JPH085598A - Corrosion rate meter - Google Patents

Corrosion rate meter

Info

Publication number
JPH085598A
JPH085598A JP13738094A JP13738094A JPH085598A JP H085598 A JPH085598 A JP H085598A JP 13738094 A JP13738094 A JP 13738094A JP 13738094 A JP13738094 A JP 13738094A JP H085598 A JPH085598 A JP H085598A
Authority
JP
Japan
Prior art keywords
electrode
resistance
voltage
sample
sample electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13738094A
Other languages
Japanese (ja)
Inventor
Toshihiko Sasaki
俊彦 佐々木
Keisuke Sumiyoshi
啓介 住吉
Tokuo Takahashi
徳夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP13738094A priority Critical patent/JPH085598A/en
Publication of JPH085598A publication Critical patent/JPH085598A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize easy and inexpensive measurement of corrosion rate by feeding high and low frequency driving signals, while time sharing, between a sample electrode and a pair electrode and then operating a pure polarization resistance based on the difference of measured resistance. CONSTITUTION:When a low frequency driving signal of 0.1-0.01Hz is applied between a sample electrode 1 and a pair electrode 2 from a driving signal source 3, effect of an interface capacitor C is negligible and only the sample electrode 1 and resistances RD+RW (RD represents the polarization resistance and RW represents the solution resistance) exist apparently. When a high frequency driving signal of 10Hz-10kHz is applied between the electrodes 1 and 2, the resistance RD is bypassed by the capacitor C and only the resistance RW exists apparently between the electrodes 1, 2. When low and high frequency driving signals are applied alternately, while sharing the time, and the resistance RW is subtracted from the obtained resistance RD+RW through an operating unit 4, only the pure polarization resistance RD can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄パイプなどの腐蝕
速度を計測する腐蝕速度計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion rate meter for measuring the corrosion rate of iron pipes and the like.

【0002】[0002]

【従来の技術】ビルやプラントの冷却システムにおい
て、冷却水を循環させるパイプとしては、鉄パイプを使
用することが多く、カルシウムなどの水アカ,藻の発
生,微生物の分泌物や泥などが詰まることにより冷却効
果が低下するほか、これらが原因で腐蝕が発生する。そ
して、この鉄パイプの腐蝕による寿命は、ビルやプラン
ト自身の寿命に大きく影響するため、鉄パイプの腐蝕の
進行性を知ることが重要である。
2. Description of the Related Art In a cooling system of a building or a plant, an iron pipe is often used as a pipe for circulating cooling water, and water stains such as calcium, generation of algae, secretion of microorganisms and mud are clogged. This lowers the cooling effect and causes corrosion due to these factors. Since the life of the iron pipe due to corrosion greatly affects the life of the building or plant itself, it is important to know the progress of corrosion of the iron pipe.

【0003】そして、この腐蝕速度を測定する方法とし
ては、JIS K0100に次の3つの方法が規定され
ている。
As a method for measuring the corrosion rate, the following three methods are specified in JIS K0100.

【0004】直流定電流法:これは試料極とこの試料極
に対して一定の間隔をおいて配置され、かつこれと対と
なって分極抵抗測定に用いられる対極との間に直流定電
圧装置より、図10(a)に示すような微小の直流の一
定電流を流し、図10(b)に示すような電圧計の指示
値の変化を追跡し、電圧がほぼ定常になった時、その電
圧を読み、電流を切ることによりなされる。そして、通
電直前の電圧と電流切断直前の電圧との差を電流値で除
して分極抵抗を求める。
DC constant current method: This is a DC constant voltage device between a sample electrode and a counter electrode which is arranged at a constant interval with respect to this sample electrode and which is paired with this and is used for polarization resistance measurement. As a result, a minute DC constant current as shown in FIG. 10 (a) is passed, the change in the indicated value of the voltmeter as shown in FIG. 10 (b) is tracked, and when the voltage becomes almost steady, the This is done by reading the voltage and turning off the current. Then, the polarization resistance is obtained by dividing the difference between the voltage immediately before energization and the voltage immediately before the current disconnection by the current value.

【0005】交流定電流法:これは試料極と対極の間に
交流定電流装置から、図11(a)に示すような低周波
交流の微小の一定電流を流し、図11(b)に示すよう
な電圧計および電流計の指示値の変化を追跡する。そし
て電圧のピーク・ピーク値を電流のピーク・ピーク値で
除して分極抵抗を求める。
AC constant current method: In this method, a small constant current of low frequency AC as shown in FIG. 11 (a) is made to flow from an AC constant current device between a sample electrode and a counter electrode, and shown in FIG. 11 (b). Track changes in voltmeter and ammeter readings. Then, the polarization resistance is obtained by dividing the voltage peak-peak value by the current peak-peak value.

【0006】交流定電圧法:これは試料極と対極の間に
交流定電圧装置より、図12(a),(b)に示すよう
な低周波交流の微小電圧を印加し、電圧計および電流計
の指示値を追跡する。そして、電圧のピーク・ピーク値
を電流の最終のピーク・ピーク値で除して分極抵抗を求
める。なお、交流では、直流を用いた場合に電極付近で
の電気分解により腐蝕抵抗測定が次第にできなくなる欠
点を、回避できる。
AC constant voltage method: This is a method in which a low frequency AC minute voltage as shown in FIGS. 12 (a) and 12 (b) is applied between a sample electrode and a counter electrode by an AC constant voltage device, and a voltmeter and an electric current are applied. Keep track of total readings. Then, the polarization resistance is obtained by dividing the peak value of the voltage by the final peak value of the current. Incidentally, in the case of alternating current, it is possible to avoid the disadvantage that corrosion resistance cannot be gradually measured due to electrolysis in the vicinity of the electrodes when direct current is used.

【0007】そして、上記各方法で測定した各測定値に
は、例えば、図13に示すように、交流電源11に接続
された2つの電極12,13間の上記分極抵抗RD1及び
D2のほかに、各電極12,13間の溶液抵抗RW が含
まれ、純粋な分極抵抗RD (RD1+RD2)そのものが得
られていない。
Then, as shown in FIG. 13, for example, as shown in FIG. 13, the measured values measured by the above-described methods include the polarization resistances R D1 and R D2 between the two electrodes 12 and 13 connected to the AC power supply 11. In addition, the solution resistance R W between the electrodes 12 and 13 is included, and the pure polarization resistance R D (R D1 + R D2 ) itself is not obtained.

【0008】そこで、この溶液抵抗の影響を除く方法と
して、(イ)導電率計により溶液抵抗を減算して補正す
る方法や、(ロ)2電極式では試料極と対極との間隔を
狭くし、3電極式では試料極と照合極との間隔を狭くす
る方法が、JISに述べられている。
Therefore, as a method for eliminating the influence of the solution resistance, (a) a method of correcting the solution resistance by subtracting the solution resistance with a conductivity meter, or (b) in the two-electrode system, the interval between the sample electrode and the counter electrode is narrowed. In the three-electrode type, JIS describes a method of narrowing the distance between the sample electrode and the reference electrode.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記
(イ)の方法にあっては、導電率計を別途用意する必要
が生じるためコストアップが避けられず、また、導電率
計の測定結果と腐蝕速度による測定結果を突き合わせて
補正するなど、測定作業が煩雑かつ非能率であるほか、
それぞれの測定結果をGPIBなどの測定器間ネットワ
ーク用インタフェースを通してコンピュータに読み込ん
で補正演算をさせる場合には、測定システムが大掛りに
なり、コストアップを招くという問題点があった。
However, in the above method (a), it is necessary to prepare a conductivity meter separately, which inevitably leads to an increase in cost. Further, the measurement result of the conductivity meter and corrosion are unavoidable. The measurement work is complicated and inefficient, such as matching the measurement results by speed and correcting,
When each measurement result is read into a computer through an inter-measuring device network interface such as GPIB and correction calculation is performed, the measurement system becomes bulky, which causes a problem of cost increase.

【0010】また、上記(ロ)の方法にあっては、各電
極間の間隔が狭くなることによって、これらの間にごみ
が付着して、さらにその間隔が狭くなったり、測定誤差
を生じ、このため、頻繁に各電極付近のメンテナンスを
実施することが必要になるなどの問題点があった。
Further, in the above method (b), the gap between the electrodes is narrowed, so that dust adheres between them, and the gap is further narrowed or a measurement error occurs. Therefore, there is a problem that it is necessary to frequently perform maintenance around each electrode.

【0011】この発明は上記のような従来の問題点に着
目してなされたものであり、導電率計などの測定器を別
途用意することなく、簡単かつローコストに腐蝕速度を
測定できるとともに、各電極の間隔を広げても溶液抵抗
分の影響を抑えることができ、従って各電極間へのごみ
の付着やこれによる測定精度の劣化を未然に回避できる
腐蝕速度計を得ることを目的とする。
The present invention has been made by paying attention to the above-mentioned conventional problems. The corrosion rate can be measured easily and at low cost without separately preparing a measuring instrument such as a conductivity meter. It is an object of the present invention to obtain a corrosion velocity meter that can suppress the influence of solution resistance even if the distance between the electrodes is widened, and thus can prevent adhesion of dust between the electrodes and deterioration of measurement accuracy due to the dust.

【0012】[0012]

【課題を解決するための手段】請求項1の発明に係る腐
蝕速度計は、演算装置に、低い周波数の駆動信号および
高い周波数の駆動信号を試料極および対極間に時分割供
給して得た各測定抵抗の差から、分極抵抗を演算させる
ようにしたものである。
The corrosion velocity meter according to the invention of claim 1 is obtained by time-divisionally supplying a driving signal of a low frequency and a driving signal of a high frequency to a computing device between a sample electrode and a counter electrode. The polarization resistance is calculated from the difference between the measured resistances.

【0013】請求項2の発明に係る腐蝕速度計は、演算
装置に、試料極および対極間に供給する駆動電流の極性
が反転する直前および直後の応答電圧の平均値と上記駆
動電流との比から、分極抵抗を演算させるようにしたも
のである。
In the corrosion velocity meter according to the second aspect of the present invention, the ratio of the average value of the response voltage immediately before and immediately after the polarity of the drive current supplied between the sample electrode and the counter electrode to the arithmetic unit is reversed to the drive current. Therefore, the polarization resistance is calculated.

【0014】請求項3の発明に係る腐蝕速度計は、演算
装置に、試料極および対極間に供給する駆動信号の極性
が反転する中間点に、該駆動信号が開放となる区間を設
け、この区間直後の電圧値と上記開放直前の電流値との
比から、分極抵抗を演算させるようにしたものである。
In the corrosion velocity meter according to the third aspect of the present invention, the arithmetic unit is provided with a section where the drive signal is opened at an intermediate point where the polarity of the drive signal supplied between the sample electrode and the counter electrode is inverted. The polarization resistance is calculated from the ratio of the voltage value immediately after the section and the current value immediately before the opening.

【0015】[0015]

【作用】請求項1の発明における腐蝕速度計は、溶液抵
抗を含んだ分極抵抗を測定する低い周波数の駆動信号群
と、溶液抵抗を測定する高い周波数の駆動信号群とを時
分割的に交互に印加し、各々の区間での測定値から求め
た抵抗値の差分として純粋の分極抵抗を求める。
In the corrosion velocity meter according to the present invention, the driving signal group of low frequency for measuring the polarization resistance including the solution resistance and the driving signal group of high frequency for measuring the solution resistance are alternately arranged in a time division manner. And a pure polarization resistance is obtained as a difference between the resistance values obtained from the measured values in each section.

【0016】請求項2の発明における腐蝕速度計は、交
流定電流法において、駆動電流が反転する直前および直
後の応答電圧値を測定し、これらの平均電圧値と駆動電
流の比から分極抵抗を求める。
In the corrosion rate meter according to the second aspect of the present invention, in the AC constant current method, the response voltage value immediately before and after the driving current is inverted is measured, and the polarization resistance is calculated from the ratio of the average voltage value and the driving current. Ask.

【0017】請求項3の発明における腐蝕速度計は、交
流定電流法および交流定電圧法において、駆動信号の極
性が正から負,負から正に反転する中間点に駆動信号が
開放となる区間を設け、この区間になった直後の電圧値
を測定し、この電圧値と駆動信号が開放となる直前の電
流値との比とから分極抵抗を求める。
In the corrosion rate meter according to the third aspect of the invention, in the AC constant current method and the AC constant voltage method, the drive signal is open at an intermediate point at which the polarity of the drive signal is inverted from positive to negative and from negative to positive. Is provided, the voltage value immediately after this section is measured, and the polarization resistance is obtained from the ratio of this voltage value and the current value immediately before the drive signal is opened.

【0018】[0018]

【実施例】【Example】

実施例1.以下に、この発明の一実施例を図について説
明する。図1は2電極式腐蝕速度計の等価回路を示し、
1は鉄パイプなどの試料極、2は対極(3電極式腐蝕速
度計では照合極が対応)、RD は分極抵抗であり図13
の場合のRD1とRD2を加え合せた抵抗である。RW は試
料極1および対極2間の溶液抵抗、Cは各電極1,2の
界面に生じる電気2重層間の大容量の界面コンデンサで
ある。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. Figure 1 shows the equivalent circuit of a two-electrode corrosion rate meter,
Reference numeral 1 is a sample electrode such as an iron pipe, 2 is a counter electrode (corresponding to a reference electrode in a three-electrode type corrosion rate meter), and R D is a polarization resistance.
In this case, the resistance is the sum of R D1 and R D2 . R W is a solution resistance between the sample electrode 1 and the counter electrode 2, and C is a large-capacity interface capacitor between the electric double layers generated at the interface between the electrodes 1 and 2.

【0019】また、上記試料極1および対極2間には駆
動信号源3から駆動信号としての交流の電圧または電流
が供給され、また、上記分極抵抗RD および溶液抵抗R
W の計測値にもとづいて、演算装置4が純粋の分極抵抗
を演算によって求めるように機能する。
An alternating voltage or current as a drive signal is supplied from the drive signal source 3 between the sample electrode 1 and the counter electrode 2, and the polarization resistance R D and the solution resistance R are also supplied.
Based on the measured value of W , the arithmetic unit 4 functions to calculate a pure polarization resistance.

【0020】次に動作について説明する。一般に、分極
抵抗RD を測定する場合には、駆動信号の周波数は0.
1〜0.01Hz程度と低く選ばれる。このように低い
周波数で駆動することにより、界面コンデンサCの影響
を無視することができ、見かけ上、試料極1および抵抗
D +RW のみがあることと同じになる。
Next, the operation will be described. Generally, when measuring the polarization resistance R D , the frequency of the drive signal is 0.
It is selected as low as about 1 to 0.01 Hz. By driving at such a low frequency, the influence of the interfacial capacitor C can be ignored, and it is apparently the same as having only the sample electrode 1 and the resistance R D + R W.

【0021】一方、これらの各電極間に10〜10KH
z程度の高い周波数を印加すると、分極抵抗RD は界面
コンデンサCによりバイパスされるために、見かけ上、
各電極1,2間には溶液抵抗RW のみがあることと同じ
になる。
On the other hand, 10 to 10 KH is placed between each of these electrodes.
When a high frequency of about z is applied, the polarization resistance R D is bypassed by the interface capacitor C, and therefore, apparently,
This is the same as having only the solution resistance R W between the electrodes 1 and 2.

【0022】従って、図2に示すように、低い周波数の
駆動信号を印加する区間T1 と高い周波数の駆動信号を
印加する区間T2 を交互に設ける。そして、演算装置4
では上記区間T1 の電圧,電流値の比として求めた抵抗
D +RW から、T2 区間での電圧,電流値の比として
求めたRW を引くことにより、すなわち(RD +RW
−RW =RD から、純粋の分極抵抗RD のみを求めるこ
とができる。
Therefore, as shown in FIG. 2, sections T 1 for applying a low-frequency drive signal and sections T 2 for applying a high-frequency drive signal are provided alternately. And the arithmetic unit 4
The voltage of the period T 1, a resistor R D + R W that was determined as a ratio of the current value, the voltage at the T 2 period, by subtracting the R W that was determined as a ratio of the current value, i.e. (R D + R W)
Only the pure polarization resistance R D can be determined from −R W = R D.

【0023】なお、交流定電流法においては、駆動信号
は電流であり、応答信号は電圧である。また、交流定電
圧法においては、駆動信号は電圧であり、応答信号が電
流である。そして、いづれの方法においても上記方法が
適用できる。
In the AC constant current method, the drive signal is current and the response signal is voltage. In the AC constant voltage method, the drive signal is voltage and the response signal is current. The above method can be applied to any of the methods.

【0024】実施例2.次に、この発明の他の実施例を
示す。この実施例に用いる腐蝕速度計の等価回路は図1
と同様であり、ここではその重複する説明を省略する。
Example 2. Next, another embodiment of the present invention will be shown. The equivalent circuit of the corrosion rate meter used in this embodiment is shown in FIG.
The same description is omitted here and the duplicated description is omitted here.

【0025】次に動作を説明する。交流定電流法での駆
動電流と応答電圧との関係は図3に示す通りであり、駆
動電流波形の極性が反転した直後t2 において応答電圧
波形はある電圧値V2 (または−V2 )まで急変し、そ
の後は徐々に変化し、ある一定電圧値−V1'(またはV
1 )に達する。
Next, the operation will be described. The relationship between the drive current and the response voltage in the AC constant current method is as shown in FIG. 3, and the response voltage waveform has a certain voltage value V 2 (or −V 2 ) immediately after the polarity of the drive current waveform is inverted at t 2 . To a certain constant voltage value -V 1 '(or V
1 ) reach.

【0026】一般に、測定電極間の等価回路は実施例1
の場合と同様に表わされ、駆動電流の周波数は0.1〜
0.01Hz程度に選ばれている。このために、t1
測定した応答電圧値はV1 =I・(RD +Rw )とな
る。
Generally, the equivalent circuit between the measuring electrodes is the same as that of the first embodiment.
The drive current frequency is 0.1 to 10.
It is selected to be about 0.01 Hz. Therefore, the response voltage value measured at t 1 is V 1 = I · (R D + R w ).

【0027】この時に界面コンデンサCは充電され、V
c =I・RD の電圧となっている。そして、駆動電流が
反転した直後(t2 ,t4 )では、この界面コンデンサ
に蓄えられた電荷は急変しない。急変する電圧分は溶液
抵抗Rw に起因する分だけである。
At this time, the interface capacitor C is charged to V
The voltage is c = I · R D. Immediately after the drive current is inverted (t 2 , t 4 ), the electric charge stored in this interface capacitor does not change suddenly. The abruptly changing voltage component is only the component resulting from the solution resistance R w .

【0028】従って、t2 での応答電圧値V2 は、V2
=I・RD −I・RW のようになる。ここで、I・RD
は界面コンデンサCに蓄えられた電圧である。また、こ
のt1 およびt2 で測定した2つの電圧値V1 ,V2
平均値Vは、V=(1/2)(V1 +V2 )=(1/
2)I(RD +RW +RD −RW )=I・RD となる。
従って、分極抵抗はRD =V/Iとして求められる。
[0028] Thus, the response voltage value V 2 at t 2 is, V 2
= Is as I · R D -I · R W . Where I ・ R D
Is the voltage stored in the interface capacitor C. The average value V of the two voltage values V 1 and V 2 measured at t 1 and t 2 is V = (1/2) (V 1 + V 2 ) = (1 /
2) a I (R D + R W + R D -R W) = I · R D.
Therefore, the polarization resistance is calculated as R D = V / I.

【0029】なお、通常、電圧値,電流値とも正負の両
方向の値を測定し、ピーク・ピーク値で演算する。これ
は試料極に流す電流の向きにより分極抵抗が多少異なる
ためであり、このため正負の両方向の分極抵抗の平均を
とるようにしている。例えば、RD =(V1 +V1'+V
2 +V2')/2Iとなる。
Normally, both the voltage value and the current value are measured in both positive and negative directions, and the peak value and the peak value are calculated. This is because the polarization resistance is slightly different depending on the direction of the current flowing through the sample electrode. Therefore, the polarization resistances in both positive and negative directions are averaged. For example, R D = (V 1 + V 1 '+ V
2 + V 2 ') / 2I.

【0030】実施例3.図4はこの発明のさらに他の実
施例を示す。この実施例では、図1に示すものと同様の
等価回路に、駆動信号を開放するスイッチ5を接続して
ある。
Example 3. FIG. 4 shows still another embodiment of the present invention. In this embodiment, a switch 5 for releasing a drive signal is connected to an equivalent circuit similar to that shown in FIG.

【0031】この実施例においては、交流定電流法また
は交流定電圧法において、駆動信号(交流定電流法にお
いては電流信号,交流定電圧法においては電圧信号)の
極性が正から負または負から正に反転する中間点におい
て、駆動信号を開放とする区間を設ける。
In this embodiment, in the AC constant current method or the AC constant voltage method, the polarity of the drive signal (current signal in the AC constant current method, voltage signal in the AC constant voltage method) is positive, negative, or negative. A section in which the drive signal is opened is provided at the midpoint of positive inversion.

【0032】これにより、駆動信号が開放となった区間
(t3 〜t4 ),(t6 〜t7 )における試料極と対極
間(3電極式では試料極と照合極間)に表われる電圧波
形は図5および図6に示すようになる。図5は交流定電
流法の場合の電圧波形であり、図6は交流定電圧法の場
合の電圧波形である。
As a result, the drive signal appears between the sample electrode and the counter electrode (between the sample electrode and the reference electrode in the three-electrode system) in the intervals (t 3 to t 4 ) and (t 6 to t 7 ). The voltage waveforms are as shown in FIGS. FIG. 5 is a voltage waveform in the case of the AC constant current method, and FIG. 6 is a voltage waveform in the case of the AC constant voltage method.

【0033】いま、界面コンデンサCの影響が無視でき
る程度に低い周波数の駆動信号が入力されたとすれば、
駆動信号が反転する直前(t2 ,t5 ,t8 )において
は界面コンデンサCはVc =I・RD なる一定値まで充
電される。
Now, assuming that a driving signal having a frequency low enough to ignore the influence of the interface capacitor C is input,
Immediately before the drive signal is inverted (t 2 , t 5 , t 8 ), the interface capacitor C is charged to a constant value of V c = I · R D.

【0034】従って、駆動信号が開放された直後(t
3 ,t6 ,t9 )においては、対極2の電圧はVC その
ものが表われる。従って、V1 =Vc =I・RD とな
り、RD=V1 /Iとして、分極抵抗が得られる。
Therefore, immediately after the drive signal is released (t
At 3 , t 6 and t 9 ), the voltage of the counter electrode 2 is V C itself. Therefore, V 1 = V c = I · R D , and the polarization resistance is obtained with R D = V 1 / I.

【0035】なお、実際には電流の向きにより分極抵抗
D の値が多少異なるために、正負の両方向で測定した
分極抵抗の平均値を取る必要があり、RD =(V1 +V
1')/2Iとして、正確な分極抵抗値が得られる。
Since the value of the polarization resistance R D actually differs slightly depending on the direction of the current, it is necessary to take the average value of the polarization resistance measured in both the positive and negative directions. R D = (V 1 + V
An accurate polarization resistance value can be obtained as 1 ') / 2I.

【0036】なお、上記実施例では、図7に示すように
駆動信号が正負に変化してもその大きさは、常に一定の
場合について述べたが、駆動信号の与え方としては図8
に示すようなディファレンシャル・ステップ法にも適用
でき、上記と同様の方法により溶液抵抗の影響を除くこ
とができる。
In the above embodiment, the magnitude of the drive signal is always constant even if the drive signal changes to positive or negative as shown in FIG.
It can also be applied to the differential step method as shown in, and the influence of solution resistance can be removed by the same method as above.

【0037】また、図7,図8では駆動信号,応答信号
としては、0電位を基準として正負に対称なものについ
て述べた。これは試料極,対極,照合極等の電極材料を
同じとすると、電極界面に生じる腐蝕電位が互いにキャ
ンセルされ、腐蝕電位を考えずに済むからである。
Further, in FIGS. 7 and 8, as the drive signal and the response signal, those which are positive and negative symmetrical with respect to 0 potential are described. This is because if the same electrode material is used for the sample electrode, the counter electrode, the reference electrode, etc., the corrosion potentials generated at the electrode interfaces cancel each other out, and it is not necessary to consider the corrosion potential.

【0038】しかし、互いに異なった電極材料を使用す
ると、各電極1,2間に発生する腐蝕電位の差分が、図
9に示すようにバイアス電位Vb として信号電圧に加わ
る。この場合においても、測定開始時に電極1,2間に
表われる腐蝕電位の差分を測定し、このバイアス電圧を
見掛上の基準電位とすれば、上記各実施例について実施
したのと同様の方法で、溶液抵抗RW の影響を除くこと
ができる。
However, when different electrode materials are used, the difference between the corrosion potentials generated between the electrodes 1 and 2 is added to the signal voltage as the bias potential Vb as shown in FIG. Also in this case, the difference between the corrosion potentials appearing between the electrodes 1 and 2 at the time of starting the measurement is measured, and if this bias voltage is used as the apparent reference potential, the same method as that performed for each of the above-described examples is used. Thus, the influence of the solution resistance R W can be eliminated.

【0039】[0039]

【発明の効果】以上のように、請求項1の発明によれ
ば、演算装置に、低い周波数の駆動信号および高い周波
数の駆動信号を上記試料極および対極間に時分割供給し
て得た各測定抵抗の差から、分極抵抗を演算させるよう
に構成したので、導電率計などの測定器を別途用意する
ことなく、簡単かつローコストに腐蝕速度を測定できる
とともに、各電極の間隔を広げても溶液抵抗分の影響を
抑えることができ、従って各電極間へのごみの付着やこ
れによる測定精度の劣化を未然に回避できるものが得ら
れる効果がある。
As described above, according to the first aspect of the present invention, the low-frequency driving signal and the high-frequency driving signal are supplied to the arithmetic unit in a time-divisional manner between the sample electrode and the counter electrode. Since the polarization resistance is calculated from the difference in the measured resistance, the corrosion rate can be measured easily and at low cost without separately preparing a measuring instrument such as a conductivity meter, and even if the interval between the electrodes is widened. There is an effect that it is possible to suppress the influence of the solution resistance component, and thus to prevent the adhesion of dust between the electrodes and the deterioration of the measurement accuracy due to this.

【0040】また、請求項2の発明によれば、演算装置
に、試料極および対極間に供給する駆動電流の極性が反
転する直前および直後の応答電圧の平均値と上記駆動電
流との比から、分極抵抗を演算させるように構成したの
で、駆動電流に対する応答電圧のピーク付近および反転
直後の平均値から、分極抵抗を容易に計算により求めら
れるものが得られる効果がある。
According to the second aspect of the present invention, the arithmetic unit is calculated based on the ratio of the average value of the response voltage immediately before and after the polarity of the drive current supplied between the sample electrode and the counter electrode is inverted to the drive current. Since the polarization resistance is calculated, there is an effect that the polarization resistance can be easily calculated from the average value of the response voltage with respect to the drive current near the peak and immediately after the inversion.

【0041】さらに、請求項3の発明によれば、演算装
置に、試料極および対極間に供給する駆動信号の極性が
反転する中間点に、該駆動信号が開放となる区間を設
け、この区間直後の電圧値と上記開放直前の電流値との
比から、分極抵抗を演算させるように構成したので、ス
イッチ開直後に界面コンデンサの両端に残留する電圧を
読むことにより分極抵抗を容易に求められるものが得ら
れる効果がある。
Further, according to the third aspect of the invention, the arithmetic unit is provided with a section where the drive signal is opened at an intermediate point where the polarity of the drive signal supplied between the sample electrode and the counter electrode is inverted. Since the polarization resistance is calculated from the ratio of the voltage value immediately after and the current value immediately before the opening, the polarization resistance can be easily obtained by reading the voltage remaining at both ends of the interface capacitor immediately after the switch is opened. There is an effect that can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による腐蝕速度計を示す等
価回路図である。
FIG. 1 is an equivalent circuit diagram showing a corrosion rate meter according to an embodiment of the present invention.

【図2】図1の回路に入力される駆動信号のタイミング
チャートである。
FIG. 2 is a timing chart of drive signals input to the circuit of FIG.

【図3】この発明の他の実施例の動作を説明する電流お
よび電圧の波形を示すタイミングチャートである。
FIG. 3 is a timing chart showing current and voltage waveforms for explaining the operation of another embodiment of the present invention.

【図4】この発明の他の一実施例による腐蝕速度計を示
す等価回路図である。
FIG. 4 is an equivalent circuit diagram showing a corrosion rate meter according to another embodiment of the present invention.

【図5】図4の実施例の交流定電流法における電圧波形
を示すタイミングチャートである。
5 is a timing chart showing voltage waveforms in the AC constant current method of the embodiment of FIG.

【図6】図4の実施例の交流定電圧法における電圧波形
を示すタイミングチャートである。
6 is a timing chart showing a voltage waveform in the AC constant voltage method of the embodiment of FIG.

【図7】この発明の駆動信号波形を示すタイミングチャ
ートである。
FIG. 7 is a timing chart showing a drive signal waveform of the present invention.

【図8】駆動信号波形の他の実施例を示すタイミングチ
ャートである。
FIG. 8 is a timing chart showing another example of drive signal waveforms.

【図9】駆動信号波形のさらに他の実施例を示すタイミ
ングチャートである。
FIG. 9 is a timing chart showing still another example of the drive signal waveform.

【図10】従来の直流定電流法の実施による電流および
電圧を示すタイミングチャートである。
FIG. 10 is a timing chart showing currents and voltages obtained by performing a conventional DC constant current method.

【図11】従来の交流定電流法の実施による電流および
電圧を示すタイミングチャートである。
FIG. 11 is a timing chart showing currents and voltages obtained by performing a conventional AC constant current method.

【図12】従来の交流定電圧法の実施による電流および
電圧を示すタイミングチャートである。
FIG. 12 is a timing chart showing currents and voltages obtained by performing a conventional AC constant voltage method.

【図13】従来の電極間抵抗を示す説明図である。FIG. 13 is an explanatory diagram showing a conventional interelectrode resistance.

【符号の説明】[Explanation of symbols]

1 試料極 2 対極 3 駆動信号源 4 演算装置 1 sample pole 2 counter pole 3 drive signal source 4 arithmetic unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶液が流れるパイプの試料極と、該試料
極内に配置された対極または照合極と、低い周波数の駆
動信号および高い周波数の駆動信号を上記試料極および
対極間に時分割供給して得た各測定抵抗の差から、分極
抵抗を演算によって求める演算装置とを備えた腐蝕速度
計。
1. A sample electrode of a pipe through which a solution flows, a counter electrode or a reference electrode arranged in the sample electrode, and a low-frequency driving signal and a high-frequency driving signal are time-divisionally supplied between the sample electrode and the counter electrode. A corrosion rate meter equipped with an arithmetic unit for calculating the polarization resistance from the difference between the measured resistances obtained by the above.
【請求項2】 溶液が流れるパイプの試料極と、該試料
極内に配置された対極または照合極と、上記試料極およ
び対極間に供給する駆動電流の極性が反転する直前およ
び直後の応答電圧の平均値と上記駆動電流との比から、
分極抵抗を演算によって求める演算装置とを備えた腐蝕
速度計。
2. A sample electrode of a pipe through which a solution flows, a counter electrode or a reference electrode arranged in the sample electrode, and a response voltage immediately before and after the polarity of a drive current supplied between the sample electrode and the counter electrode is reversed. From the ratio of the average value of and the above drive current,
A corrosion speedometer equipped with a calculation device for calculating polarization resistance by calculation.
【請求項3】 溶液が流れるパイプの試料極と、該試料
極内に配置された対極または照合極と、上記試料極およ
び対極間に供給する駆動信号の極性が反転する中間点
に、該駆動信号が開放となる区間を設け、この区間直後
の電圧値と上記開放直前の電流値との比から、分極抵抗
を演算によって求める演算装置とを備えた腐蝕速度計。
3. The driving electrode is provided at a sample electrode of a pipe through which a solution flows, a counter electrode or a reference electrode disposed in the sample electrode, and an intermediate point at which the polarity of a drive signal supplied between the sample electrode and the counter electrode is reversed. A corrosion velocity meter comprising a section in which a signal is opened, and an arithmetic unit for calculating a polarization resistance by an operation from a ratio of a voltage value immediately after this section and a current value immediately before the opening.
JP13738094A 1994-06-20 1994-06-20 Corrosion rate meter Pending JPH085598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13738094A JPH085598A (en) 1994-06-20 1994-06-20 Corrosion rate meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13738094A JPH085598A (en) 1994-06-20 1994-06-20 Corrosion rate meter

Publications (1)

Publication Number Publication Date
JPH085598A true JPH085598A (en) 1996-01-12

Family

ID=15197339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13738094A Pending JPH085598A (en) 1994-06-20 1994-06-20 Corrosion rate meter

Country Status (1)

Country Link
JP (1) JPH085598A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256596A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Corrosion speed measuring circuit, sensor, apparatus, and method
JP2016206107A (en) * 2015-04-27 2016-12-08 三浦工業株式会社 Corrosion sensor
CN107816037A (en) * 2017-11-01 2018-03-20 中国人民解放军陆军勤务学院 A kind of electro-osmosis process determination methods and pulse generating unit
JP2022001856A (en) * 2020-06-22 2022-01-06 マツダ株式会社 Method and device for processing flaws, and method and device for testing corrosion resistance of coated metal material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256596A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Corrosion speed measuring circuit, sensor, apparatus, and method
JP2016206107A (en) * 2015-04-27 2016-12-08 三浦工業株式会社 Corrosion sensor
CN107816037A (en) * 2017-11-01 2018-03-20 中国人民解放军陆军勤务学院 A kind of electro-osmosis process determination methods and pulse generating unit
CN107816037B (en) * 2017-11-01 2019-08-09 中国人民解放军陆军勤务学院 A kind of electro-osmosis process judgment method and pulse generating unit
JP2022001856A (en) * 2020-06-22 2022-01-06 マツダ株式会社 Method and device for processing flaws, and method and device for testing corrosion resistance of coated metal material

Similar Documents

Publication Publication Date Title
US20050115334A1 (en) Method for operating a magnetoinductive flowmeter
JP2793178B2 (en) Electromagnetic flow meter
JPH085598A (en) Corrosion rate meter
US20060116854A1 (en) Method for operating a measuring instrument
JPS63243767A (en) Method and apparatus for measuring conductivity from which effect of polarization is removed
JPH03144314A (en) Electromagnetic flowmeter
JP3148492B2 (en) Corrosion rate meter
JP6220821B2 (en) Insulation resistance monitoring device and monitoring method in DC ungrounded circuit
JP3018310B2 (en) Electromagnetic flow meter
JPS60195418A (en) Electromagnetic flow meter
JP3354054B2 (en) Residual chlorine meter
JPH0442771Y2 (en)
JPH07318529A (en) Corrosion rate meter
JPH0611469A (en) Water content measuring method
JPH0829223A (en) Electromagnetic flowmeter
JP7391908B2 (en) How to detect common mode and other interfering magnetic fields
JPS59174718A (en) Electromagnetic flowmeter
JPS6313486Y2 (en)
JPH09138207A (en) Apparatus and method for detection of conductivity
JPS6128284B2 (en)
JPS62207968A (en) Conductivity meter circuit
JPS63235852A (en) Conductivity measuring method and apparatus with electrode fouling detecting function
JPH0450497Y2 (en)
SU846610A1 (en) Method of measuring the surface area of part at electroplating
JPH10232214A (en) Method and device for measuring ac erosion degree under natural potential and cathode corrosion