JP6220821B2 - Insulation resistance monitoring device and monitoring method in DC ungrounded circuit - Google Patents

Insulation resistance monitoring device and monitoring method in DC ungrounded circuit Download PDF

Info

Publication number
JP6220821B2
JP6220821B2 JP2015140117A JP2015140117A JP6220821B2 JP 6220821 B2 JP6220821 B2 JP 6220821B2 JP 2015140117 A JP2015140117 A JP 2015140117A JP 2015140117 A JP2015140117 A JP 2015140117A JP 6220821 B2 JP6220821 B2 JP 6220821B2
Authority
JP
Japan
Prior art keywords
voltage
detection
wave signal
insulation resistance
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015140117A
Other languages
Japanese (ja)
Other versions
JP2017020954A (en
Inventor
純也 中村
純也 中村
Original Assignee
光商工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光商工株式会社 filed Critical 光商工株式会社
Priority to JP2015140117A priority Critical patent/JP6220821B2/en
Publication of JP2017020954A publication Critical patent/JP2017020954A/en
Application granted granted Critical
Publication of JP6220821B2 publication Critical patent/JP6220821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、直流非接地式電路における絶縁抵抗監視装置と監視方法に関するものである。   The present invention relates to an insulation resistance monitoring device and a monitoring method in a DC non-grounded electric circuit.

直流非接地式電路における絶縁抵抗検出装置としては特許文献1が公知となっている。図6は、特許文献1での絶縁抵抗検出装置の等価回路を示したもので、太陽電池に接続された直流非接地式電路と大地E間に、V1,V2と電圧値の異なる直流電源をそれぞれ抵抗Rd1,Rd2を介して各別に接続する。接続された直流電源を切換スイッチSによりV1側、V2側と交互に切換えて抵抗に電圧を印加し、印加電圧差により変化した電流変化量から直流非接地式電路と大地E間の絶縁抵抗を求めている。 Patent Document 1 is known as an insulation resistance detection device in a DC ungrounded circuit. FIG. 6 shows an equivalent circuit of the insulation resistance detection device disclosed in Patent Document 1. Between direct current ungrounded circuit connected to the solar cell and ground E, direct currents having different voltage values from V 1 and V 2 are shown. The power supplies are connected separately via resistors Rd 1 and Rd 2 , respectively. The connected DC power source is alternately switched between the V 1 side and the V 2 side by the changeover switch S, and a voltage is applied to the resistor. The insulation between the DC non-grounded circuit and the ground E is determined from the amount of change in the current due to the applied voltage difference. Seeking resistance.

特開2013−33827JP2013-33827A

特許文献1で求められる絶縁抵抗値は、直流非接地式電路全体と大地E間の絶縁抵抗値であって、直流非接地式電路の正極側、または負極側の電路のそれぞれ片側毎の絶縁抵抗値を求めたことにはならない。したがって、絶縁抵抗検出装置として、例えば正・負極の何れか一方、或いは両極側の何れかの絶縁抵抗値が100kΩ以下になったら警報を出すように設定していたとき、正極側、または負極側がともに200kΩまで絶縁抵抗値が低下すると、求められた絶縁抵抗値は、正・負極の並列合成値となるため100kΩとなり、設定値より早く警報を出してしまうことになる。   The insulation resistance value obtained in Patent Document 1 is an insulation resistance value between the entire DC non-grounded circuit and the ground E, and is an insulation resistance for each one side of the positive or negative side of the DC non-grounded circuit. I didn't ask for a value. Therefore, when the insulation resistance detection device is set to issue an alarm when the insulation resistance value of either one of the positive and negative electrodes, or both of the electrode sides becomes 100 kΩ or less, the positive electrode side or the negative electrode side is When the insulation resistance value decreases to 200 kΩ in both cases, the obtained insulation resistance value becomes a combined value of the positive and negative electrodes and becomes 100 kΩ, and an alarm is issued earlier than the set value.

直流非接地式電路の正・負両極の絶縁抵抗値が略同時に劣化することは、正・負両極とも同じ環境下に置かれるため十分に起こりうる問題である。また、特許文献1では、直流印加電圧を切り換えて計測するため、計測時間に差が生じる。この時間差内で直流非接地式電路の電圧が少し変化しただけで絶縁抵抗値に大きな誤差を生じ、正確な検出ができなくなる課題がある。   The fact that the insulation resistance values of the positive and negative poles of the DC ungrounded circuit are deteriorated substantially simultaneously is a problem that can occur sufficiently because both the positive and negative poles are placed in the same environment. Moreover, in patent document 1, since it measures by switching a direct-current applied voltage, a difference arises in measurement time. Within this time difference, there is a problem that even if the voltage of the DC ungrounded circuit is slightly changed, a large error occurs in the insulation resistance value, and accurate detection cannot be performed.

本発明が目的とするところは、直流電源の切換手段を無くし、直流非接地式電路の正・負両極それぞれの計測、及び両極同時計測を可能として正確な絶縁抵抗値の計測・監視を可能とする直流非接地式電路における絶縁抵抗監視装置と監視方法を提供することにある。   The purpose of the present invention is to eliminate the DC power source switching means, and to measure both the positive and negative poles of the DC non-grounded circuit, and simultaneously measure both poles, enabling accurate measurement and monitoring of the insulation resistance value. An object of the present invention is to provide an insulation resistance monitoring device and a monitoring method for a direct current ungrounded circuit.

本発明は、直流非接地式電路の電路と大地間に設置されて絶縁を監視する絶縁抵抗監視装置において、
検出用抵抗体R0を介して前記直流非接地式電路の正極側又は負極側の任意の一線と大地間に接続され、検出用抵抗体R0の両端に一定電圧のHレベル電圧とLレベル電圧の検出用矩形波信号電圧V0を印加して検出用抵抗体R0の両端に両端電圧Vr0を発生させる検出用矩形波信号発生手段と、
前記検出用抵抗体R0の両端に接続されて、両端電圧Vr0を計測する検出信号電圧計測手段と、
前記直流非接地式電路の線間電圧Vを計測する線間電圧検出手段と、
前記計測された検出用抵抗体R0の両端電圧Vr0と前記線間電圧Vを入力して絶縁抵抗値を演算する絶縁抵抗演算手段と、
前記絶縁抵抗演算手段による演算結果を計測表示する計測表示手段を備え、
前記絶縁抵抗演算手段は、
前記検出用矩形波信号電圧V0がHレベル電圧のときの線間電圧Vの計測値VHと、前記検出用矩形波信号電圧V0がLレベル電圧のときの線間電圧Vの計測値VLと、前記検出用抵抗体R0の両端電圧Vr0の計測値Vr0H,Vr0Lとから前記直流非接地式電路全体と大地間の絶縁抵抗値Rgを式(1−1)で演算し、
求まった絶縁抵抗値Rgを用いて前記検出用矩形波信号電圧V0が前記Lレベル計測時は式(1−2)で、検出用矩形波信号電圧V0がHレベル計測時には式(1−3)でそれぞれ負極側絶縁抵抗値Rgnを演算し、
正極側絶縁抵抗値Rgpは前記検出用矩形波信号電圧V0がLレベル計測時に式(1−4)で演算すると共に、
前記計測表示手段に、演算結果の負極側絶縁抵抗値Rgn、正極側絶縁抵抗値Rgpを各別に、若しくは両極同時に計測表示することを特徴とする。
Rg=V0×R0/{Vr0H−Vr0L×(VH/VL)}−R0 … (1−1)
Rgn=VL/Vr0L/(1/Rg+1/R0) … (1−2)
Rgn=VH/{(Vr0H+V0)(1/Rg+1/R0)−(V0/R0)}…(1−3)
Rgp=(Rg×Rgn)/(Rgn−Rg) … (1−4)
ただし、V0:検出用抵抗体R0に両端電圧Vr0を発生させる検出用矩形波信号電圧で値は既知、Vr0H:検出用矩形波信号電圧のHレベル電圧時の検出用抵抗体R0の両端電圧の計測値、Vr0L:検出用矩形波信号電圧のLレベル電圧時の検出用抵抗体の両端電圧の計測値、R0:検出用抵抗体で値は既知、VH:検出用矩形波信号電圧V0のHレベル時の線間電圧Vの計測値、VL:検出用矩形波信号電圧V0のLレベル時の線間電圧Vの計測
The present invention is an insulation resistance monitoring device that is installed between a circuit of a DC non-grounded circuit and the ground and monitors insulation.
The detection resistor R0 is connected between any one of the positive and negative electrodes of the DC non-grounded circuit and the ground, and the detection resistor R0 has a constant H level voltage and an L level voltage at both ends. A detection rectangular wave signal generating means for applying a detection rectangular wave signal voltage V0 to generate a voltage Vr0 at both ends of the detection resistor R0;
Detection signal voltage measuring means connected to both ends of the detection resistor R0 and measuring the voltage Vr0 at both ends;
A line voltage detecting means for measuring a line voltage V of the DC ungrounded circuit;
Insulation resistance calculation means for calculating an insulation resistance value by inputting the measured both-ends voltage Vr0 of the detection resistor R0 and the line voltage V;
Comprising measurement display means for measuring and displaying the calculation result by the insulation resistance calculation means,
The insulation resistance calculation means includes
The measured value V H of the line voltage V when the detection rectangular wave signal voltage V0 is the H level voltage, and the measured value V L of the line voltage V when the detection rectangular wave signal voltage V0 is the L level voltage. And an insulation resistance value Rg between the whole DC non-grounded electric circuit and the ground from the measured values Vr0 H and Vr0 L of the voltage Vr0 across the detection resistor R0 by the equation (1-1),
Using the obtained insulation resistance value Rg, when the detection rectangular wave signal voltage V0 is L level measurement, the equation (1-2) is used. When the detection rectangular wave signal voltage V0 is H level measurement, the equation (1-3) is used. To calculate the negative side insulation resistance value Rgn respectively.
The positive side insulation resistance value Rgp is calculated by the equation (1-4) when the detection rectangular wave signal voltage V0 is L level measurement,
The measurement display means is configured to measure and display the negative electrode side insulation resistance value Rgn and the positive electrode side insulation resistance value Rgp separately or both at the same time.
Rg = V0 × R0 / {Vr0 H -Vr0 L × (V H / V L)} - R0 ... (1-1)
Rgn = V L / Vr0 L / (1 / Rg + 1 / R0) (1-2)
Rgn = V H / {(Vr0 H + V0) (1 / Rg + 1 / R0) - (V0 / R0)} ... (1-3)
Rgp = (Rg × Rgn) / (Rgn−Rg) (1-4)
Where V0 is a detection rectangular wave signal voltage for generating a voltage Vr0 across the detection resistor R0, and the value is known, Vr0 H is a voltage across the detection resistor R0 when the detection rectangular wave signal voltage is at an H level voltage. Vr0 L : Measured value of the voltage across the detection resistor at the L level voltage of the detection rectangular wave signal voltage, R 0: Known value at the detection resistor, V H : Detection rectangular wave signal voltage measured value of the line voltage V H level when V0, V L: measured value of the line voltage V at L level detection square wave signal voltage V0

本発明は、直流非接地式電路の電路と大地間に設置されて絶縁を監視する絶縁抵抗監視方法であって、
検出用抵抗体R0を直列に接続した検出用矩形波信号発生手段を、前記直流非接地式電路の正極側又は負極側の任意の一線と大地間に接続し、検出用矩形波信号発生手段より検出用抵抗体R0に一定電圧のHレベル電圧とLレベル電圧による検出用矩形波信号電圧V0を印加して検出用抵抗体R0の両端に両端電圧Vr0を発生させ、
直流非接地式電路の線間電圧Vと、前記検出用抵抗体R0に発生した両端電圧Vr0を絶縁抵抗演算手段に入力し、
前記絶縁抵抗演算手段において、
前記検出用矩形波信号電圧V0がHレベル電圧のときの線間電圧Vの計測値VH、前記検出用矩形波信号電圧V0がLレベルのときの線間電圧Vの計測値VL時に得られた前記両端電圧Vr0の計測値Vr0H,Vr0Lとから前記直流非接地式電路全体と大地間の絶縁抵抗値Rgを式(2−1)で演算し、
求まった絶縁抵抗値Rgを用いて前記検出用矩形波信号電圧V0が前記Lレベル計測時は式(2−2)で、検出用矩形波信号電圧V0がHレベル計測時には式(2−3)でそれぞれ負極側絶縁抵抗値Rgnを演算し、
正極側絶縁抵抗値Rgpは、前記検出用矩形波信号電圧V0がLレベル電圧の計測時に式(2−4)で演算し、
演算結果の負極側絶縁抵抗値Rgn、正極側絶縁抵抗値Rgpを計測表示手段により計測表示することを特徴とする。
Rg=V0×R0/{Vr0H−Vr0L×(VH/VL)}−R0 … (2−1)
Rgn=VL/Vr0L/(1/Rg+1/R0) … (2−2)
Rgn=VH/{(Vr0H+V0)(1/Rg+1/R0)−(V0/R0)}…(2−3)
Rgp=(Rg×Rgn)/(Rgn−Rg) … (2−4)
ただし、R0:検出用抵抗体で値は既知、V0:検出用抵抗体R0に両端電圧Vr0を発生させる検出用矩形波信号電圧で値は既知、Vr0H:検出用矩形波信号電圧のHレベル電圧時の検出用抵抗体R0の両端電圧の計測値Vr0L:検出用矩形波信号電圧のLレベル電圧時の検出用抵抗体R0の両端電圧の計測値、VH:検出用矩形波信号電圧V0のHレベル時の線間電圧Vの計測値、VL:検出用矩形波信号電圧V0のLレベル時の線間電圧Vの計測
The present invention is an insulation resistance monitoring method for monitoring insulation by being installed between a circuit and a ground of a DC non-grounded circuit,
A detection rectangular wave signal generating means in which a detection resistor R0 is connected in series is connected between an arbitrary line on the positive electrode side or negative electrode side of the DC non-grounded circuit and the ground, and from the detection rectangular wave signal generating means The detection resistor R0 is applied with a detection rectangular wave signal voltage V0 based on a constant H level voltage and an L level voltage to generate a voltage Vr0 at both ends of the detection resistor R0.
Input the line voltage V of the DC ungrounded circuit and the voltage Vr0 across the detection resistor R0 into the insulation resistance calculation means,
In the insulation resistance calculation means,
Measured value V L during resulting line voltage V when the measured value V H of the line voltage V, the detection square wave signal voltage V0 is at the L level when the detection square wave signal voltage V0 is H level voltage From the measured values Vr0 H and Vr0 L of the both-end voltage Vr0, the insulation resistance value Rg between the entire DC non-grounded circuit and the ground is calculated by the equation (2-1),
Using the obtained insulation resistance value Rg, when the detection rectangular wave signal voltage V0 is measured at the L level, the equation (2-2) is used. When the detection rectangular wave signal voltage V0 is measured at the H level, the equation (2-3) is used. To calculate the negative side insulation resistance value Rgn respectively.
The positive-side insulation resistance value Rgp is calculated by the equation (2-4) when the detection rectangular wave signal voltage V0 is L level voltage measurement,
The negative electrode side insulation resistance value Rgn and the positive electrode side insulation resistance value Rgp of the calculation result are measured and displayed by a measurement display means .
Rg = V0 × R0 / {Vr0 H -Vr0 L × (V H / V L)} - R0 ... (2-1)
Rgn = V L / Vr0 L / (1 / Rg + 1 / R0) (2-2)
Rgn = V H / {(Vr0 H + V0) (1 / Rg + 1 / R0) - (V0 / R0)} ... (2-3)
Rgp = (Rg × Rgn) / (Rgn−Rg) (2-4)
However, R0: detection resistor has a known value, V0: detection resistor R0 generates a voltage Vr0 at both ends, and the value is known, Vr0 H : detection rectangular wave signal voltage H level measured value of the voltage across the detecting resistor R0 when voltage, Vr0 L: measured value of the voltage across the detecting resistor R0 when L-level voltage of the detection square wave signal voltage, V H: detection square wave signal measured value of the line voltage V at the H level voltage V0, V L: measured value of the line voltage V at L level detection square wave signal voltage V0

以上のとおり、本発明によれば、次のような効果が得られるものである。
(1)直流非接地式電路の電路と大地間の絶縁監視のための検出用信号として、
直流非接地式電路の正極側又は負極側の一線と大地間に、検出用抵抗体R0を介して矩形波信号を印加することで、特許文献1のような直流電源の切り換え手段を必要とすることがなく、装置構成が簡易となる。
(2)直流非接地式電路の正極側、負極側の何れか一方側の絶縁抵抗値、および両極同時に絶縁劣化するときの絶縁抵抗値を正確に検出できる。
(3)計測時における直流非接地式電路の電圧が変化しても、正確な絶縁抵抗値の計測が可能となる。
As described above, according to the present invention, the following effects can be obtained.
(1) As a detection signal for insulation monitoring between the circuit of the DC non-grounded circuit and the ground,
By applying a rectangular wave signal via the detection resistor R 0 between the positive electrode side or negative electrode side of the DC ungrounded circuit and the ground, a switching means for the DC power supply as in Patent Document 1 is required. Therefore, the apparatus configuration is simplified.
(2) It is possible to accurately detect the insulation resistance value on either the positive electrode side or the negative electrode side of the DC non-grounded circuit, and the insulation resistance value when both electrodes are simultaneously deteriorated.
(3) Even if the voltage of the DC non-grounded circuit during measurement changes, it is possible to accurately measure the insulation resistance value.

本発明の実施形態を示す構成図。The block diagram which shows embodiment of this invention. 説明のための等価回路で、(a)は等価回路、(b)は検出用矩形波信号電圧。It is an equivalent circuit for explanation, (a) is an equivalent circuit, (b) is a rectangular wave signal voltage for detection. 等価回路で、(a)はHレベル(T1)時の等価回路、(b)はLレベル(T2)時の等価回路。An equivalent circuit, (a) is an equivalent circuit at the H level (T 1 ), and (b) is an equivalent circuit at the L level (T 2 ). 電路電圧源が無しでHレベル(T1)と仮定したときの等価回路。Equivalent circuit when assuming the H level (T 1 ) without the circuit voltage source. 線間電圧の変動有無時の説明図で、(a)は変動無し、(b)変動有り。It is explanatory drawing at the time of the presence or absence of the fluctuation | variation of a line voltage, (a) is no fluctuation, (b) There is a fluctuation. 従来の絶縁抵抗監視装置の構成図。The block diagram of the conventional insulation resistance monitoring apparatus.

図1は本発明の実施形態を示す直流非接地式電路における絶縁抵抗監視装置10の構成図を示したものである。11は検出用矩形波信号発生手段で、検出用抵抗体R0を介して直流非接地式電路の正極側Pと大地E間に接続される。12は検出信号電圧計測手段で、検出用抵抗体R0の両端に接続されて両端電圧Vr0を計測する。13は線間電圧検出手段で、直流非接地式電路の正極側Pと負極側N間の線間電圧Vを検出する。14は絶縁抵抗演算手段で、計測された両端電圧Vr0と線間電圧を入力して絶縁抵抗値を演算し、その出力を計測表示手段15に入力して計測値の表示と異常時での警報を行う。 FIG. 1 shows a configuration diagram of an insulation resistance monitoring device 10 in a DC non-grounded electric circuit showing an embodiment of the present invention. Reference numeral 11 denotes a detection rectangular wave signal generating means, which is connected between the positive electrode side P and the ground E of the DC non-grounded electric circuit via the detection resistor R0. A detection signal voltage measuring means 12 is connected to both ends of the detection resistor R0 and measures a both-end voltage Vr0. Reference numeral 13 denotes a line voltage detecting means for detecting a line voltage V between the positive electrode side P and the negative electrode side N of the direct current ungrounded circuit. 14 is an insulation resistance calculation means, which calculates the insulation resistance value by inputting the measured both-end voltage Vr0 and the line voltage, and inputs the output to the measurement display means 15 to display the measured value and alarm in case of abnormality. I do.

なお、1は線間電圧Vを有する電路電圧源、2は直流非接地式電路の正極側P、3は直流非接地式電路の負極側N、Rgpは正極側絶縁抵抗、Rgnは負極側絶縁抵抗、V0は検出用矩形波信号電圧である。 1 is a circuit voltage source having a line voltage V, 2 is a positive side P of a DC non-grounded circuit, 3 is a negative side N of the DC non-grounded circuit, R gp is a positive side insulation resistance, and R gn is a negative side The side insulation resistance, V 0, is a detection rectangular wave signal voltage.

図2は説明のための等価回路を示したもので、図2(a)で示すように検出用矩形波信号発生手段11は検出用抵抗体R0に対して生成された検出用矩形波信号電圧V0を印加する。検出信号電圧計測手段12は、図2(b)の(ア)で示すように矩形波信号のHレベル(T1)が印加されたときの線間電圧VHと、その時の検出用抵抗体R0の両端電圧Vr0Hを計測する。次に、矩形波信号のLレベル(T2)が印加されたときの線間電圧VLと、その時の検出用抵抗体R0の両端電圧Vr0Lを計測し、各計測値を絶縁抵抗演算手段14に出力する。 FIG. 2 shows an equivalent circuit for explanation. As shown in FIG. 2A, the detection rectangular wave signal generating means 11 is a detection rectangular wave signal generated for the detection resistor R 0 . A voltage V 0 is applied. The detection signal voltage measuring means 12 includes a line voltage V H when the H level (T 1 ) of the rectangular wave signal is applied and a detection resistor at that time, as shown in FIG. The voltage Vr 0H across R 0 is measured. Next, the line voltage V L when the L level (T 2 ) of the rectangular wave signal is applied and the voltage Vr 0L across the detection resistor R 0 at that time are measured, and each measured value is calculated as an insulation resistance. Output to means 14.

図3(a)は矩形波信号がHレベル(T1)のときの等価回路、図3(b)は矩形波信号がLレベル(T2)のときの等価回路を示す。ただし、矩形波信号レベル(T1)、(T2)の計測時に線間電圧Vに変動がないときは、V=VH=VLとする。図3(a)の矩形波信号がHレベル(T1)で抵抗体Rgn、Rgp、R0に流れる電流をそれぞれInH,IpH,I0Hとし、図3(b)の矩形波信号がLレベル(T2)のときのそれぞれの電流をInL,IpL,I0Lとする。 3A shows an equivalent circuit when the rectangular wave signal is at the H level (T 1 ), and FIG. 3B shows an equivalent circuit when the rectangular wave signal is at the L level (T 2 ). However, if there is no fluctuation in the line voltage V when measuring the rectangular wave signal levels (T 1 ) and (T 2 ), V = V H = V L. When the rectangular wave signal in FIG. 3A is at the H level (T 1 ), the currents flowing through the resistors R gn , R gp , and R 0 are I nH , I pH , and I 0H , respectively , and the rectangular wave in FIG. signal to the respective current when the L-level (T 2) I nL, I pL, and I 0L.

次に、線間電圧Vが無いと仮定し、検出用矩形波信号電圧V0がHレベル(T1)としたときの等価回路は図4となり、その時の抵抗体Rgn、Rgp、R0に流れる電流をそれぞれInf,Ipf,I0fとすると、線間電圧VH有りで検出用矩形波信号電圧V0がHレベル(T1)としたときの電流InH,IpH,I0Hは、重ね合わせの理により式(1)〜(3)となる。
nH=InL+Inf … (1)
pH=IpL+Ipf … (2)
0H=I0L+I0f … (3)
0HとI0Lは、検出用抵抗体R0の両端電圧Vr0H,Vr0Lを計測することで式(4)、(5)より求めることができる。
0H=Vr0H/R0 … (4)
0L=Vr0L/R0 … (5)
検出用抵抗体R0を流れる電流I0fは、式(3)、(4)、(5)より
0f=I0H−I0L=Vr0H/R0−Vr0L/R0=(Vr0H−Vr0L)/R0…(6)
となる。
0fは、線間電圧Vが無く検出用矩形波信号電圧V0がHレベル(T1)であると仮定したときに検出用抵抗体R0に流れる電流とみなすことができるから、
0−R0×I0f−Rg×I0f=0 … (7)
となり、
正極側絶縁抵抗Rgpと負極側絶縁抵抗Rgnの並列合成抵抗Rg=Rgp×Rgn/(Rgp+Rgn)は、式(6)、(7)から式(8)により求められる。
g=V0/I0f−R0=V0×R0/(Vr0H−Vr0L)−R0 … (8)
次に、検出用矩形波信号電圧V0がHレベル(T1)のとき線間電圧がVHで、検出用矩形波信号電圧V0がLレベル(T2)のとき線間電圧がVLに変動したとすると、その際には誤差が発生することになるが、その時の等価回路を図5で示し、以下の演算で説明する。
Next, assuming that there is no line voltage V, the equivalent circuit when the detection rectangular wave signal voltage V 0 is at the H level (T 1 ) is shown in FIG. 4, and the resistors R gn , R gp , R at that time Assuming that the currents flowing in 0 are I nf , I pf , and I 0f , respectively , currents I nH , I pH , when the detection rectangular wave signal voltage V 0 is at the H level (T 1 ) with the line voltage V H. I 0H is expressed by equations (1) to (3) based on the principle of superposition.
I nH = I nL + I nf (1)
I pH = I pL + I pf (2)
I 0H = I 0L + I 0f (3)
I 0H and I 0L can be obtained from equations (4) and (5) by measuring the voltages Vr 0H and Vr 0L across the detection resistor R 0 .
I 0H = Vr 0H / R 0 (4)
I 0L = Vr 0L / R 0 (5)
The current I 0f flowing through the detection resistor R 0 is calculated from the equations (3), (4), and (5) as follows: I 0f = I 0H −I 0L = Vr 0H / R 0 −Vr 0L / R 0 = (Vr 0H −Vr 0L ) / R 0 (6)
It becomes.
I 0f can be regarded as a current flowing through the detection resistor R 0 when it is assumed that there is no line voltage V and the detection rectangular wave signal voltage V 0 is at the H level (T 1 ).
V 0 −R 0 × I 0f −R g × I 0f = 0 (7)
And
The parallel combined resistance R g = R gp × R gn / (R gp + R gn ) of the positive electrode side insulation resistance R gp and the negative electrode side insulation resistance R gn is obtained from the equations (6), (7) to (8). .
R g = V 0 / I 0f −R 0 = V 0 × R 0 / (Vr 0H −Vr 0L ) −R 0 (8)
Next, when the detection rectangular wave signal voltage V 0 is H level (T 1 ), the line voltage is V H , and when the detection rectangular wave signal voltage V 0 is L level (T 2 ), the line voltage is V If it changes to L , an error will occur at that time. The equivalent circuit at that time is shown in FIG. 5 and will be explained by the following calculation.

検出用矩形波信号電圧V0がLレベル(T2)の計測時に線間電圧Vの変動が無いとき(V=VH=VL)のInLは、
nL=VL/{Rgn+(Rgp×R0)/(Rgp+R0)} … (9)
となり、検出用抵抗体R0に流れる電流I0Lは、分流の法則により
0L=InL×Rgp/(Rgp+R0) … (10)
となる。
I nL when the detection square wave signal voltage V 0 there is no variation in the line voltage V when measuring the L level (T 2) (V = V H = V L) is
I nL = V L / {R gn + (R gp × R 0) / (R gp + R 0)} ... (9)
Thus, the current I 0L flowing through the detection resistor R 0 is expressed by I 0L = I nL × R gp / (R gp + R 0 ) (10) according to the law of shunting.
It becomes.

計測時の線間電圧Vに変動があり、そのときの線間電圧をVLXとしたときの電流InLXは、
nLX=VLX/{Rgn+(Rgp×R0)/(Rgp+R0)} … (11)
となり、検出用抵抗体R0に流れる電流I0LXは、分流の法則により
0LX=InLX×Rgp/(Rgp+R0) … (12)
となり、式(9)〜(12)より
0L/I0LX=InL/InLX=VL/VLX
0L=I0LX×(VL/VLX
線間電圧Vに変動が無いときのVLは、VL=VHであるから両辺にR0を掛けて、
0×I0L=R0×I0LX×(VH/VLX
Vr0L=Vr0LX×(VH/VLX
となり、線間電圧Vが変動する前のVr0Lの値は、線間電圧Vが変動したときに検出したVr0LXの値に(VH/VLX)を掛けることで求めることが出来る。このVLXおよびVr0LXは線間電圧変動時に計測したVL、Vr0Lであるから、式(8)を
g=V0×R0/{Vr0H−Vr0L×(VH/VL)}−R0 … (13)
とすることで、線間電圧変動時の誤差を無くすことができる。
The line voltage V at the time of measurement varies, and the current InLX when the line voltage at that time is V LX is
I nLX = V LX / {R gn + (R gp × R 0) / (R gp + R 0)} ... (11)
Thus, the current I 0LX flowing through the detection resistor R 0 is I 0LX = InLX × R gp / (R gp + R 0 ) (12) according to the law of shunting.
Next, I the equation (9) ~ (12) 0L / I 0LX = I nL / I nLX = V L / V LX
I 0L = I 0LX × (V L / V LX )
V L when there is no fluctuation in the line voltage V is V L = V H , so both sides are multiplied by R 0 ,
R 0 × I 0L = R 0 × I 0LX × (V H / V LX )
Vr 0L = Vr 0LX × (V H / V LX )
Thus, the value of Vr 0L before the line voltage V fluctuates can be obtained by multiplying the value of Vr 0LX detected when the line voltage V fluctuates by (V H / V LX ). Since V LX and Vr 0LX are V L and Vr 0L measured at the time of line voltage fluctuation, Equation (8) can be changed to R g = V 0 × R 0 / {Vr 0H −Vr 0L × (V H / V L )}-R 0 (13)
By doing so, the error at the time of line voltage fluctuation can be eliminated.

次に、矩形波信号がLレベル(T2)の計測時の値から、Rgp、Rgnをそれぞれ求める。図3(b)の場合、直流非接地式電路の正極側Pと大地E間の電圧Vpeは、ミルマンの定理を用いると
pe=(VL/Rgn+0/Rgp+0/R0)/(1/Rgn+1/Rgp+1/R0
=(VL/Rgn)/(1/Rg+1/R0) … (14)
で現すことができ、検出用抵抗体R0は既知で、線間電圧VLは線間電圧検出手段13で計測され、また、Vpe=Vr0Lで検出用抵抗体R0の両端電圧が検出信号電圧計測手段12で計測される。
Next, R gp and R gn are respectively obtained from values at the time when the rectangular wave signal is measured at the L level (T 2 ). In the case of FIG. 3B, the voltage V pe between the positive electrode side P of the DC ungrounded circuit and the ground E is V pe = (V L / R gn + 0 / R gp + 0 / R 0 , using Milman's theorem. ) / (1 / R gn + 1 / R gp + 1 / R 0 )
= (V L / R gn ) / (1 / R g + 1 / R 0 ) (14)
Can be expressed by, detecting resistor R 0 is known, the line voltage V L is measured in the line voltage detecting unit 13, also the voltage across the V pe = detecting resistor at Vr 0L R 0 is It is measured by the detection signal voltage measuring means 12.

絶縁抵抗演算手段14では、直流非接地式電路全体と大地間の絶縁抵抗値Rgを式(13)で求められることから、負極側絶縁抵抗値Rgnを式(14)より式(15)で求める。
gn=VL/Vr0L/(1/Rg+1/R0) … (15)
よって、正極側絶縁抵抗値/Rgpは、
gp=(Rg×Rgn)/(Rgn−Rg) … (16)
で求めることができる。
In the insulation resistance computing means 14, a DC Nonreferenced path across the insulation resistance value R g between the earth because it is determined by the formula (13), wherein the negative electrode side insulation resistance R gn (14) from equation (15) Ask for.
R gn = V L / Vr 0L / (1 / R g + 1 / R 0 ) (15)
Therefore, the positive-side insulation resistance value / R gp is
R gp = (R g × R gn ) / (R gn −R g ) (16)
Can be obtained.

なお、上記では検出用矩形波信号電圧V0がLレベル(T2)の計測時の値から求める方法についての説明であるが、Hレベル(T1)の計測時の値からも求めることができ、負極側絶縁抵抗値Rgnの演算式は式(17)となる。正極側絶縁抵抗値Rgpは同様に式(16)で求められる。
gn=VH/{(Vr0H+V0)(1/Rg+1/R0)−(V0/R0) … (17)
また、図1の構成では、検出用矩形波信号発生手段11を直流非接地式電路の正極側Pと大地E間に接続した場合を示しているが、検出用矩形波信号発生手段11は負極側Nと大地E間に接続してもよい。その場合、図2(a)で示す電路の線間電圧Vの極性を反転させたと同じであり、式(15)、(16)、(17)の符号Rgn,Rgnを換えることで、同様にして求めることができる。
In the above description, the method for obtaining the detection rectangular wave signal voltage V 0 from the value at the time of measurement of the L level (T 2 ) has been described, but it can also be obtained from the value at the time of measurement of the H level (T 1 ). In addition, the arithmetic expression of the negative electrode side insulation resistance value R gn is given by Expression (17). Similarly, the positive electrode side insulation resistance value R gp is obtained by the equation (16).
R gn = V H / {(Vr 0H + V 0 ) (1 / R g + 1 / R 0 ) − (V 0 / R 0 ) (17)
1 shows a case where the detection rectangular wave signal generating means 11 is connected between the positive electrode side P of the DC non-grounded electric circuit and the ground E, the detection rectangular wave signal generating means 11 is a negative electrode. You may connect between side N and ground E. In that case, it is the same as the polarity of the line voltage V of the electric circuit shown in FIG. 2A is reversed, and by changing the signs R gn and R gn of the equations (15), (16) and (17), It can be obtained in the same way.

また、図2(b)では、検出用矩形波信号発生手段11による矩形波信号のHレベルをプラス電圧、Lレベルを零ボルトとしているが、Hレベルを零ボルト、Lレベルをマイナス電圧としてもよい。また、検出用矩形波信号発生回路および演算は複雑となるが、矩形波信号のHレベル、Lレベルのそれぞれに一定の電圧値を持たせても絶縁抵抗値を求めることができる。   In FIG. 2B, the H level of the rectangular wave signal generated by the detection rectangular wave signal generating means 11 is a positive voltage and the L level is zero volts, but the H level is zero volts and the L level is a negative voltage. Good. In addition, although the detection rectangular wave signal generation circuit and the calculation are complicated, the insulation resistance value can be obtained even if the rectangular wave signal has a constant voltage value at each of the H level and the L level.

10… 絶縁抵抗監視装置
11… 検出用矩形波信号発生手段
12… 検出信号電圧計測手段
13… 線間電圧検出手段
14… 絶縁抵抗演算手段
15… 計測表示手段
R0… 検出用抵抗体
DESCRIPTION OF SYMBOLS 10 ... Insulation resistance monitoring apparatus 11 ... Detection rectangular wave signal generation means 12 ... Detection signal voltage measurement means 13 ... Line voltage detection means 14 ... Insulation resistance calculation means 15 ... Measurement display means R0 ... Detection resistor

Claims (2)

直流非接地式電路の電路と大地間に設置されて絶縁を監視する絶縁抵抗監視装置において、
検出用抵抗体R0を介して前記直流非接地式電路の正極側又は負極側の任意の一線と大地間に接続され、検出用抵抗体R0の両端に一定電圧のHレベル電圧とLレベル電圧の検出用矩形波信号電圧V0を印加して検出用抵抗体R0の両端に両端電圧Vr0を発生させる検出用矩形波信号発生手段と、
前記検出用抵抗体R0の両端に接続されて、両端電圧Vr0を計測する検出信号電圧計測手段と、
前記直流非接地式電路の線間電圧Vを計測する線間電圧検出手段と、
前記計測された検出用抵抗体R0の両端電圧Vr0と前記線間電圧Vを入力して絶縁抵抗値を演算する絶縁抵抗演算手段と、
前記絶縁抵抗演算手段による演算結果を計測表示する計測表示手段を備え、
前記絶縁抵抗演算手段は、
前記検出用矩形波信号電圧V0がHレベル電圧のときの線間電圧Vの計測値VHと、前記検出用矩形波信号電圧V0がLレベル電圧のときの線間電圧Vの計測値VLと、前記検出用抵抗体R0の両端電圧Vr0の計測値Vr0H,Vr0Lとから前記直流非接地式電路全体と大地間の絶縁抵抗値Rgを式(1−1)で演算し、
求まった絶縁抵抗値Rgを用いて前記検出用矩形波信号電圧V0が前記Lレベル計測時は式(1−2)で、検出用矩形波信号電圧V0がHレベル計測時には式(1−3)でそれぞれ負極側絶縁抵抗値Rgnを演算し、
正極側絶縁抵抗値Rgpは、前記検出用矩形波信号電圧V0がLレベル計測時に式(1−4)で演算すると共に、
前記計測表示手段に、演算結果の負極側絶縁抵抗値Rgn、正極側絶縁抵抗値Rgpを各別に、若しくは両極同時に計測表示することを特徴とした直流非接地式電路における絶縁抵抗監視装置。
Rg=V0×R0/{Vr0H−Vr0L×(VH/VL)}−R0 … (1−1)
Rgn=VL/Vr0L/(1/Rg+1/R0) … (1−2)
Rgn=VH/{(Vr0H+V0)(1/Rg+1/R0)−(V0/R0)}…(1−3)
Rgp=(Rg×Rgn)/(Rgn−Rg) … (1−4)
ただし、V0:検出用抵抗体R0に両端電圧Vr0を発生させる検出用矩形波信号電圧で値は既知、Vr0H:検出用矩形波信号電圧のHレベル電圧時の検出用抵抗体R0の両端電圧の計測値、Vr0L:検出用矩形波信号電圧のLレベル電圧時の検出用抵抗体の両端電圧の計測値、R0:検出用抵抗体で値は既知、VH:検出用矩形波信号電圧V0のHレベル時の線間電圧Vの計測値、VL:検出用矩形波信号電圧V0のLレベル時の線間電圧Vの計測
In the insulation resistance monitoring device that is installed between the circuit of the DC ungrounded circuit and the ground and monitors insulation,
The detection resistor R0 is connected between any one of the positive and negative electrodes of the DC non-grounded circuit and the ground, and the detection resistor R0 has a constant H level voltage and an L level voltage at both ends. A detection rectangular wave signal generating means for applying a detection rectangular wave signal voltage V0 to generate a voltage Vr0 at both ends of the detection resistor R0;
Detection signal voltage measuring means connected to both ends of the detection resistor R0 and measuring the voltage Vr0 at both ends;
A line voltage detecting means for measuring a line voltage V of the DC ungrounded circuit;
Insulation resistance calculation means for calculating an insulation resistance value by inputting the measured both-ends voltage Vr0 of the detection resistor R0 and the line voltage V;
Comprising measurement display means for measuring and displaying the calculation result by the insulation resistance calculation means,
The insulation resistance calculation means includes
The measured value V H of the line voltage V when the detection rectangular wave signal voltage V0 is the H level voltage, and the measured value V L of the line voltage V when the detection rectangular wave signal voltage V0 is the L level voltage. And an insulation resistance value Rg between the whole DC non-grounded electric circuit and the ground from the measured values Vr0 H and Vr0 L of the voltage Vr0 across the detection resistor R0 by the equation (1-1),
Using the obtained insulation resistance value Rg, when the detection rectangular wave signal voltage V0 is L level measurement, the equation (1-2) is used. When the detection rectangular wave signal voltage V0 is H level measurement, the equation (1-3) is used. To calculate the negative side insulation resistance value Rgn respectively.
The positive side insulation resistance value Rgp is calculated by the equation (1-4) when the detection rectangular wave signal voltage V0 is L level measurement, and
An insulation resistance monitoring device in a DC non-grounded electric circuit, wherein the measurement display means displays and displays the negative electrode side insulation resistance value Rgn and the positive electrode side insulation resistance value Rgp separately or simultaneously on both electrodes.
Rg = V0 × R0 / {Vr0 H -Vr0 L × (V H / V L)} - R0 ... (1-1)
Rgn = V L / Vr0 L / (1 / Rg + 1 / R0) (1-2)
Rgn = V H / {(Vr0 H + V0) (1 / Rg + 1 / R0) - (V0 / R0)} ... (1-3)
Rgp = (Rg × Rgn) / (Rgn−Rg) (1-4)
Where V0 is a detection rectangular wave signal voltage for generating a voltage Vr0 across the detection resistor R0, and the value is known, Vr0 H is a voltage across the detection resistor R0 when the detection rectangular wave signal voltage is at an H level voltage. Vr0 L : Measured value of the voltage across the detection resistor at the L level voltage of the detection rectangular wave signal voltage, R 0: Known value at the detection resistor, V H : Detection rectangular wave signal voltage measured value of the line voltage V H level when V0, V L: measured value of the line voltage V at L level detection square wave signal voltage V0
直流非接地式電路の電路と大地間に設置されて絶縁を監視する絶縁抵抗監視方法であって、
検出用抵抗体R0を直列に接続した検出用矩形波信号発生手段を、前記直流非接地式電路の正極側又は負極側の任意の一線と大地間に接続し、検出用矩形波信号発生手段より検出用抵抗体R0に一定のHレベル電圧とLレベル電圧による検出用矩形波信号電圧V0を印加して検出用抵抗体R0の両端に両端電圧Vr0を発生させ、
前記直流非接地式電路の線間電圧Vと、前記検出用抵抗体R0に発生した両端電圧Vr0を絶縁抵抗演算手段に入力し、
前記絶縁抵抗演算手段において、
前記検出用矩形波信号電圧V0がHレベル電圧のときの線間電圧Vの計測値VH、前記検出用矩形波信号電圧V0がLレベルのときの線間電圧Vの計測値VL時に得られた前記両端電圧Vr0の計測値Vr0H,Vr0Lとから前記直流非接地式電路全体と大地間の絶縁抵抗値Rgを式(2−1)で演算し、
求まった絶縁抵抗値Rgを用いて前記検出用矩形波信号電圧V0がLレベル電圧の計測時には式(2−2)で、検出用矩形波信号電圧V0がHレベル電圧の計測時には式(2−3)でそれぞれ負極側絶縁抵抗値Rgnを演算し、
正極側絶縁抵抗値Rgpは、前記検出用矩形波信号電圧V0がLレベル電圧の計測時に式(2−4)で演算し、
演算結果の負極側絶縁抵抗値Rgn、正極側絶縁抵抗値Rgpを計測表示手段により計測表示することを特徴とした直流非接地式電路における絶縁抵抗監視方法。
Rg=V0×R0/{Vr0H−Vr0L×(VH/VL)}−R0 … (2−1)
Rgn=VL/Vr0L/(1/Rg+1/R0) … (2−2)
Rgn=VH/{(Vr0H+V0)(1/Rg+1/R0)−(V0/R0)}…(2−3)
Rgp=(Rg×Rgn)/(Rgn−Rg) … (2−4)
ただし、R0:検出用抵抗体で値は既知、V0:検出用抵抗体R0に両端電圧Vr0を発生させる検出用矩形波信号電圧で値は既知、Vr0H:検出用矩形波信号電圧のHレベル電圧時の検出用抵抗体R0の両端電圧の計測値Vr0L:検出用矩形波信号電圧のLレベル電圧時の検出用抵抗体R0の両端電圧の計測値、VH:検出用矩形波信号電圧V0のHレベル時の線間電圧Vの計測値、VL:検出用矩形波信号電圧V0のLレベル時の線間電圧Vの計測
An insulation resistance monitoring method that is installed between a DC ungrounded circuit and the ground to monitor insulation,
A detection rectangular wave signal generating means in which a detection resistor R0 is connected in series is connected between an arbitrary line on the positive electrode side or negative electrode side of the DC non-grounded circuit and the ground, and from the detection rectangular wave signal generating means A detection rectangular wave signal voltage V0 based on a constant H level voltage and L level voltage is applied to the detection resistor R0 to generate a voltage Vr0 at both ends of the detection resistor R0.
The line voltage V of the DC ungrounded circuit and the voltage Vr0 across the detection resistor R0 are input to the insulation resistance calculation means,
In the insulation resistance calculation means,
Measured value V L during resulting line voltage V when the measured value V H of the line voltage V, the detection square wave signal voltage V0 is at the L level when the detection square wave signal voltage V0 is H level voltage From the measured values Vr0 H and Vr0 L of the both-end voltage Vr0, the insulation resistance value Rg between the entire DC non-grounded circuit and the ground is calculated by the equation (2-1),
Using the obtained insulation resistance value Rg, when the detection rectangular wave signal voltage V0 is L level voltage, the equation (2-2) is used. When the detection rectangular wave signal voltage V0 is H level voltage, the equation (2- 3) In each case, the negative side insulation resistance value Rgn is calculated,
The positive-side insulation resistance value Rgp is calculated by the equation (2-4) when the detection rectangular wave signal voltage V0 is L level voltage measurement,
An insulation resistance monitoring method for a DC non-grounded electric circuit, characterized in that the negative electrode side insulation resistance value Rgn and the positive electrode side insulation resistance value Rgp are measured and displayed by a measurement display means .
Rg = V0 × R0 / {Vr0 H -Vr0 L × (V H / V L)} - R0 ... (2-1)
Rgn = V L / Vr0 L / (1 / Rg + 1 / R0) (2-2)
Rgn = V H / {(Vr0 H + V0) (1 / Rg + 1 / R0) - (V0 / R0)} ... (2-3)
Rgp = (Rg × Rgn) / (Rgn−Rg) (2-4)
However, R0: detection resistor has a known value, V0: detection resistor R0 generates a voltage Vr0 at both ends, and the value is known, Vr0 H : detection rectangular wave signal voltage H level measured value of the voltage across the detecting resistor R0 when voltage, Vr0 L: measured value of the voltage across the detecting resistor R0 when L-level voltage of the detection square wave signal voltage, V H: detection square wave signal measured value of the line voltage V at the H level voltage V0, V L: measured value of the line voltage V at L level detection square wave signal voltage V0
JP2015140117A 2015-07-14 2015-07-14 Insulation resistance monitoring device and monitoring method in DC ungrounded circuit Active JP6220821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015140117A JP6220821B2 (en) 2015-07-14 2015-07-14 Insulation resistance monitoring device and monitoring method in DC ungrounded circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015140117A JP6220821B2 (en) 2015-07-14 2015-07-14 Insulation resistance monitoring device and monitoring method in DC ungrounded circuit

Publications (2)

Publication Number Publication Date
JP2017020954A JP2017020954A (en) 2017-01-26
JP6220821B2 true JP6220821B2 (en) 2017-10-25

Family

ID=57888051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015140117A Active JP6220821B2 (en) 2015-07-14 2015-07-14 Insulation resistance monitoring device and monitoring method in DC ungrounded circuit

Country Status (1)

Country Link
JP (1) JP6220821B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232564B2 (en) * 2019-06-07 2023-03-03 光商工株式会社 Insulation resistance monitoring device for AC ungrounded circuits
CN113504409B (en) * 2021-07-21 2023-05-19 盐城工学院 On-line detection method for insulation state of electric automobile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650043B2 (en) * 2001-04-27 2005-05-18 三洋電機株式会社 Electric vehicle leakage detection device and leakage detection method
JP2007198995A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Ground fault resistance measurement circuit and ground fault detection circuit
JP4705495B2 (en) * 2006-03-23 2011-06-22 株式会社ケーヒン Leakage detection circuit and battery electronic control device
JP2012130148A (en) * 2010-12-15 2012-07-05 Kandenko Co Ltd Diagnostic method and apparatus for photovoltaic power generation system
JP5802076B2 (en) * 2011-08-01 2015-10-28 Jx日鉱日石エネルギー株式会社 Ground fault detection device, ground fault detection method, solar power generation system, and ground fault detection program
JP5514842B2 (en) * 2012-01-18 2014-06-04 光商工株式会社 Insulation monitoring device and monitoring method for DC ungrounded circuit

Also Published As

Publication number Publication date
JP2017020954A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP4835757B2 (en) Battery characteristic evaluation device
JP5514842B2 (en) Insulation monitoring device and monitoring method for DC ungrounded circuit
JP2016520203A5 (en)
JP6382561B2 (en) Electrochemical measuring device
JP2017514115A (en) Shunt current measurement with temperature compensation
JP5003333B2 (en) Insulation resistance measuring method and apparatus
JP6220821B2 (en) Insulation resistance monitoring device and monitoring method in DC ungrounded circuit
KR101512107B1 (en) Apparatus and method for measuring electric conductivity
KR101272669B1 (en) Testing method and testing device for corona discharge type ionizer
US9329226B2 (en) Method for ascertaining at least one malfunction of a conductive conductivity sensor
JP6219201B2 (en) AC impedance measuring apparatus and AC impedance measuring method
JP2017044586A (en) Insulation resistance monitoring device and detecting voltage estimation method
JP2011085462A (en) Four-terminal resistance measuring device
JP2002055132A (en) Contamination detecting method for electric conductivity cell and electric conductivity measuring device
JP2007298330A (en) Method and device for measuring insulation resistance
TW201624662A (en) Semiconductor device and AC resistance measuring system including the same
JP2011123033A (en) Device for evaluating battery characteristics
JPH0314144B2 (en)
EP1657540A1 (en) Resistivity detector and resistivity detection apparatus
CN105074443B (en) Wide dynamic range conductivity measurements in water
JP2018048830A5 (en)
JP2014010028A (en) Battery impedance measuring device and method
JP7080757B2 (en) Impedance measuring device and impedance measuring method
JP2011252827A (en) Resistance value calculation device
KR102052542B1 (en) Apparatus for determining meauring method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6220821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250