser resonator without the surface oxide film.
【0008】[0008]
(実施例1)本発明の一実施例を図1に示す工程図及び
図3に示す成膜装置の概略図を用いて説明する。GaA
s層100が露出した試料では通常GaAsの自然酸化
膜が厚さ3〜5nm程度の表面酸化膜101として存在
する(図1(a))。(Embodiment 1) An embodiment of the present invention will be described with reference to the process chart shown in FIG. 1 and the schematic view of a film forming apparatus shown in FIG. GaA
In the sample in which the s layer 100 is exposed, a natural oxide film of GaAs is usually present as the surface oxide film 101 having a thickness of 3 to 5 nm (FIG. 1A).
【0009】上記のような試料を図3に示す成膜装置の
前処理チャンバに投入する。前処理チャンバの真空度は
1E−4〜1E−6torr以下の高真空に保持してある。
次いでH2 ガス10sccmを流量制御してラジカル発生源
を経由して前処理チャンバに流す。その後、rf高周波
電源及びrf印加切換えスイッチを用いて所定時間ラジ
カル発生源にrf高周波を印加する。この間、ラジカル
発生源でH2 からHラジカルが生成され、前処理チャン
バの試料表面にHラジカルが照射される。Hラジカル照
射処理によりGaAs層100上の表面酸化膜101は
除去される(図1(b))。The sample as described above is put into the pretreatment chamber of the film forming apparatus shown in FIG. The degree of vacuum of the pretreatment chamber is maintained at a high vacuum of 1E-4 to 1E-6 torr or less.
Then, 10 sccm of H 2 gas is flow controlled to flow into the pretreatment chamber via the radical generation source. After that, the rf high frequency power supply and the rf application changeover switch are used to apply the rf high frequency to the radical generation source for a predetermined time. During this time, H 2 radicals are generated from H 2 by the radical generation source, and the surface of the sample in the pretreatment chamber is irradiated with H radicals. The surface oxide film 101 on the GaAs layer 100 is removed by the H radical irradiation treatment (FIG. 1B).
【0010】その後、試料を図3に示すスパッタチャン
バにゲートバルブ等を介して移動・投入する。スパッタ
チャンバに一定量のArガスを導入した後、rf高周波
電源及びrf印加切換えスイッチを用いてSiO2 より
なるスパッタ・ターゲットにrf高周波を印加すること
によりスパッタ成膜を行い、GaAs層100上にSi
O2 膜102を堆積する(図1(c))。After that, the sample is moved and put into the sputtering chamber shown in FIG. 3 through a gate valve or the like. After introducing a certain amount of Ar gas into the sputtering chamber, an rf high frequency power source and an rf application changeover switch are used to apply an rf high frequency to a sputtering target made of SiO 2 to perform sputter film formation, and form a film on the GaAs layer 100. Si
An O 2 film 102 is deposited (FIG. 1 (c)).
【0011】本実施例では、1台のrf高周波電源とr
f印加切換えスイッチを用いてラジカル発生源及びスパ
ッタ・ターゲットへの高周波印加を行っている。これに
より成膜装置の小型化・簡略化が図られている。ラジカ
ル発生源及びスパッタ・ターゲット用に各々別個にrf
高周波電源を備えることが可能である。In this embodiment, one rf high frequency power source and r
High frequency application is performed to the radical generation source and the sputter target using the f application switch. As a result, the film forming apparatus is downsized and simplified. Separate rf for radical source and sputter target
It is possible to provide a high frequency power supply.
【0012】また、本実施例では前処理チャンバとスパ
ッタチャンバがゲートバルブで仕切られているが、同一
チャンバ内で場所を換えることにより、前処理とスパッ
タ成膜が行えるようにすることも可能である。Further, in the present embodiment, the pretreatment chamber and the sputter chamber are partitioned by the gate valve, but it is also possible to perform the pretreatment and the sputter film formation by changing the locations in the same chamber. is there.
【0013】また、前処理チャンバ及びスパッタチャン
バ内のステージに加熱機構を設けることにより、Hラジ
カル照射処理効率の改善及びスパッタ膜の膜質改善を図
ることも可能である。It is also possible to improve the efficiency of H radical irradiation treatment and the quality of the sputtered film by providing a heating mechanism in the stages in the pretreatment chamber and the sputtering chamber.
【0014】また、本実施例では光学薄膜としてSiO
2膜102を堆積した例について記載したが、他の誘電
体膜、例えば、Al2O3,TiO2,MgO,Si
3N4,アモルファスSi膜及び誘電体膜を含む多層膜を
堆積する場合についても本発明は有効である。In this embodiment, SiO is used as the optical thin film.
Although the example in which the 2 film 102 is deposited is described, other dielectric films such as Al 2 O 3 , TiO 2 , MgO and Si are used.
The present invention is also effective when a multilayer film including 3 N 4 , an amorphous Si film, and a dielectric film is deposited.
【0015】また、本実施例ではGaAs層100上に
光学薄膜を堆積した例について記載したが、他の化合物
半導体例えばInP,InGaAs等でも本発明は有効
である。In this embodiment, an example in which an optical thin film is deposited on the GaAs layer 100 has been described, but the present invention is also effective for other compound semiconductors such as InP and InGaAs.
【0016】(実施例2)本発明の一実施例を図2に示
す工程図及び図3に示す成膜装置のブロック図を用いて
説明する。GaAs層200及びAlGaAs層201
の積層構造の側面が露出した試料では通常GaAs及び
AlGaAsの自然酸化膜が厚さ3〜5nm程度の表面
酸化膜202として存在する(図2(a))。(Embodiment 2) An embodiment of the present invention will be described with reference to the process diagram shown in FIG. 2 and the block diagram of the film forming apparatus shown in FIG. GaAs layer 200 and AlGaAs layer 201
In the sample in which the side surface of the laminated structure is exposed, a natural oxide film of GaAs and AlGaAs is usually present as the surface oxide film 202 having a thickness of about 3 to 5 nm (FIG. 2A).
【0017】上記のような試料を図3に示す成膜装置の
前処理チャンバに投入する。前処理チャンバの真空度は
1E−4〜1E−6torr以下の高真空に保持してある。
次いでH2 ガス10sccmを流量制御してラジカル発生源
を経由して前処理チャンバに流す。その後、rf高周波
電源及びrf印加切換えスイッチを用いてラジカル発生
源にrf高周波を印加する。この間、ラジカル発生源で
H2 からHラジカルが生成され、前処理チャンバの試料
表面にHラジカルが照射される。Hラジカル照射処理に
よりGaAs層200及びAlGaAs層201上の表
面酸化膜202は除去される(図2(b))。The above sample is put into the pretreatment chamber of the film forming apparatus shown in FIG. The degree of vacuum of the pretreatment chamber is maintained at a high vacuum of 1E-4 to 1E-6 torr or less.
Then, 10 sccm of H 2 gas is flow controlled to flow into the pretreatment chamber via the radical generation source. After that, the rf high frequency is applied to the radical generation source using the rf high frequency power supply and the rf application changeover switch. During this time, H 2 radicals are generated from H 2 by the radical generation source, and the surface of the sample in the pretreatment chamber is irradiated with H radicals. The surface oxide film 202 on the GaAs layer 200 and the AlGaAs layer 201 is removed by the H radical irradiation treatment (FIG. 2B).
【0018】続いて、Cl2ガスを1sccm,F2ガスを4
sccm各々流量制御してラジカル発生源を経由して前処理
チャンバに流す。これによりGaAs層200のエッチ
ングが選択的に進行してGaAs層200及びAlGa
As層201の積層構造の側面に凹部203が形成され
る(図2(c))。Subsequently, Cl 2 gas was added at 1 sccm and F 2 gas was added at 4 sccm.
The flow rate of each sccm is controlled to flow into the pretreatment chamber via the radical generation source. As a result, the GaAs layer 200 is selectively etched, and the GaAs layer 200 and the AlGa layer 200 are etched.
A recess 203 is formed on the side surface of the laminated structure of the As layer 201 (FIG. 2C).
【0019】その後、試料を図3に示すスパッタチャン
バにゲートバルブ等を介して移動・投入する。スパッタ
チャンバに一定量のArガスを導入した後、rf高周波
電源及びrf印加切換えスイッチを用いてSiO2 より
なるスパッタ・ターゲットにrf高周波を印加すること
によりスパッタ成膜を行い、GaAs層200及びAl
GaAs層201の積層構造の側面上にSiO2 膜20
4を堆積する(図2(d))。After that, the sample is moved and put into the sputtering chamber shown in FIG. 3 through a gate valve or the like. After introducing a certain amount of Ar gas into the sputtering chamber, an rf high frequency power source and an rf application changeover switch are used to apply an rf high frequency to a sputtering target made of SiO 2 to form a film by sputtering.
The SiO 2 film 20 is formed on the side surface of the laminated structure of the GaAs layer 201.
4 is deposited (FIG. 2 (d)).
【0020】本実施例ではGaAs層200及びAlG
aAs層201の積層構造の側面上の表面酸化膜202
を除去した後、GaAs層200を選択的にエッチング
して凹部203を形成している。このような積層構造側
面の選択的な凹部形成により素子の放熱効果促進或いは
素子構造の細線化が可能となる。In this embodiment, the GaAs layer 200 and AlG are used.
Surface oxide film 202 on the side surface of the laminated structure of aAs layer 201
Then, the GaAs layer 200 is selectively etched to form the recess 203. By selectively forming the concave portions on the side surfaces of the laminated structure, it is possible to accelerate the heat radiation effect of the element or to thin the element structure.
【0021】本実施例ではGaAs層200とAlGa
As層201の積層構造に対して適用した例を挙げた
が、他のヘテロ構造を有する材料系に対してもエッチン
グガス・条件を検討することで適用が可能である。In this embodiment, the GaAs layer 200 and AlGa are used.
Although the example applied to the laminated structure of the As layer 201 was given, it can be applied to other material systems having a heterostructure by examining the etching gas and conditions.
【0022】[0022]
【発明の効果】本発明を用いれば、表面酸化膜及びスパ
ッタ・エッチングによる表面損傷のない化合物半導体層
上に光学薄膜をスパッタ成膜することが可能になる。こ
れにより、発光効率が高く信頼性の優れた光デバイスを
作製できる。According to the present invention, an optical thin film can be sputter-deposited on a surface oxide film and a compound semiconductor layer without surface damage due to sputter etching. As a result, an optical device having high luminous efficiency and excellent reliability can be manufactured.
【図1】本発明の実施例1の工程図。FIG. 1 is a process diagram of a first embodiment of the present invention.
【図2】本発明の実施例2の工程図。FIG. 2 is a process diagram of a second embodiment of the present invention.
【図3】成膜装置のブロック図。FIG. 3 is a block diagram of a film forming apparatus.
100…GaAs層、101…表面酸化膜、102…S
iO2膜。100 ... GaAs layer, 101 ... Surface oxide film, 102 ... S
iO 2 film.
Claims (8)
合物半導体の側面に光学薄膜を形成する工程が、前記化
合物半導体層或いは前記積層構造の前記化合物半導体側
面の表面酸化膜を除去する工程、及び前記表面酸化膜を
除去した前記化合物半導体層或いは前記化合物半導体側
面上に光学薄膜をスパッタ法により堆積する工程を含む
ことを特徴とする光学薄膜の形成方法。1. A step of forming an optical thin film on a surface of a compound semiconductor layer or a side surface of a compound semiconductor having a laminated structure, a step of removing a surface oxide film on the compound semiconductor layer or a compound semiconductor side surface of the laminated structure, A method for forming an optical thin film, comprising a step of depositing an optical thin film on the compound semiconductor layer or the side surface of the compound semiconductor from which the surface oxide film has been removed by a sputtering method.
表面或いは積層構造の前記化合物半導体側面の前記表面
酸化膜を除去する工程が、前記化合物半導体層の表面或
いは積層構造の前記化合物半導体側面に高周波放電によ
り生成したラジカルを照射することにより前記表面酸化
膜を除去する工程を含む光学薄膜の形成方法。2. The method according to claim 1, wherein the step of removing the surface oxide film on the surface of the compound semiconductor layer or on the compound semiconductor side surface of the laminated structure is performed on the surface of the compound semiconductor layer or the compound semiconductor side surface of the laminated structure. A method for forming an optical thin film, comprising a step of removing the surface oxide film by irradiating radicals generated by high frequency discharge.
生成したラジカルが水素ラジカルを含む光学薄膜の形成
方法。3. The method for forming an optical thin film according to claim 2, wherein the radicals generated by the high frequency discharge include hydrogen radicals.
生成したラジカルがハロゲン元素のラジカルを含む光学
薄膜の形成方法。4. The method for forming an optical thin film according to claim 2, wherein the radicals generated by the high frequency discharge include a radical of a halogen element.
半導体側面が第1の化合物半導体と第2の化合物半導体
層とを含み、前記高周波放電に生成したラジカルを照射
することにより前記第1の化合物半導体の側面を前記第
2の化合物半導体の側面より凹ませる工程を含む光学薄
膜の形成方法。5. The compound semiconductor side surface of the stack structure according to claim 2, wherein the compound semiconductor side surface includes a first compound semiconductor and a second compound semiconductor layer, and the first high-frequency discharge is irradiated with radicals to generate the first compound semiconductor. A method for forming an optical thin film, comprising the step of recessing a side surface of a compound semiconductor from a side surface of the second compound semiconductor.
表面或いは積層構造の前記化合物半導体の側面に高周波
放電により生成したラジカルを照射するための処理室及
びスパッタ法により前記化合物半導体層の表面或いは前
記化合物半導体の側面上に光学薄膜を堆積するための処
理室が同一真空室内に配されている光学薄膜の形成装
置。6. The treatment chamber for irradiating the surface of the compound semiconductor layer or the side surface of the compound semiconductor having a laminated structure with radicals generated by high-frequency discharge, and the surface of the compound semiconductor layer by a sputtering method according to claim 2. An apparatus for forming an optical thin film, wherein a processing chamber for depositing an optical thin film on a side surface of the compound semiconductor is arranged in the same vacuum chamber.
表面或いは積層構造の前記化合物半導体の側面に高周波
放電により生成したラジカルを照射するための処理室及
び前記化合物半導体層の表面或いは前記化合物半導体の
側面上に光学薄膜をスパッタ法により堆積するための処
理室がゲート・バルブを介して真空内で分離して配され
ている光学薄膜の形成装置。7. The processing chamber for irradiating the surface of the compound semiconductor layer or the side surface of the compound semiconductor having a laminated structure with radicals generated by high-frequency discharge, and the surface of the compound semiconductor layer or the compound semiconductor according to claim 2. An apparatus for forming an optical thin film, in which a processing chamber for depositing an optical thin film on the side surface of the is separated and arranged in a vacuum through a gate valve.
を生成するための高周波電源とスパッタ成膜を行うため
の高周波電源が兼用である光学薄膜の形成装置。8. The optical thin film forming apparatus according to claim 6, wherein the high frequency power source for generating the radicals and the high frequency power source for performing the sputtering film formation are combined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18808394A JPH0856053A (en) | 1994-08-10 | 1994-08-10 | Forming method of optical thin film and its forming equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18808394A JPH0856053A (en) | 1994-08-10 | 1994-08-10 | Forming method of optical thin film and its forming equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0856053A true JPH0856053A (en) | 1996-02-27 |
Family
ID=16217409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18808394A Pending JPH0856053A (en) | 1994-08-10 | 1994-08-10 | Forming method of optical thin film and its forming equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0856053A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017115792A1 (en) * | 2015-12-28 | 2017-07-06 | 古河電気工業株式会社 | Method for manufacturing semiconductor laser element |
-
1994
- 1994-08-10 JP JP18808394A patent/JPH0856053A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017115792A1 (en) * | 2015-12-28 | 2017-07-06 | 古河電気工業株式会社 | Method for manufacturing semiconductor laser element |
JPWO2017115792A1 (en) * | 2015-12-28 | 2018-10-25 | 古河電気工業株式会社 | Manufacturing method of semiconductor laser device |
US10608407B2 (en) | 2015-12-28 | 2020-03-31 | Furukawa Electric Co., Ltd. | Method of manufacturing semiconductor laser element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005079406A (en) | Manufacturing method of semiconductor laser | |
US5145554A (en) | Method of anisotropic dry etching of thin film semiconductors | |
JP4275405B2 (en) | Manufacturing method of semiconductor laser device | |
US7691653B2 (en) | Nitride semiconductor laser element and method for manufacturing the same | |
CN100431229C (en) | Nitride semiconductor laser element and method for manufacturing the same | |
JP4776514B2 (en) | Nitride semiconductor laser device | |
JP4671849B2 (en) | Manufacturing method of nitride semiconductor laser device | |
US5741431A (en) | Laser assisted cryoetching | |
JPH0856053A (en) | Forming method of optical thin film and its forming equipment | |
US5133830A (en) | Method of pretreatment and anisotropic dry etching of thin film semiconductors | |
US5236537A (en) | Plasma etching apparatus | |
JP2000164969A (en) | Manufacture of semiconductor laser | |
US5194119A (en) | Method of anisotropic dry etching of thin film semiconductors | |
CN112838470A (en) | Nitrogen plasma cleaning method for cavity surface of GaAs-based high-power semiconductor laser | |
JPH0955365A (en) | Surface cleaning method of semiconductor substrate | |
JP3407911B2 (en) | Manufacturing method of high yield strength film for laser | |
JPH09326531A (en) | Semiconductor laser and manufacture thereof | |
RU2814419C1 (en) | METHOD FOR PASSIVATING GaAs LASERS BY ELECTRON-BEAM EVAPORATION WITH ION ASSISTANCE | |
JP2883918B2 (en) | Compound semiconductor pattern formation method | |
JP2006013058A (en) | Dry etching device | |
JP2000150504A (en) | Method and device for forming thin film | |
JPH06116708A (en) | Method and apparatus for production of film for laser | |
JPH02221904A (en) | Formation of clad film of three-dimensional optical waveguide | |
JPH03285327A (en) | Vapor growth device | |
JP2006210474A (en) | Manufacturing method of semiconductor laser element |