JPH0314144B2 - - Google Patents

Info

Publication number
JPH0314144B2
JPH0314144B2 JP56049003A JP4900381A JPH0314144B2 JP H0314144 B2 JPH0314144 B2 JP H0314144B2 JP 56049003 A JP56049003 A JP 56049003A JP 4900381 A JP4900381 A JP 4900381A JP H0314144 B2 JPH0314144 B2 JP H0314144B2
Authority
JP
Japan
Prior art keywords
circuit
insulation
current
side electric
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56049003A
Other languages
Japanese (ja)
Other versions
JPS57161665A (en
Inventor
Masaru Hirano
Takeshi Tsuruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4900381A priority Critical patent/JPS57161665A/en
Publication of JPS57161665A publication Critical patent/JPS57161665A/en
Publication of JPH0314144B2 publication Critical patent/JPH0314144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters

Description

【発明の詳細な説明】 本発明は直流電気系統の各部位の絶縁抵抗の値
を、通電状態の下に、測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the value of insulation resistance of each part of a DC electrical system under a energized state.

従来、直流電気系統の各部位の絶縁不良を検知
するには、該直流電気系統への通電を停止した上
で、各部位の絶縁抵抗値(以下単に絶縁値とい
う)を一括して測定していた。そのため、通電中
には絶縁不良を検査することが出来ず、発見が遅
れがちであつた。またそのため、絶縁不良の点検
作業は通電停止中に行わざるを得ず、通電停止中
に行われる電気系統の点検作業の手間が増すとい
う欠点があつた。
Conventionally, in order to detect poor insulation in each part of a DC electrical system, the power to the DC electrical system is stopped and the insulation resistance value (hereinafter simply referred to as insulation value) of each part is measured all at once. Ta. Therefore, insulation defects cannot be inspected while electricity is being applied, and detection tends to be delayed. Furthermore, inspection work for insulation defects must be carried out while the power supply is stopped, which has the disadvantage of increasing the effort required to inspect the electrical system while the power supply is stopped.

本発明は、上記の如き従来測定器の欠点に鑑
み、電気系統が通電状態(以後活線状態という)
にある時に、電気系統の各部位、例えばP側電路
(高電位側電路)、N側電路(低電位側電路)ある
いは直流電動機の電機子等の部位の絶縁値を、同
時に区別しつつ測定出来る直流電気系統絶縁抵抗
値測定装置を提供するこを目的とするものであ
る。
In view of the above-mentioned drawbacks of conventional measuring instruments, the present invention has been developed so that the electrical system is in a energized state (hereinafter referred to as a live-line state).
It is possible to simultaneously distinguish and measure the insulation value of each part of the electrical system, such as the P-side circuit (high-potential circuit), N-side circuit (low-potential circuit), or the armature of a DC motor. The object of the present invention is to provide a DC electrical system insulation resistance value measuring device.

以下に本発明に係る直流電気系統絶縁抵抗値測
定装置(以下本発明装置という)を、その実施例
を示す図面に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A DC electrical system insulation resistance value measuring device according to the present invention (hereinafter referred to as the device of the present invention) will be described below with reference to drawings showing embodiments thereof.

第1図は本発明装置の一実施例を示すブロツク
線図であつた、1は直流電気系統のP側電路、2
は同電気系統のN側電路、3は該直流電気系統の
直流電源、4は該直流電源3から供給される電力
によつて動作する直流電動機である。5は抵抗
R1と抵抗R2とが直列に接続された抵抗回路であ
つて、P側電路1とN側電路2間に接続されてい
る。なお、該抵抗回路5は3個以上の抵抗が直列
に接続されていてもよい。Pは該抵抗回路5の中
間接続点である。Qは接地点である。6は2個の
ダイオード等の整流素子61,62が逆並列接続
された極性判断回路であつて、前記抵抗回路5の
中間接続点Pと接地点Qとの間に接続されてい
る。整流素子61は接地点Qから中間接続点P方
向に流れる電流のみを通し、整流素子62は中間
接続点Pから接地点Q方向に流れる電流のみを通
すものである。7は前記整流素子61を流れる電
流I1の値を検出するP側接地電流検出回路であつ
て、図示実施例においては、整流素子61に直列
に接続された電流検出用抵抗R3と、該電流検出
用抵抗R3の両端電圧v1を検出する電圧検出回路
71と、該電圧検出回路71から出力された電圧
信号v1に基き、前記整流素子61、電流検出用抵
抗R3を流れる電流I1(=v1/R3)を演算する電流演 算回路72とからなるものである。8は前記整流
素子62を流れる電流I2の値を検出するN側接点
電流検出回路であつて、図示実施例においは、整
流素子62に直列接続された電流検出用抵抗R4
と、該電流検出用抵抗R4の両端電圧v2を検出す
る電圧検出回路81と、該電圧検出回路81から
出力された電圧信号v2に基き、前記整流素子6
2、電流検出用抵抗R4を流れる電流I2(=v2/R4) を演算する電流演算回路82とからなるものであ
る。9は前記P側電路1とN側電路2との間の線
間電圧Vを検出する線間電圧検出回路である。1
0は該線間電圧検出回路9から出力される線間電
圧信号Vと、前記P側接地電流検出回路7から出
力された電流信号I1と、前記N側接地電流検出回
路8から出力された電流信号I2を入力し、直流電
気系統のどの部位、例えばP側電路1やN側電路
2あるいは直流電動機の電機子12(第7図参
照)等の部位に絶縁不良が有るか無いかを判断
し、且つ該各部位の絶縁値Reを演算する絶縁値
抵抗値演算回路である。該絶縁値抵抗値演算回路
10は、図示実施例においては次に述べる回路か
ら構成されている。101は前記P側接地検出回
路7から出力された電流信号I1と前記線間電圧検
出回路9から出力された線間電圧信号Vを入力
し、それらの信号I1、Vに基き、後述する如くし
て、P側電路1の絶縁値Repを演算するP側絶縁
値演算回路である。102は、前記N側接地電流
検出回路8から出力された電流信号I2と前記線間
電圧検出回路9から出力された線間電圧信号Vを
入力し、それらの信号I2、Vに基き、後述する如
くしてN側電路2の絶縁値Reoを演算するN側絶
縁値演算回路である。104は前記N側電流検出
回路8から出力された電流信号I2を入力し、電機
子12の絶縁不良のため生じる電流I2の後述する
如き変動の幅Lを演算する変動幅検出回路であつ
て、図示実施例においては直流分をカツトするフ
イルタ104′と該フイルタ104′から出力され
た信号を整流し平滑化するピーク演算回路10
4″からなる。103は該変動増幅検出回路10
4から出力された変動幅信号Lと、前記線間電圧
信号Vを入力し、直流電動機4の電機子12の絶
縁値Reaを後述する如くして演算する電機子絶縁
値演算回路である。105は該電機子絶縁値演算
回路103から出力された電機子12の絶縁値信
号Reaと前記P側絶縁値演算回路101から出力
されるP側電路1の絶縁値信号Repと前記N側絶
縁値演算回路102から出力されるN側電路2の
絶縁値信号Reoとを入力し、それらの絶縁値Rea
Rep及びReoの並列和を演算し、直流電気系統の
総合絶縁値Retを出力する総合絶縁値演算回路で
ある。11は前記絶縁抵抗値演算回路10から出
力された、直流電気系統の各部位の絶縁値信号
Re(図示実施例においては絶縁値信号Rea、Rep
Reo、Retである)を入力し、夫々表示警告する絶
縁値表示警告器である。なお、前記P側接地電流
検出回路7、N側接地電流検出回路8は公知の電
流検出回路であつても勿論よい。また、線間電圧
検出回路9の入力部と電圧検出回路71,81の
入力部を、夫々他の直流電気系統のP側、N側電
路の線間や、該系統に設けておいた電流検出用抵
抗の両端に切換え得るようにすることにより、一
組の線間電圧検出回路9、電圧検出回路71,8
1、絶縁抵抗値演算回路10、表示警告器等で、
多くの直流電気系統の絶縁値を容易に測定するこ
とが出来る。
FIG. 1 is a block diagram showing one embodiment of the device of the present invention. 1 is a P-side electrical circuit of a DC electrical system;
3 is a DC power supply of the DC power supply 3, and 4 is a DC motor operated by power supplied from the DC power supply 3. 5 is resistance
It is a resistance circuit in which R 1 and a resistor R 2 are connected in series, and is connected between a P-side electric path 1 and an N-side electric path 2. Note that the resistance circuit 5 may include three or more resistors connected in series. P is an intermediate connection point of the resistance circuit 5. Q is the grounding point. Reference numeral 6 denotes a polarity determination circuit in which two rectifying elements 61 and 62 such as diodes are connected in antiparallel, and is connected between the intermediate connection point P of the resistor circuit 5 and the ground point Q. The rectifying element 61 passes only the current flowing from the grounding point Q in the direction of the intermediate connection point P, and the rectifying element 62 passes only the current flowing from the intermediate connection point P in the direction of the grounding point Q. 7 is a P-side ground current detection circuit that detects the value of the current I 1 flowing through the rectifier 61, and in the illustrated embodiment, it includes a current detection resistor R 3 connected in series to the rectifier 61; A voltage detection circuit 71 detects the voltage v 1 across the current detection resistor R 3 , and a current flows through the rectifying element 61 and the current detection resistor R 3 based on the voltage signal v 1 output from the voltage detection circuit 71. It consists of a current calculation circuit 72 that calculates I 1 (=v 1 /R 3 ). Reference numeral 8 denotes an N-side contact current detection circuit for detecting the value of the current I 2 flowing through the rectifier 62, and in the illustrated embodiment, a current detection resistor R 4 connected in series with the rectifier 62 is used.
, a voltage detection circuit 81 that detects the voltage v 2 across the current detection resistor R 4 , and a voltage detection circuit 81 that detects the voltage v 2 across the current detection resistor R 4 ;
2. The current calculation circuit 82 calculates the current I 2 (=v 2 /R 4 ) flowing through the current detection resistor R 4 . Reference numeral 9 denotes a line voltage detection circuit for detecting the line voltage V between the P side electric line 1 and the N side electric line 2. 1
0 is the line voltage signal V output from the line voltage detection circuit 9, the current signal I1 output from the P-side ground current detection circuit 7, and the current signal I1 output from the N-side ground current detection circuit 8. Input the current signal I 2 and check whether there is an insulation defect in which part of the DC electrical system, for example, the P-side electric line 1, the N-side electric line 2, or the armature 12 of the DC motor (see Figure 7). This is an insulation value resistance value calculation circuit that makes a judgment and calculates the insulation value R e of each part. In the illustrated embodiment, the insulation value resistance value calculation circuit 10 is composed of the following circuits. Reference numeral 101 inputs the current signal I 1 outputted from the P-side grounding detection circuit 7 and the line voltage signal V outputted from the line voltage detection circuit 9, and based on these signals I 1 and V, as will be described later. In this way, the P-side insulation value calculation circuit calculates the insulation value R ep of the P-side electric circuit 1. 102 inputs the current signal I 2 output from the N-side ground current detection circuit 8 and the line voltage signal V output from the line voltage detection circuit 9, and based on these signals I 2 and V, This is an N-side insulation value calculation circuit that calculates the insulation value Reo of the N-side electric circuit 2 as described later. Reference numeral 104 denotes a variation width detection circuit which inputs the current signal I 2 outputted from the N-side current detection circuit 8 and calculates the variation width L of the current I 2 generated due to poor insulation of the armature 12, as described below. In the illustrated embodiment, a filter 104' that cuts a DC component and a peak calculation circuit 10 that rectifies and smoothes the signal output from the filter 104' are used.
4". 103 is the fluctuation amplification detection circuit 10
This is an armature insulation value calculation circuit which inputs the fluctuation width signal L outputted from the DC motor 4 and the line voltage signal V and calculates the insulation value Rea of the armature 12 of the DC motor 4 as described later. Reference numeral 105 indicates the insulation value signal R ea of the armature 12 outputted from the armature insulation value calculation circuit 103, the insulation value signal R ep of the P side electric circuit 1 outputted from the P side insulation value calculation circuit 101, and the N side The insulation value signal R eo of the N-side electric circuit 2 outputted from the insulation value calculation circuit 102 is input, and the insulation values R ea ,
This is a total insulation value calculation circuit that calculates the parallel sum of R ep and Reo and outputs the total insulation value R et of a DC electrical system. 11 is an insulation value signal of each part of the DC electrical system outputted from the insulation resistance value calculation circuit 10;
R e (in the illustrated embodiment, the insulation value signals R ea , R ep ,
This is an insulation value display/warning device that inputs R eo and R et and displays a warning respectively. Note that the P-side ground current detection circuit 7 and the N-side ground current detection circuit 8 may of course be known current detection circuits. In addition, the input part of the line voltage detection circuit 9 and the input part of the voltage detection circuits 71 and 81 can be connected between the lines of the P-side and N-side electric circuits of other DC electrical systems, respectively, or the current detection circuits provided in the system. A pair of line voltage detection circuits 9, voltage detection circuits 71, 8
1. Insulation resistance value calculation circuit 10, display warning device, etc.
The insulation values of many DC electrical systems can be easily measured.

本発明装置は以下に示す如くして直流電気系統
の各部位の絶縁不良を検知し、その値を演算す
る。
The device of the present invention detects insulation defects in various parts of a DC electrical system and calculates the value as described below.

第2図に示す如く、P側電路1にのみ絶縁不
が生じると(接地)電流I1が図の点線Aに示す
如く流れ、その場合には図から明らかな如く、
線間電圧V、絶縁値Rep、電流検出用抵抗R3
抵抗R2、(接地)電流I1間には、次の各式が成
立する。
As shown in FIG. 2, if insulation failure occurs only in the P-side electrical circuit 1, the (ground) current I1 flows as shown by the dotted line A in the diagram, and in that case, as is clear from the diagram,
Line voltage V, insulation value R ep , current detection resistance R 3 ,
The following equations hold true between the resistance R 2 and the (ground) current I 1 .

V=I1(Rep+R3+R2) (1) Rep=V/I1−R3−R2 (2) 但しN側電路の絶縁値≫R2+R3とする。そこ
で、P側接地電流検出回路7から出力された電
流信号I1と線間電圧検出回路9から出力された
線間電圧信号Vとを入力している絶縁抵抗値演
算回路10は、前記式(2)に基き、P側電路1の
絶縁値Repを演算する。
V=I 1 (R ep + R 3 + R 2 ) (1) R ep = V/I 1 −R 3 −R 2 (2) However, the insulation value of the N-side electrical circuit≫R 2 +R 3 . Therefore, the insulation resistance value calculation circuit 10 inputting the current signal I 1 outputted from the P-side ground current detection circuit 7 and the line voltage signal V outputted from the line voltage detection circuit 9 uses the above formula ( 2), calculate the insulation value R ep of the P-side electric circuit 1.

次にP側とN側の極性が反転し、第3図に示
す如く、P側電路1に絶縁不良がある場合は、
(接地)電流I1が図の点線Aに示す如く流れ、
その場合はは次の各式が成立する。但しN側電
路の絶縁値≫R1+R3とする。
Next, the polarity of the P side and N side is reversed, and as shown in Fig. 3, if there is an insulation failure in the P side electric circuit 1,
(ground) current I1 flows as shown by dotted line A in the figure,
In that case, the following formulas hold true. However, the insulation value of the N-side circuit should be R 1 + R 3 .

V=I1(Rep+R3+R1) (3) Rep=V/I1−R3−R1 (4) 従つて、絶縁抵抗値演算回路10は式(4)に基き
該絶縁値Repを演算する。
V=I 1 (R ep + R 3 + R 1 ) (3) R ep = V/I 1 −R 3 −R 1 (4) Therefore, the insulation resistance value calculation circuit 10 calculates the insulation value based on equation (4). Calculate R ep .

第4図に示す如く、N側電路2にのみ絶縁不
良が生じると(接地)電流I2が点線Bに示す如
く流れ、その場合には、次の各式が成立する。
但しP側絶縁値≫R1+R4とする。
As shown in FIG. 4, if an insulation failure occurs only in the N-side electric path 2, a (ground) current I2 flows as shown by the dotted line B, and in that case, the following equations hold true.
However, P side insulation value≫R 1 + R 4 .

V=I2(Reo+R4+R1) (5) Reo=V/I2−R4−R1 (6) 絶縁抵抗値演算回路10は該式(6)に基いて絶縁
値Reoを演算する。
V=I 2 (R eo + R 4 + R 1 ) (5) R eo = V/I 2 −R 4 −R 1 (6) The insulation resistance value calculation circuit 10 calculates the insulation value R eo based on the formula (6). Calculate.

次にP側電路1とN側電路2の極性が反転
し、N側電路2に絶縁不良がある第5図の如き
場合は、(接地)電流I2が図の点線Bにて示す
如く流れ、その場合、次の各式が成立する。但
しP側電路絶縁値≫R2+R4とする。
Next, if the polarity of the P-side electric circuit 1 and the N-side electric circuit 2 is reversed and there is an insulation defect in the N-side electric circuit 2 as shown in Figure 5, the (ground) current I2 flows as shown by the dotted line B in the figure. , in that case, the following equations hold true. However, P side electric circuit insulation value≫R 2 + R 4 .

V=I2(Reo+R4+R2) (7) Reo=V/I2−R4−R2 (8) 従つて、絶縁抵抗値演算回路10は、式(8)に基
きN側電路2の絶縁値Reoを演算する。
V=I 2 (R eo + R 4 + R 2 ) (7) R eo = V/I 2 −R 4 −R 2 (8) Therefore, the insulation resistance value calculation circuit 10 is Calculate the insulation value R eo of the electric circuit 2.

第6図に示す如く、P側電路1とN側電路2
とに絶縁不良が生じると、P側絶縁値≫R1
R4、N側絶縁値≫R2+R3の条件の下では、(接
地)電流I1及び(接地)電流I2が点線C,Dに
示す如く流れる。その場合には、次の各式が成
立する。
As shown in FIG. 6, P-side electric circuit 1 and N-side electric circuit 2
If an insulation failure occurs on both sides, the P side insulation value≫R 1 +
Under the conditions of R 4 , N-side insulation value≫R 2 +R 3 , (ground) current I 1 and (ground) current I 2 flow as shown by dotted lines C and D. In that case, the following equations hold true.

V=I1(Rep+R3+R2) (9) V=I2(Reo+R4+R1) (10) Rep=V/I1−R3−R2 (11) Reo=V/I2−R4−R1 (12) 絶縁抵抗値演算回路10は該式(11)、(12)に基きP側
電路1の絶縁値RepとN側電路2の絶縁値Reo
演算する。極性が反転した場合も同様にして求め
られる。
V=I 1 (R ep +R 3 +R 2 ) (9) V=I 2 (R eo +R 4 +R 1 ) (10) R ep =V/I 1 −R 3 −R 2 (11) R eo =V /I 2 −R 4 −R 1 (12) The insulation resistance value calculation circuit 10 calculates the insulation value R ep of the P-side electric circuit 1 and the insulation value R eo of the N-side electric circuit 2 based on the equations (11) and (12). calculate. It can be found in the same way even when the polarity is reversed.

第7図に示す如く、直流電動機4の電機子1
2に絶縁不良(白抜矢符Wに示す箇所)が起つ
た場合、例えば、コイルやライザー等に付着し
ているダストが湿り、電流が漏洩する場合、電
機子12は回転しているので、以下に述べる如
く変動する(接地)電流が流れる。
As shown in FIG. 7, the armature 1 of the DC motor 4
If an insulation failure occurs in 2 (point indicated by the white arrow W), for example, if dust attached to the coil or riser becomes wet and current leaks, the armature 12 is rotating, so A varying (ground) current flows as described below.

(i) 第8図は、絶縁不良箇所WがP側ブラシ1
3直下にある時であつて、図示点線Fに示す
如く(接地)電流I1が流れる。その場合に
は、線間電圧V、絶縁値Rea等の間に次の各
式が成立する。
(i) In Figure 8, the defective insulation location W is on the P side brush 1.
3, a (ground) current I 1 flows as shown by the dotted line F in the figure. In that case, the following equations hold true between the line voltage V, the insulation value Rea, etc.

V=I1(Rea+R3+R2) (13) I1=V/(Rea+R3+R2) (14) なお、この場合は、電機子12の抵抗及び
コイル逆起電力により、N側ブラシ14には
(接地)電流が流れないものとしてよい。
V=I 1 (R ea + R 3 + R 2 ) (13) I 1 = V/(R ea + R 3 + R 2 ) (14) In this case, due to the resistance of the armature 12 and the coil back electromotive force, N It may be assumed that no (ground) current flows through the side brush 14.

(ii) 第9図は、絶縁不良箇所WがP側ブラシ1
3とN側ブラシ14との中間位置にある時で
あつて、図の点線F,Gに示す如く(接地)
電流I1,I2が流れる。その場合には、線間電
圧V、絶縁値Rea等の間に次の各式が成立す
る。
(ii) In Figure 9, the defective insulation location W is on the P side brush 1.
3 and the N-side brush 14, as shown by dotted lines F and G in the figure (grounding).
Currents I 1 and I 2 flow. In that case, the following equations hold true between the line voltage V, the insulation value Rea, etc.

V=I1(Rea+r1+R3+R2) (15) V=I2(Rea+r2+R4+R1) (16) I1=V/(Rea+r1+R3+R2) (17) I2=V/(Rea+r2+R4+R1) (18) r1は電機子12のP側ブラシ13と絶縁不良
箇所W間の抵抗、r2はN側ブラシ14と絶縁
不良箇所W間の抵抗である。r1,r2は電機子
12の回転に伴い順次変化する。
V=I 1 (R ea +r 1 +R 3 +R 2 ) (15) V=I 2 (R ea +r 2 +R 4 +R 1 ) (16) I 1 =V/(R ea +r 1 +R 3 +R 2 ) ( 17) I 2 = V/(R ea + r 2 + R 4 + R 1 ) (18) r 1 is the resistance between the P side brush 13 of the armature 12 and the poor insulation point W, r 2 is the resistance between the N side brush 14 and the poor insulation point This is the resistance between points W. r 1 and r 2 change sequentially as the armature 12 rotates.

(iii) 第10図は、絶縁不良箇所WがN側ブラシ
14の直下にある時であつて、図の点線Gに
示す如く(接地)電流I2が流れる。その場合
には、線間電圧V、絶縁値Rea等の間には次
の各式が成立する。
(iii) FIG. 10 shows a case where the insulation failure point W is directly under the N-side brush 14, and a (ground) current I 2 flows as shown by the dotted line G in the figure. In that case, the following equations hold true between the line voltage V, the insulation value Rea, etc.

V=I2(Rea+R1+R1) (19) I2=V/(Rea+R4+R1) (20) 従つて、電機子12が回転数N(rpm)で回
転すると、(接地)電流I1及び(接地)電流I2
は第11図a,bに示す如く、周波数f(f=
N/60・P0/2但しP0は極数)、変動幅L(I1の場合)
、 L′(I2の場合)で変動する。前記式(14)、式
(17)、式(18)及び式(20)から容易に分るよ
うに、変動幅L,L′、線間電圧V、絶縁値Rea
抵抗R1,R2,R3,R4間には、次の各式が成立
する。
V=I 2 (R ea +R 1 +R 1 ) (19) I 2 =V/(R ea +R 4 +R 1 ) (20) Therefore, when the armature 12 rotates at the rotation speed N (rpm), (ground ) current I 1 and (ground) current I 2
is the frequency f (f=
N/60・P 0 /2 (where P 0 is the number of poles), fluctuation width L (in case of I 1 )
, L′ (for I 2 ). As can be easily seen from the above formulas (14), (17), (18), and (20), the fluctuation widths L, L', the line voltage V, the insulation value R ea ,
The following equations hold true between the resistors R 1 , R 2 , R 3 , and R 4 .

L=V/Rea+R2+R3 (21) L′=V/Rea+R1+R4 (22) Rea=V/L−R2−R3 (23) Rea=V/L′−R1−R4 (24) 変動幅検出回路104は、電流I2の変動幅L′を
検知し、電機子絶縁値演算回路103は該変動
幅検出回路104から出力された変動幅信号
L′と線間電圧検出回路9から出力された線間電
圧信号Vを入力し、前記式(24)に基いてRea
を演算する。電流I1の変動幅Lに基いてRea
求めることも勿論可能である。なお、P側とN
側の極性が反転していても同様にしてReaは求
められる。更に、直流発電機において、その電
機子に絶縁不良が生じても同様にして電機子の
絶縁値が求められる。総合絶縁値演算回路10
5は前記各絶縁値Rep、Reo、Reaの並列和を演
算する。表示警報器11は前記絶縁値Rep
Reo、Rea及びRetを表示・警告する。
L=V/R ea +R 2 +R 3 (21) L'=V/R ea +R 1 +R 4 (22) R ea =V/L-R 2 -R 3 (23) R ea =V/L'- R 1 −R 4 (24) The fluctuation width detection circuit 104 detects the fluctuation width L′ of the current I 2 , and the armature insulation value calculation circuit 103 detects the fluctuation width signal output from the fluctuation width detection circuit 104.
L' and the line voltage signal V output from the line voltage detection circuit 9 are input, and R ea is calculated based on the equation (24) above.
Calculate. Of course, it is also possible to obtain R ea based on the fluctuation range L of the current I 1 . In addition, P side and N
Even if the polarity of the sides is reversed, R ea can be found in the same way. Furthermore, in a DC generator, even if an insulation failure occurs in the armature, the insulation value of the armature can be determined in the same manner. Comprehensive insulation value calculation circuit 10
5 calculates the parallel sum of the respective insulation values R ep , R eo , and R ea . The display alarm 11 displays the insulation value R ep ,
Display/warn R eo , R ea and R et .

P側電路1又はN側電路2と電機子12とに
同時に絶縁不良が生じた場合でも、前記P側又
はN側の接地電流検出回路7,8に、電機子1
2の回転による電流の変動を除去さす機能を付
加することにより、P側又はN側電路1,2の
絶縁値を演算することが出来、また変動幅検出
回路104に、P側電路又はN側電路2の絶縁
不良に基く直流の(接地)電流分を除去させ
て、電機子の絶縁値を演算することが出来る。
Even if an insulation failure occurs simultaneously in the P-side electric circuit 1 or the N-side electric circuit 2 and the armature 12, the ground current detection circuits 7 and 8 on the P-side or N-side
By adding a function to remove the current fluctuation due to the rotation of 2, it is possible to calculate the insulation value of the P-side or N-side electric circuits 1 and 2, and the fluctuation range detection circuit 104 can be used to The insulation value of the armature can be calculated by removing the direct current (ground) current due to poor insulation of the electric path 2.

以上詳説したところから明らかな如く、本発明
装置は次の如き優れた効果を奏するものである。
As is clear from the detailed explanation above, the apparatus of the present invention has the following excellent effects.

直流電気系統が活線状態にあるときにも、常
時不断に監視して、絶縁不良の発生とその発生
部位を弁別検知し、且つそれらの絶縁値を同時
に演算表示することが出来る。
Even when the DC electrical system is in a live state, it is possible to constantly monitor the system, to discriminately detect the occurrence of insulation failure and its occurrence location, and to calculate and display the insulation values at the same time.

絶縁不良とその発生部位を早期に発見するこ
とができるため、迅速的確な措置を講じること
により、漏電事故を未然に防止することが出来
るほか、通電停止中の電気系統の点検作業にも
手間が掛からなくなる。
Since insulation defects and their occurrence locations can be discovered early, by taking prompt and accurate measures, it is possible to prevent electrical leakage accidents, and it also saves time and effort when inspecting the electrical system while the power is turned off. It will no longer hang.

P側電路とN側電路との間の線間電圧に基い
て各部位の絶縁値を演算し、しかも各部位の絶
縁値を同時に演算表示するので、たとえ線間電
圧に変動が生じても、正確に各絶縁値を演算表
示することが出来る。
The insulation value of each part is calculated based on the line voltage between the P side electric circuit and the N side electric circuit, and the insulation value of each part is calculated and displayed at the same time, so even if there is a fluctuation in the line voltage, Each insulation value can be calculated and displayed accurately.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明装置の実施例を説明する
ためのものであつて、第1図は本発明装置のブロ
ツク線図であつて、第2図及び第3図はP側電路
に絶縁不良が生じた場合の本発明装置の一部接続
図、第4図及び第5図はN側電路に絶縁不良が生
じた場合の本発明装置の一部接続図、第6図はP
側及びN側の電路に同時に絶縁不良が生じた場合
の本発明装置の一部接続図、第7図は直流電動機
の電機子の簡略図、第8図乃至第10図は電機子
に絶縁不良が生じた場合の本発明装置の一部接続
図、第11図aは(接地)電流I1の波形図、第1
1図bは(接地)電流I2の波形図である。 1…P側電路、2…N側電路、3…直流電源、
4…直流電動機、5…抵抗回路、6…極性判断回
路、61,62…整流素子、7…P側接地電流検
出回路、71…電圧検出回路、72…電流演算回
路、8…N側接地電流検出回路、81…電圧検出
回路、82…電流演算回路、9…線間電圧検出回
路、10…絶縁抵抗値演算回路、11…表示警告
器、R1,R2…抵抗、P…中間接続点、Q…接地
点、I1,I2…(接地)電流、R3,R4…電流検出用
抵抗。
The drawings are all for explaining the embodiments of the device of the present invention, and FIG. 1 is a block diagram of the device of the present invention, and FIGS. 4 and 5 are partial connection diagrams of the present invention device when insulation failure occurs in the N-side electric circuit, and FIG.
Figure 7 is a simplified diagram of the armature of a DC motor, and Figures 8 to 10 are diagrams showing insulation failure in the armature. FIG . 11a is a partial connection diagram of the device of the present invention when
Figure 1b is a waveform diagram of the (ground) current I2 . 1...P side electrical circuit, 2...N side electrical circuit, 3...DC power supply,
4... DC motor, 5... Resistance circuit, 6... Polarity judgment circuit, 61, 62... Rectifying element, 7... P-side grounding current detection circuit, 71... Voltage detection circuit, 72... Current calculation circuit, 8... N-side grounding current Detection circuit, 81...Voltage detection circuit, 82...Current calculation circuit, 9...Line voltage detection circuit, 10...Insulation resistance value calculation circuit, 11...Display warning device, R1 , R2 ...Resistance, P...Intermediate connection point , Q...ground point, I1 , I2 ...(ground) current, R3 , R4 ...current detection resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電気系統のP側電路とN側電路間に接続
され、複数個の抵抗が直列に接続されて形成され
た抵抗回路と、該抵抗回路の中間接続点と接地点
との間に接続され、複数個の整流素子が逆並列接
続されて形成された極性判断回路と、前記夫々の
整流素子を流れる電流の値を検出する電流検出回
路と、P側電路とN側電路の相互間電圧を検出す
る線間電圧検出回路とを具備することを特徴とす
る絶縁抵抗値測定回路。
1. A resistor circuit connected between the P-side electric circuit and the N-side electric circuit of a DC electrical system and formed by connecting a plurality of resistors in series, and the intermediate connection point of the resistor circuit and the ground point. , a polarity judgment circuit formed by connecting a plurality of rectifying elements in antiparallel, a current detection circuit for detecting the value of the current flowing through each of the rectifying elements, and a voltage between the P-side electric path and the N-side electric path. An insulation resistance value measuring circuit comprising: a line voltage detection circuit for detecting a line voltage.
JP4900381A 1981-03-31 1981-03-31 Measuring circuit for insulation resistance value Granted JPS57161665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4900381A JPS57161665A (en) 1981-03-31 1981-03-31 Measuring circuit for insulation resistance value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4900381A JPS57161665A (en) 1981-03-31 1981-03-31 Measuring circuit for insulation resistance value

Publications (2)

Publication Number Publication Date
JPS57161665A JPS57161665A (en) 1982-10-05
JPH0314144B2 true JPH0314144B2 (en) 1991-02-26

Family

ID=12818998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4900381A Granted JPS57161665A (en) 1981-03-31 1981-03-31 Measuring circuit for insulation resistance value

Country Status (1)

Country Link
JP (1) JPS57161665A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540922A (en) * 1983-03-21 1985-09-10 Automeg, Inc. Motor winding leakage monitor
US6127747A (en) * 1999-09-16 2000-10-03 Westinghouse Air Brake Technologies Corporation Method and apparatus for detecting leakage current on a two wire DC or AC power line
JP4525630B2 (en) * 2006-04-28 2010-08-18 富士電機システムズ株式会社 Insulation resistance measuring method and apparatus
JP5003333B2 (en) * 2007-07-30 2012-08-15 富士電機株式会社 Insulation resistance measuring method and apparatus
JP5407024B2 (en) * 2008-06-05 2014-02-05 東芝三菱電機産業システム株式会社 Secondary battery system
JP5200975B2 (en) * 2009-02-06 2013-06-05 株式会社デンソー Current detection device for power conversion circuit
EP2508904B8 (en) * 2009-12-03 2019-05-22 Toshiba Mitsubishi-Electric Industrial Systems Corporation Secondary battery system
CN104569597A (en) * 2014-12-18 2015-04-29 北京新能源汽车股份有限公司 Insulation resistance detecting method and device for power battery
JP6061048B1 (en) * 2015-10-13 2017-01-18 富士電機株式会社 Method and apparatus for measuring insulation resistance of battery power supply

Also Published As

Publication number Publication date
JPS57161665A (en) 1982-10-05

Similar Documents

Publication Publication Date Title
JP3704400B2 (en) Abnormality diagnosis method in motor inverter drive control device
KR101272130B1 (en) Method of and device for insulation monitoring
US9182431B2 (en) Method and apparatus for determining an insulation resistance in a grounded isole terre system
US8957698B2 (en) Method and apparatus for off-line testing of multi-phase aternating current machines
JPH0314144B2 (en)
JPH06153301A (en) Leak detector
JPH01502391A (en) Cable failure detection device
JPH07123329B2 (en) Three-phase AC exciter
JP6969079B2 (en) Forced installation device, ground fault investigation device and method using it
JP4043168B2 (en) Line insulation resistance measuring device
JPH0738867Y2 (en) Transmission line failure direction detector
JPH05288790A (en) Overhead earth wire current sensor disconnection detector
JP3660577B2 (en) Method and apparatus for measuring resistance between rail joints
JP3268848B2 (en) Meter abnormality detection device
JPH05312878A (en) Inspection jig for wiring condition of power socket with grounding pole
JP3533983B2 (en) Method and apparatus for diagnosing insulation deterioration of DC machine and DC machine
JP2580064Y2 (en) Four-terminal measurement circuit
JP2924600B2 (en) Motor checker
RU2183165C1 (en) Power distribution system of electric plants of higher reliability and fire safety vehicles
JPH0638090B2 (en) Improved ground fault detector
JPH0579855U (en) Working current tester for earth leakage alarm
CN117517869A (en) Fault diagnosis system of high-voltage direct-current circuit
JP3954523B2 (en) Damage position detector for buried coated steel pipe
JP2009198282A (en) Leakage current measurement apparatus
JPS62213514A (en) Selective grounding detector for dc circuit