JP4043168B2 - Line insulation resistance measuring device - Google Patents

Line insulation resistance measuring device Download PDF

Info

Publication number
JP4043168B2
JP4043168B2 JP2000173212A JP2000173212A JP4043168B2 JP 4043168 B2 JP4043168 B2 JP 4043168B2 JP 2000173212 A JP2000173212 A JP 2000173212A JP 2000173212 A JP2000173212 A JP 2000173212A JP 4043168 B2 JP4043168 B2 JP 4043168B2
Authority
JP
Japan
Prior art keywords
measurement
line
state
insulation resistance
current flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000173212A
Other languages
Japanese (ja)
Other versions
JP2001349914A (en
Inventor
多嘉夫 平石
公治 太田
由孝 吉崎
Original Assignee
大同信号株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同信号株式会社 filed Critical 大同信号株式会社
Priority to JP2000173212A priority Critical patent/JP4043168B2/en
Publication of JP2001349914A publication Critical patent/JP2001349914A/en
Application granted granted Critical
Publication of JP4043168B2 publication Critical patent/JP4043168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Control Of Voltage And Current In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、鉄道信号機の保安設備など比較的低電圧であって、片線が大地に接していない被測定回線を含む回路において使用する回線の絶縁抵抗測定装置に関するものである。
【0002】
【従来の技術】
鉄道の沿線では、踏切に対して警報を開始すべき地点へ列車がきたこと、即ち踏切のしゃ断機の制御条件を、踏切のあるところまで送るなど、信号ケーブルを敷設し、それによって信号条件を送受する。この信号ケーブルは条件を送信する点、受信する点などに、接続箱を設け、そこに相対する接続用端子盤を設備し、その一方の端子から、遠方の接続箱に置く同様の端子盤まで、必要な何対かの信号ケーブルを結び条件の授受を行う。接続箱で相対する端子を平行的に接続すれば更に遠方まで条件を送ることができる。このような構成の信号ケーブルはその接続箱などで、対地絶縁が低下することがあり、条件の授受に支障をきたす。このために信号ケーブルなどで構成された電線路(被測定回線)の、絶縁劣化を検出して、早期に保守をすることが必要となる。
【0003】
従来、この絶縁劣化の測定は、被測定回線と大地間の抵抗を測るために、(1)制御回路の使用を停止し、回線を独立させてメガーで測定したり、又は(2)信号ケーブルで条件を遠方に送る信号の回路では回線を大地から浮かせていることを利用し、測定点で大地と被測定回線の間に電圧を加え、その電流値を測ることによって、回線の大地間との絶縁抵抗を知るというものも提案されている。
【0004】
(1)の制御回路の使用を停止し、回線を独立させてメガーで測定する方法は、実働している設備の使用停止となり、夜間など列車の運行の無い時間に行わなければならないという問題があつた。したがって、事前に検知するためには、定期的に夜間作業を行うことになり、かつリアルタイムに測定はできないため、絶縁低下による障害が発生してしまうこともある。
【0005】
(2)の測定点で大地と被測定回線の間に電圧を加え、その電流値を測ることによって回線の大地間との絶縁抵抗を知る方法は以下のような原理による。すなわち、図2に示すように制御条件の電源電圧E、負荷(リレーであることが多い)Rl、からなる回線1,2に、測定用電源Esとシリーズに測定用抵抗Rsを接続すると、回線1,2は大地に対して浮いているから、制御条件のプラス側の絶縁抵抗rp、マイナス側の抵抗rm、の並列合成抵抗が測定される。
【0006】
しかし、実際には、rpとrmの接地点と測定電源Esの接地点では電位が異なり、接地点間の電位の影響を受ける。この接地点での電位は、それぞれに変化する。その影響は、直接的に測定電圧に加わり、測定電流と絶縁抵抗の値は、良く判らない関係になり、絶縁不良の検知が困難になる。
【0007】
【発明が解決しようとする課題】
そこでこの発明は、前記のような従来の問題点を解決し、実働している設備の使用停止となることなく、リアルタイムに測定することができるとともに、接地点での電位の変動があっても確実に絶縁不良の検知ができる回線の絶縁抵抗測定装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記の目的を達成するため、図1に示すように、この発明は、鉄道の沿線に敷設された信号用ケーブルとしての被測定回線1,2と大地間に、直列に接続した測定用抵抗Rsと測定用電源Esを介して測定用電圧を印加し、該電圧の印加によって測定用抵抗と被測定回線に流れる測定用電流Isから被測定回線と大地間の絶縁抵抗を測定する回線の絶縁抵抗測定装置において、測定用抵抗Rsを測定用電源Esと直列に接続し測定用電圧を印加した第1の状態と、測定用電源Esから切り離して大地に直接接続し測定用電圧を印加しない第2の状態に切り換え可能とするスイッチSWを設け、このスイッチを切り換え制御する機能を有するとともに、第1の状態で流れる測定用電流Isと第2の状態で流れる測定用電流Is’を読み込んで両電流の差を計算し、その電流値から被測定回線の絶縁抵抗の良否を判断する機能を有する処理装置3を設け、この処理装置は、第1の状態で流れる測定用電流を短時間で3回以上計測し、回線の該測定用電流に対する時定数を求め、その直後に第2の状態で流れる測定用電流も3回以上計測し、回線の該測定用電流に対する時定数を求め、この複数の計測値から回線のコンデンサ容量を等価的に計算し、時定数を求め、それによって第1の状態で流れる測定用電流と第2の状態で流れる測定用電流が最終値に収斂するまで待たずに短時間で被測定回線の絶縁抵抗の良否を判断するようになっていることを特徴とする回線の絶縁抵抗測定装置である。
【0009】
前記のように回線1,2と大地間に測定用電源(測定用電圧)Esと直列に測定用抵抗Rsをシリーズに接続して得られた測定用電流Isと、Esをかけないで直列に測定用抵抗Rsだけを接続したときに流れる測定用電流Is’との差を取ることによって、接地電位の影響を無くし、その結果から回線の絶縁抵抗劣化を判断できるようにするものである。
【0010】
【発明の実施の形態】
この発明の一実施の形態を、図面を参照して説明する。図1は被測定回線を含む回路図であって、被測定回線1,2、制御用電源E、制御条件S、条件受信リレーRlからなるケーブルを用いた制御回線に対して、その制御用電源Eの正側回線に接続する測定用抵抗Rs、それと直列に接続される測定用電源Es、その測定用電源Esをバイパスして、測定用抵抗Rsを大地に接続するスイッチSW、そのスイッチを制御すると共に、電源Esを接続したとき(第1の状態)の測定された電流Isと、その測定用電源Esをバイパスして、測定用抵抗Rsを大地に接続したとき(第2の状態)の電流Is’との差を計算し、被測定回線の絶縁状態を測定し、警報を出力する処理装置3から構成されている。
【0011】
ここに、rp、rmはそれぞれ回線の正側と負側の大地との絶縁抵抗である。処理装置3は内部に有するプログラムされた制御論理により、一定時間毎(処理装置3に対して指示入力をすることによって任意に設定可能)に、測定用抵抗Rs、それと直列に接続される測定用電源Esを被測定回線1,2に接続し、測定用抵抗Rsに流れる測定用電流Isを、その両端の電位差、又は直接電流測定用ディバイスで読取る。その後、直ちに測定用電源Esを切り離し、測定用抵抗Rsを直接大地に接続し、測定用抵抗Rsに流れる測定用電流Is’を測定する。測定した結果からIs−Is’を計算し、その値から機能回路が動作中か否かを判断し、絶縁抵抗の劣化を検出する機能をもつ。
【0012】
計測のために、回線に加える測定用電源Esによって流れる電流は、回線の対地コンデンサ容量の影響によって、指数関数的に増加し安定するまでに時間が懸ることがある。この場合、測定用抵抗Rsを直接大地に接続して流れる測定用電流Is’も安定するまで時間が懸る。このような場合、処理装置3の論理を、Isを短時間に3回以上計測し、その直後、測定用抵抗Rsを直接大地に接続して流れる測定用電流Is’も3回以上計測するものとし、この複数の計測値から、回線のコンデンサ容量を等価的に計算し、時定数をもとめ、安定するまで時間をかけずに実際の絶縁抵抗の低下を検知することができる。
【0013】
【発明の効果】
この発明は前記のように構成された電線路(被測定回線)について、被監視回路の電源電圧の影響も、測定端での大地電位と絶縁抵抗に対する大地電位の影響も受けず、換言すると接地点での電位の変動があっても確実に絶縁不良の検知ができる。また、メガーで測定するような被監視回路の機能を停止することなく、絶縁抵抗の劣化の測定がリアルタイムにできるという優れた効果がある。
【図面の簡単な説明】
【図1】 この発明の一実施の形態を示す被測定回線を含む回路構成図である。
【図2】 図1と対応する従来の回路構成図である。
【符号の説明】
1,2 被測定回線
3 処理装置
E 制御用電源
S 制御条件
Rl 条件受信リレー(負荷)
Rs 測定用抵抗
Es 測定用電源
Is 第1の状態で流れる測定用電流
Is’ 第2の状態で流れる測定用電流
SW スイッチ
rp、rm 絶縁抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a line insulation resistance measuring apparatus used in a circuit including a line to be measured that has a relatively low voltage and one line is not in contact with the ground, such as a safety equipment for railway traffic signals.
[0002]
[Prior art]
Along the railway line, a signal cable is laid such that the train has arrived at the point where a warning should be started for the railroad crossing, that is, the control condition of the level crossing breaker is sent to the place where the railroad crossing is present, and thus the signal condition is set accordingly. Send and receive. This signal cable is equipped with a connection box at the point where conditions are transmitted and received, and a terminal board for connection is installed opposite to it, from one terminal to a similar terminal board placed in a remote connection box. Then, connect several necessary signal cables and exchange the conditions. Conditions can be sent farther if the opposing terminals are connected in parallel in the connection box. The signal cable having such a configuration may deteriorate the ground insulation at the junction box or the like, which hinders the exchange of conditions. For this reason, it is necessary to detect the insulation deterioration of the electric wire path (measured line) composed of a signal cable or the like and perform early maintenance.
[0003]
Conventionally, this insulation degradation has been measured by (1) stopping the use of the control circuit and making the line independent to measure the resistance between the line under test and the ground, or (2) signal cable. In the circuit of the signal that sends the condition far away, the fact that the line is floating from the ground is used, and a voltage is applied between the ground and the line to be measured at the measurement point and the current value is measured. It has also been proposed to know the insulation resistance.
[0004]
The method of (1) stopping the use of the control circuit and making the measurement with the megger independent of the line results in the suspension of the use of the facilities that are actually working, and the problem that it must be carried out at night when there is no train operation. Hot. Therefore, in order to detect in advance, night work is regularly performed and measurement cannot be performed in real time, so that a failure due to a decrease in insulation may occur.
[0005]
The method of knowing the insulation resistance between the line and the ground by applying a voltage between the ground and the line to be measured at the measurement point (2) and measuring the current value is based on the following principle. That is, when a measuring power source Es and a measuring resistor Rs are connected to a series to lines 1 and 2 consisting of a power source voltage E and a load (often a relay) Rl as shown in FIG. Since 1 and 2 are floating with respect to the ground, the parallel combined resistance of the plus side insulation resistance rp and the minus side resistance rm of the control condition is measured.
[0006]
However, in reality, the potential differs between the ground point of rp and rm and the ground point of the measurement power source Es, and is affected by the potential between the ground points. The potential at this grounding point changes. The effect is directly applied to the measurement voltage, and the measurement current and the value of the insulation resistance are not well understood, making it difficult to detect an insulation failure.
[0007]
[Problems to be solved by the invention]
Therefore, the present invention solves the conventional problems as described above, and can measure in real time without stopping the use of facilities that are actually operating, and even if there is a fluctuation in potential at the grounding point. An object of the present invention is to provide a line insulation resistance measuring device capable of reliably detecting an insulation failure.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, as shown in FIG. 1, the present invention provides a measuring resistor Rs connected in series between measured lines 1 and 2 as signal cables laid along a railway line and the ground. Insulation resistance of the line for measuring the insulation resistance between the measured line and the ground from the measurement resistance and the measurement current Is flowing in the measured line by applying the voltage through the measurement power supply Es In the measuring device, a first state in which the measuring resistor Rs is connected in series with the measuring power source Es and a measuring voltage is applied, and a second state in which the measuring voltage is applied without being applied from the measuring power source Es and directly connected to the ground. The switch SW that can be switched to the state is provided, has a function of controlling the switch, and reads the measurement current Is flowing in the first state and the measurement current Is ′ flowing in the second state. A processing device 3 having a function of calculating a difference in current and determining whether the insulation resistance of the circuit under test is good or bad from the current value is provided, and this processing device applies the measurement current flowing in the first state in a short time to 3 More than once, the time constant for the measurement current of the line is obtained, and immediately after that, the measurement current flowing in the second state is also measured three times or more to obtain the time constant for the measurement current of the line. Equivalently calculate the capacitor capacity of the line from the measured value and obtain the time constant, so that it does not wait until the measurement current flowing in the first state and the measurement current flowing in the second state converge to the final value A circuit insulation resistance measuring apparatus characterized in that the quality of the insulation resistance of the circuit under test is judged in a short time.
[0009]
As described above, the measurement current Is obtained by connecting the measurement resistor Rs in series between the lines 1 and 2 and the measurement power supply (measurement voltage) Es in series, and in series without applying Es. By taking the difference from the measurement current Is ′ that flows when only the measurement resistor Rs is connected, the influence of the ground potential is eliminated, and the deterioration of the insulation resistance of the line can be determined from the result.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram including a line to be measured. For a control line using a cable consisting of lines 1 and 2 to be measured, a control power supply E, a control condition S, and a condition reception relay R1, the control power supply A measuring resistor Rs connected to the positive line of E, a measuring power source Es connected in series therewith, a switch SW that bypasses the measuring power source Es and connects the measuring resistor Rs to the ground, and controls the switch At the same time, the measured current Is when the power supply Es is connected (first state) and the measurement resistor Rs is connected to the ground bypassing the measurement power supply Es (second state). It comprises a processing device 3 that calculates the difference from the current Is ′, measures the insulation state of the circuit under test, and outputs an alarm.
[0011]
Here, rp and rm are insulation resistances between the positive side and the negative side of the line, respectively. The processing device 3 has a measuring resistor Rs and a measurement resistor connected in series with the processing resistor 3 at predetermined intervals (can be arbitrarily set by inputting an instruction to the processing device 3) by programmed control logic included therein. The power supply Es is connected to the lines to be measured 1 and 2, and the measurement current Is flowing through the measurement resistor Rs is read by the potential difference between both ends or directly by the current measurement device. Thereafter, the measuring power source Es is immediately disconnected, the measuring resistor Rs is directly connected to the ground, and the measuring current Is ′ flowing through the measuring resistor Rs is measured. Is-Is ′ is calculated from the measured result, and it is determined whether or not the functional circuit is operating from the value, and the deterioration of the insulation resistance is detected.
[0012]
For measurement, the current flowing from the measurement power supply Es applied to the line increases exponentially due to the influence of the capacitance of the ground capacitor of the line, and it may take time to stabilize. In this case, it takes time until the measurement current Is ′ flowing by connecting the measurement resistor Rs directly to the ground is also stabilized. In such a case, the logic of the processing device 3 measures Is three times or more in a short time, and immediately after that, the measurement current Is ′ flowing by connecting the measurement resistor Rs directly to the ground is measured three times or more. From this plurality of measured values, the capacitance of the line can be calculated equivalently, the time constant can be obtained, and the actual decrease in insulation resistance can be detected without taking time to stabilize.
[0013]
【The invention's effect】
The present invention is not affected by the power supply voltage of the monitored circuit nor the ground potential at the measurement end and the ground potential with respect to the insulation resistance. Even if there is a change in potential at the point, insulation failure can be detected reliably. In addition, there is an excellent effect that the degradation of the insulation resistance can be measured in real time without stopping the function of the monitored circuit as measured by the megger.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram including a circuit under test showing an embodiment of the present invention.
FIG. 2 is a conventional circuit configuration diagram corresponding to FIG. 1;
[Explanation of symbols]
1, 2 Line to be measured 3 Processing device E Power supply for control S Control condition Rl Condition reception relay (load)
Rs Resistance for measurement Es Power supply for measurement Is Current for measurement flowing in the first state Is ′ Current for measurement flowing in the second state SW switch rp, rm Insulation resistance

Claims (1)

鉄道の沿線に敷設された信号用ケーブルとしての被測定回線と大地間に、直列に接続した測定用抵抗と測定用電源を介して測定用電圧を印加し、該電圧の印加によって測定用抵抗と被測定回線に流れる測定用電流から被測定回線と大地間の絶縁抵抗を測定する回線の絶縁抵抗測定装置において、
前記測定用抵抗を測定用電源と直列に接続し測定用電圧を印加した第1の状態と、測定用電源から切り離して大地に直接接続し測定用電圧を印加しない第2の状態に切り換え可能とするスイッチを設け、このスイッチを切り換え制御する機能を有するとともに、第1の状態で流れる測定用電流と第2の状態で流れる測定用電流を読み込んで両電流の差を計算し、その電流値から被測定回線の絶縁抵抗の良否を判断する機能を有する処理装置を設け、この処理装置は、第1の状態で流れる測定用電流を短時間で3回以上計測し、回線の該測定用電流に対する時定数を求め、その直後に第2の状態で流れる測定用電流も3回以上計測し、回線の該測定用電流に対する時定数を求め、この複数の計測値から回線のコンデンサ容量を等価的に計算し、時定数を求め、それによって第1の状態で流れる測定用電流と第2の状態で流れる測定用電流が最終値に収斂するまで待たずに短時間で被測定回線の絶縁抵抗の良否を判断するようになっていることを特徴とする回線の絶縁抵抗測定装置。
A measurement voltage is applied via a measurement resistor and a measurement power source connected in series between the line to be measured as a signal cable laid along the railroad line and the ground. In a circuit insulation resistance measuring device that measures the insulation resistance between the circuit under test and the ground from the measurement current flowing through the circuit under test,
It is possible to switch between a first state in which the measurement resistor is connected in series with a measurement power source and a measurement voltage is applied, and a second state in which the measurement resistor is disconnected from the measurement power source and directly connected to the ground and no measurement voltage is applied. A switch that controls the switching of the switch, reads the measurement current flowing in the first state and the measurement current flowing in the second state, calculates the difference between the two currents, A processing device having a function of judging whether the insulation resistance of the line to be measured is good or bad is provided, and this processing device measures the measurement current flowing in the first state three times or more in a short time, and with respect to the measurement current of the line The time constant is obtained, and the measurement current flowing in the second state immediately after that is also measured three times or more, the time constant for the measurement current of the line is obtained, and the capacitor capacity of the line is equivalently calculated from the measured values. Calculate A constant is obtained, and thereby the quality of the insulation resistance of the line under test is judged in a short time without waiting until the measurement current flowing in the first state and the measurement current flowing in the second state converge to the final value. An insulation resistance measuring device for a circuit, characterized in that
JP2000173212A 2000-06-09 2000-06-09 Line insulation resistance measuring device Expired - Lifetime JP4043168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000173212A JP4043168B2 (en) 2000-06-09 2000-06-09 Line insulation resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000173212A JP4043168B2 (en) 2000-06-09 2000-06-09 Line insulation resistance measuring device

Publications (2)

Publication Number Publication Date
JP2001349914A JP2001349914A (en) 2001-12-21
JP4043168B2 true JP4043168B2 (en) 2008-02-06

Family

ID=18675492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173212A Expired - Lifetime JP4043168B2 (en) 2000-06-09 2000-06-09 Line insulation resistance measuring device

Country Status (1)

Country Link
JP (1) JP4043168B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127983A (en) * 2009-12-17 2011-06-30 Hioki Ee Corp Insulation resistance measuring method, inspection method and insulation resistance measuring apparatus
CN102721872A (en) * 2012-03-13 2012-10-10 北京元六鸿远电子技术有限公司 8-position semi-automatic insulating resistance measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2390148B1 (en) * 2010-12-17 2013-08-08 Zigor Corporacion, S. A. PROCEDURE AND DEVICE FOR MEASURING THE ELECTRICAL INSULATION RESISTANCE OF A CONTINUOUS VOLTAGE SOURCE.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127983A (en) * 2009-12-17 2011-06-30 Hioki Ee Corp Insulation resistance measuring method, inspection method and insulation resistance measuring apparatus
CN102721872A (en) * 2012-03-13 2012-10-10 北京元六鸿远电子技术有限公司 8-position semi-automatic insulating resistance measuring device

Also Published As

Publication number Publication date
JP2001349914A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
KR101272130B1 (en) Method of and device for insulation monitoring
ATE188586T1 (en) CABLE MONITORING DEVICE WITH MULTIPLE BRANCH TERMINALS
JP4043168B2 (en) Line insulation resistance measuring device
GB2408809A (en) Power line loop impedance testing
US20050140353A1 (en) Method for controlling the quality of the coolant for fuel cell systems
US7068040B2 (en) Ground circuit impedance measurement apparatus and method
JPH01502391A (en) Cable failure detection device
JPH0314144B2 (en)
JPH08247857A (en) Input device for temperature detecting resistor
JPH05288790A (en) Overhead earth wire current sensor disconnection detector
US5638051A (en) Method and apparatus for monitoring an electrical drive
JP5428030B1 (en) Insulation monitoring device
CZ289127B6 (en) Device for testing an electrical drive unit
JP3847919B2 (en) Cable monitoring device
JPH10153634A (en) Self-diagnosis device for speaker output
JP4297333B2 (en) Railway line insulation resistance measuring method and apparatus
RU2623363C1 (en) Method and device for monitoring cable core soundness in track circuits
RU2543435C2 (en) Method of choke cable state diagnostics in track choke transformers
US20230296691A1 (en) Method and monitoring device for determining a partial insulation resistance and a partial system leakage capacitance in a branched ungrounded power supply system
JP3829529B2 (en) Peak cut controller
KR102003947B1 (en) Abnormal condition diagnosis system of bolt combination portion
EP0570654A1 (en) A remote eart resistance meter
JP3622171B2 (en) Earth leakage detection device
JPH1078470A (en) Method and apparatus for inspecting impedance connected to bridge output stage
JPH0442779Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4043168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term