JP2001349914A - Method and device for measuring insulation resistance of line - Google Patents

Method and device for measuring insulation resistance of line

Info

Publication number
JP2001349914A
JP2001349914A JP2000173212A JP2000173212A JP2001349914A JP 2001349914 A JP2001349914 A JP 2001349914A JP 2000173212 A JP2000173212 A JP 2000173212A JP 2000173212 A JP2000173212 A JP 2000173212A JP 2001349914 A JP2001349914 A JP 2001349914A
Authority
JP
Japan
Prior art keywords
measurement
measuring
measured
state
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000173212A
Other languages
Japanese (ja)
Other versions
JP4043168B2 (en
Inventor
Takao Hiraishi
多嘉夫 平石
Kimiharu Ota
公治 太田
Yoshitaka Yoshizaki
由孝 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Signal Co Ltd
Original Assignee
Daido Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Signal Co Ltd filed Critical Daido Signal Co Ltd
Priority to JP2000173212A priority Critical patent/JP4043168B2/en
Publication of JP2001349914A publication Critical patent/JP2001349914A/en
Application granted granted Critical
Publication of JP4043168B2 publication Critical patent/JP4043168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring the insulation resistance of a line which can measure the insulation resistance in real time without stopping the use of an actuating facility, and surely can detect insulating defects even when the electric potential is fluctuated at a contact point. SOLUTION: In this method for measuring the insulation resistance between the lines and the ground is measured by the resistance for measurement and the current Is for measurement flowing in the lines to be measured by applying the voltage for measurement between lines 1 and 2 to be measured and the ground via a resistance Rs for measurement connected in series and a power source Es for measurement, the resistance Rs for measurement can be changed over to a first state in which the resistance is connected in series to the power source Es for measurement and a second state the resistance is separated from the power source Es for measurement and directly connected to the ground, the difference between the current Is for measurement flowing in the first state and the current Is' for measurement flowing in the second state is calculated, and the propriety of the insulation resistance of the lines to be measured is judged from the current value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鉄道信号機の保
安設備など比較的低電圧であって、片線が大地に接して
いない被測定回線を含む回路において使用する回線の絶
縁抵抗測定方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the insulation resistance of a line used in a circuit including a line to be measured which has a relatively low voltage and has a single line not in contact with the ground, such as security equipment for railway traffic signals. It is about.

【0002】[0002]

【従来の技術】鉄道の沿線では、踏切に対して警報を開
始すべき地点へ列車がきたこと、即ち踏切のしゃ断機の
制御条件を、踏切のあるところまで送るなど、信号ケー
ブルを敷設し、それによって信号条件を送受する。この
信号ケーブルは条件を送信する点、受信する点などに、
接続箱を設け、そこに相対する接続用端子盤を設備し、
その一方の端子から、遠方の接続箱に置く同様の端子盤
まで、必要な何対かの信号ケーブルを結び条件の授受を
行う。接続箱で相対する端子を平行的に接続すれば更に
遠方まで条件を送ることができる。このような構成の信
号ケーブルはその接続箱などで、対地絶縁が低下するこ
とがあり、条件の授受に支障をきたす。このために信号
ケーブルなどで構成された電線路(被測定回線)の、絶
縁劣化を検出して、早期に保守をすることが必要とな
る。
2. Description of the Related Art Along a railway line, a signal cable is laid, for example, when a train arrives at a point where a warning should be started for a railroad crossing, that is, a control condition of a breaker of a railroad crossing is sent to a place where a railroad crossing is present. Thereby, signal conditions are transmitted and received. This signal cable is used for transmitting and receiving conditions,
Provide a connection box, equip it with a terminal block for connection,
From one terminal to a similar terminal board placed in a distant connection box, necessary pairs of signal cables are connected to exchange conditions. If the opposite terminals are connected in parallel with the connection box, the condition can be sent further away. In the signal cable having such a configuration, the insulation to the ground may be deteriorated in the connection box or the like, which hinders transmission and reception of conditions. For this reason, it is necessary to detect the deterioration of the insulation of the electric line (measured line) constituted by the signal cable and the like, and to perform early maintenance.

【0003】従来、この絶縁劣化の測定は、被測定回線
と大地間の抵抗を測るために、制御回路の使用を停止
し、回線を独立させてメガーで測定したり、又は信号
ケーブルで条件を遠方に送る信号の回路では回線を大地
から浮かせていることを利用し、測定点で大地と被測定
回線の間に電圧を加え、その電流値を測ることによっ
て、回線の大地間との絶縁抵抗を知るというものも提案
されている。
Conventionally, to measure the insulation deterioration, the use of a control circuit is stopped to measure the resistance between the line to be measured and the ground, and the line is measured independently with a megger or the condition is measured with a signal cable. The circuit of the signal to be sent to a distant place uses the fact that the line is floated from the ground, applies a voltage between the ground and the line to be measured at the measurement point, measures the current value, and determines the insulation resistance between the line and the ground. It has also been proposed to know

【0004】の制御回路の使用を停止し、回線を独立
させてメガーで測定する方法は、実働している設備の使
用停止となり、夜間など列車の運行の無い時間に行わな
ければならないという問題があつた。したがって、時前
に検知するためには、定期的に夜間作業を行うことにな
り、かつリアルタイムに測定はできないため、絶縁低下
による障害が発生してしまうこともある。
The method in which the use of the control circuit is stopped and the measurement is carried out by a megger with the line being independent has a problem that the use of the working equipment has to be stopped and it has to be performed at a time when the train is not operating such as at night. Atsuta. Therefore, in order to perform detection before time, nighttime work must be performed regularly, and measurement cannot be performed in real time. Therefore, a failure due to insulation deterioration may occur.

【0005】の測定点で大地と被測定回線の間に電圧
を加え、その電流値を測ることによって回線の大地間と
の絶縁抵抗を知る方法は以下のような原理による。図6
に示すように制御条件の電源電圧E、負荷(リレーであ
ることが多い)Rl、からなる回線1,2に、測定用電
源Esとシリーズに測定用抵抗Rsを接続すると、回線
1,2は大地に対して浮いているから、制御条件のプラ
ス側の絶縁抵抗rp、マイナス側の抵抗rm、の並列合
成抵抗が測定される。詳細を検討するためにこの回路の
等価回路をその各閉路電流とともに描くと図7のように
なる。この等価回路で、本来の目的機能である制御条件
が成立し、接点Sが閉じてリレーRlが動作していると
き、回路の電流i1〜i5は、キルヒホッフの定理によ
り、それぞれ次のように計算される。 i1=Es/Rs+rp i2=E/Rl+rp+rm i3=(Es−E)/Rs+Rl+rm i4=E/Rl i5=Es/Rs+rm
A method of determining the insulation resistance between the ground and the line by applying a voltage between the ground and the line to be measured at the measurement point and measuring the current value according to the following principle. FIG.
As shown in the figure, when the measuring power supply Es and the series measuring resistor Rs are connected to the lines 1 and 2 composed of the power supply voltage E and the load (often a relay) Rl under the control conditions, Since it floats on the ground, the parallel combined resistance of the insulation resistance rp on the plus side and the resistance rm on the minus side under the control condition is measured. FIG. 7 shows an equivalent circuit of this circuit together with its respective closing currents for studying the details. In this equivalent circuit, when the control condition, which is the original target function, is satisfied, the contact S is closed, and the relay R1 is operating, the currents i 1 to i 5 of the circuit are as follows according to Kirchhoff's theorem. Is calculated. i 1 = Es / Rs + rp i 2 = E / Rl + rp + rm i 3 = (Es−E) / Rs + Rl + rm i 4 = E / Rli 5 = Es / Rs + rm

【0006】従って、測定電流Isは Is=i1+i3+i5=(Es/Rs+rp)+(Es
−E)/(Rs+Rl+rm)+Es/(Rs+rm) となり、Rlが他の抵抗より小さく無視すると、測定電
流Isは、Rとrpとrmの関数となり、rpとrmの
並列合成抵抗が大きく関与することがわかる。又、接点
Sが構成されていない場合は、等価回路は図8のように
なり、 i2=i3=i4=0 であり、測定電流Isは Is=i1+i5=Es/(Rs+rp)+Es/(Rs
+rm) であり、Rsをrp、rmに比べ十分に小さく選定すれ
ば、 Is=Es/(1/rp+1/rm) となって、rp、rmの合成抵抗を測定していることに
なる。
Therefore, the measured current Is is Is = i 1 + i 3 + i 5 = (Es / Rs + rp) + (Es
−E) / (Rs + Rl + rm) + Es / (Rs + rm) When Rl is smaller than the other resistances, the measured current Is becomes a function of R, rp, and rm, and the parallel combined resistance of rp and rm greatly contributes. I understand. When the contact S is not formed, the equivalent circuit is as shown in FIG. 8, i 2 = i 3 = i 4 = 0, and the measurement current Is is Is = i 1 + i 5 = Es / (Rs + rp ) + Es / (Rs
+ Rm). If Rs is selected to be sufficiently smaller than rp and rm, then Is = Es / (1 / rp + 1 / rm), and the combined resistance of rp and rm is measured.

【0007】しかし、実際には、rpとrmの接地点と
測定電源Esの接地点では電位が異なる。rpとrmの
接地点と測定電源Esの接地点での電位を、理論的アー
スに対して、ep、em、es、とすると、等価回路は
この発明でも採用する図2のようになり、各電流値は i1=(Es+es+ep)/Rs+rp i2=(E+ep+em)/Rl+rp+rm i3=(Es−E+ep+em)/Rs+Rl+rm i4=E/Rl i5=(Es+ep+em)/Rs+rm これによって測定電流Isは Is=i1+i3+i5=(Es+es+ep)/(Rs+r
p)+(Es−E+ep+em)/(Rs+Rl+rm)+
(Es+ep+em)/(Rs+rm) となって、接地点間の電位の影響を受ける。
However, in practice, the potential is different between the ground points of rp and rm and the ground point of the measurement power supply Es. Assuming that the potentials at the ground points of rp and rm and the ground point of the measurement power supply Es are ep, em, and es with respect to the theoretical ground, the equivalent circuit is as shown in FIG. The current value is i 1 = (Es + es + ep) / Rs + rp i 2 = (E + ep + em) / Rl + rp + rm i 3 = (Es−E + ep + em) / Rs + Rl + rm i 4 = E / Rl i 5 = (Es + ep / em is measured by (Es + ep / em) = I 1 + i 3 + i 5 = (Es + es + ep) / (Rs + r
p) + (Es−E + ep + em) / (Rs + Rl + rm) +
(Es + ep + em) / (Rs + rm) and is affected by the potential between the ground points.

【0008】又、接点Sが構成されていない場合は、等
価回路はこの発明でも採用する図4のようになり、 i2=i3=i4=0 であり、測定電流Isは Is=i1+i5=(Es+es+ep)/(Rs+r
p)+(Es+ep+em)/(Rs+rm) となって、やはり、接地点間の電位の影響を受ける。こ
の接地点での電位は、それぞれに変化する。その影響
は、直接的に測定電圧に加わり、測定電流と絶縁抵抗の
値は、良く判らない関係になり、絶縁不良の検知が困難
になることが問題である。
When the contact S is not formed, the equivalent circuit is as shown in FIG. 4 adopted in the present invention, i 2 = i 3 = i 4 = 0, and the measurement current Is is Is = i 1 + i 5 = (Es + es + ep) / (Rs + r
p) + (Es + ep + em) / (Rs + rm), again being affected by the potential between the ground points. The potential at this ground point changes accordingly. The effect is directly added to the measured voltage, and the measured current and the value of the insulation resistance have a poor relationship, which makes it difficult to detect insulation failure.

【0009】[0009]

【発明が解決しようとする課題】そこでこの発明は、前
記のような従来の問題点を解決し、実働している設備の
使用停止となることなく、リアルタイムに測定すること
ができるとともに、接地点での電位の変動があっても確
実に絶縁不良の検知ができる回線の絶縁抵抗測定方法及
び装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and enables real-time measurement without stopping the use of actual equipment, and a grounding point. It is an object of the present invention to provide a method and an apparatus for measuring the insulation resistance of a line, which can reliably detect an insulation failure even if there is a change in the potential in the circuit.

【0010】[0010]

【課題を解決するための手段】前記の目的を達成するた
め、図1〜5に示すように、請求項1の発明は、被測定
回線1,2と大地間に、直列に接続した測定用抵抗Rs
と測定用電源Esを介して測定用電圧を印加し、該電圧
の印加によって測定用抵抗と被測定回線に流れる測定用
電流Isから被測定回線と大地間の絶縁抵抗を測定する
回線の絶縁抵抗測定方法において、測定用抵抗Rsを測
定用電源Esと直列に接続した第1の状態と、測定用電
源Esから切り離して大地に直接接続した第2の状態に
切り換え可能とし、第1の状態で流れる測定用電流Is
と第2の状態で流れる測定用電流Is’との差を計算
し、その電流値から被測定回線の絶縁抵抗の良否を判断
することを特徴とする回線の絶縁抵抗測定方法である。
In order to achieve the above-mentioned object, as shown in FIGS. 1 to 5, the invention according to claim 1 is a method for measuring a series connection between a circuit under test 1, 2 and the ground. Resistance Rs
And a measurement power supply Es to apply a measurement voltage, and by applying the voltage, the insulation resistance of the line for measuring the insulation resistance between the measured line and the ground from the measuring resistance and the measuring current Is flowing through the measured line. In the measuring method, it is possible to switch between a first state in which the measuring resistor Rs is connected in series with the measuring power supply Es and a second state in which the measuring resistor Rs is disconnected from the measuring power supply Es and directly connected to the ground. Measurement current Is flowing
And measuring the difference between the measurement current Is' flowing in the second state and the insulation resistance of the line to be measured based on the calculated current value.

【0011】請求項2の発明は、被測定回線1,2と大
地間に、直列に接続した測定用抵抗Rsと測定用電源E
sを介して測定用電圧を印加し、該電圧の印加によって
測定用抵抗と被測定回線に流れる測定用電流Isから被
測定回線と大地間の絶縁抵抗を測定する回線の絶縁抵抗
測定装置において、測定用抵抗Rsを測定用電源Esと
直列に接続した第1の状態と、測定用電源Esから切り
離して大地に直接接続した第2の状態に切り換え可能と
するスイッチSWを設け、このスイッチを切り換え制御
する機能を有するとともに、第1の状態で流れる測定用
電流Isと第2の状態で流れる測定用電流Is’を読み
込んで両電流の差を計算し、その電流値から被測定回線
の絶縁抵抗の良否を判断する機能を有する処理装置3を
設けたことを特徴とする回線の絶縁抵抗測定装置であ
る。
A second aspect of the present invention is to provide a measuring resistor Rs and a measuring power supply E connected in series between the lines under test 1 and 2 and the ground.
a measuring voltage applied through the s and a measuring current Is flowing through the measured circuit and the measuring current Is flowing through the measured circuit to measure the insulation resistance between the measured circuit and the ground. A switch SW is provided to enable switching between a first state in which the measurement resistor Rs is connected in series with the measurement power supply Es and a second state in which the measurement resistance Rs is disconnected from the measurement power supply Es and directly connected to the ground. In addition to having a control function, the measurement current Is flowing in the first state and the measurement current Is ′ flowing in the second state are read, the difference between the two currents is calculated, and the insulation resistance of the circuit to be measured is calculated from the current value. A line insulation resistance measuring device, characterized in that a processing device 3 having a function of judging the quality of the line is provided.

【0012】請求項3の発明は、請求項2において、処
理装置は、第1の状態で流れる測定用電流Isを短時間
で3回以上計測し、回線の該測定用電流Isに対する時
定数を求め、その直後に第2の状態で流れる測定用電流
Is’も3回以上計測し、回線の該測定用電流Is’に
対する時定数を求め、この複数の計測値から回線のコン
デンサ容量を等価的に計算し、時定数を求め、それによ
って第1の状態で流れる測定用電流Isと第2の状態で
流れる測定用電流Is’が最終値に収斂するまで待たず
に短時間で被測定回線の絶縁抵抗の良否を判断するよう
になっていることを特徴とする回線の絶縁抵抗測定装置
である。
According to a third aspect of the present invention, in the second aspect, the processing device measures the measuring current Is flowing in the first state three times or more in a short time, and sets a time constant for the measuring current Is of the line. The measurement current Is 'flowing in the second state immediately after that is also measured three times or more, the time constant for the measurement current Is' of the line is obtained, and the capacitance of the line is equivalently determined from the plurality of measured values. And the time constant is obtained, whereby the measurement current Is flowing in the first state and the measurement current Is ′ flowing in the second state converge to the final values without having to wait for the circuit under test in a short time. A line insulation resistance measuring device characterized by judging the quality of insulation resistance.

【0013】前記のように回線1,2と大地間に測定用
電源(測定用電圧)Esと直列に測定用抵抗Rsをシリ
ーズに接続して得られた測定用電流Isと、Esをかけ
ないで直列に測定用抵抗Rsだけを接続したときに流れ
る測定用Is’との差を取ることによって、接地電位の
影響を無くし、その結果から回線の絶縁抵抗劣化を判断
できるようにするものである。
As described above, the measuring current Is obtained by connecting the measuring resistor Rs in series with the measuring power source (measuring voltage) Es between the lines 1 and 2 and the ground is not applied to the measuring current Is. By taking the difference from the measurement Is' flowing when only the measurement resistor Rs is connected in series, the influence of the ground potential is eliminated, and the deterioration of the insulation resistance of the line can be determined from the result. .

【0014】本来の目的機能である、制御条件が成立
し、接点Sが閉じてリレーRlが動作しているとき、E
sをかけないで直列抵抗Rsだけを接続したとき(第2
の状態)に流れる測定用電流Is’は、図3において以
下のようになる。各電流値は i1=(es+ep)/Rs+rp i2=(E+ep+em)/Rl+rp+rm i3=(−E+ep+em)/Rs+Rl+rm i4=E/Rl i5=(ep+em)/Rs+rm この結果Is’は Is’=i1+i3+i5=(es+ep)/(Rs+r
p)+(−E+ep+em)/(Rs+Rl+rm)+
(ep+em)/(Rs+rm)
When the control condition, which is the original intended function, is satisfied, the contact S is closed, and the relay Rl is operating, E
When only the series resistor Rs is connected without applying s (second
3) is as follows in FIG. Each current value i 1 = (es + ep) / Rs + rp i 2 = (E + ep + em) / Rl + rp + rm i 3 = (- E + ep + em) / Rs + Rl + rm i 4 = E / Rl i 5 = (ep + em) / Rs + rm result Is 'is Is' = I 1 + i 3 + i 5 = (es + ep) / (Rs + r
p) + (− E + ep + em) / (Rs + Rl + rm) +
(Ep + em) / (Rs + rm)

【0015】従って、図2で示したように第1の状態で
流れる測定用電流Isと、図3で示す第2の状態で流れ
る測定用電流Is’の差を取れば Is−Is’=(Es+es+ep)/(Rs+rp)
−(es+ep)/(Rs+rp)+(Es−E+ep
+em)/(Rs+Rl+rm)−(−E+ep+e
m)/(Rs+Rl+rm)+(Es+ep+em)/
(Rs+rm)−(ep+em)/(Rs+rm)=E
s/(Rs+rp)+Es/(Rs+Rl+rm)+E
s/(Rs+rm) となって、接地電位の差は総て消去され、更に目的機能
回路に挿入されている電源Eの項も消去され、対地絶縁
抵抗と、測定用電源のシリーズ抵抗、制御を受けるリレ
ーなどの負荷抵抗の関数になり、絶縁抵抗の劣化が安定
して監視できることになる。
Therefore, if the difference between the measurement current Is flowing in the first state as shown in FIG. 2 and the measurement current Is ′ flowing in the second state shown in FIG. 3 is obtained, Is−Is ′ = ( Es + es + ep) / (Rs + rp)
− (Es + ep) / (Rs + rp) + (Es−E + ep
+ Em) / (Rs + Rl + rm)-(-E + ep + e
m) / (Rs + Rl + rm) + (Es + ep + em) /
(Rs + rm)-(ep + em) / (Rs + rm) = E
s / (Rs + rp) + Es / (Rs + R1 + rm) + E
s / (Rs + rm), and all the differences in the ground potentials are eliminated. Further, the term of the power supply E inserted in the target function circuit is also eliminated, and the ground insulation resistance, the series resistance of the measurement power supply, and the control are controlled. It becomes a function of the load resistance of the relay and the like, and the deterioration of the insulation resistance can be monitored stably.

【0016】又、接点Sが構成されていない場合で、測
定用電源Esを加えたときの測定用電流Isは、図4か
ら Is=i1+i5=(Es+es+ep)/(Rs+r
p)+(Es+ep+em)/(Rs+rm) となり、測定用電源Esを加えないときの測定用電流I
s’は、図5から Is’=i1+i5=(es+ep)/(Rs+rp)+
(ep+em)/(Rs+rm) と計算され、第1の状態で流れる測定用電流Isと、第
1の状態で流れる測定用電流Is’の差は Is−Is’=Es/(Rs+rp)+Es/(Rs+
rm) となって、何れの場合も、接地電位の差は総て消去さ
れ、対地絶縁抵抗と、測定用電源のシリーズ抵抗、制御
を受けるリレーなどの負荷抵抗の関数になり、絶縁抵抗
の劣化が安定して監視できることになる。
Further, when the contact S is not formed and the measuring power supply Es is applied, the measuring current Is is obtained from FIG. 4 as: Is = i 1 + i 5 = (Es + es + ep) / (Rs + r
p) + (Es + ep + em) / (Rs + rm), and the measuring current I when the measuring power supply Es is not applied.
From FIG. 5, s ′ is: Is ′ = i 1 + i 5 = (es + ep) / (Rs + rp) +
(Ep + em) / (Rs + rm), and the difference between the measurement current Is flowing in the first state and the measurement current Is ′ flowing in the first state is Is−Is ′ = Es / (Rs + rp) + Es / ( Rs +
rm), in any case, any difference in ground potential is eliminated and becomes a function of the ground insulation resistance, the series resistance of the power supply for measurement, and the load resistance of the controlled relay, etc., and the insulation resistance deteriorates. Can be monitored stably.

【0017】[0017]

【発明の実施の形態】この発明の一実施の形態を図面を
参照して説明する。図1は被測定回線を含む回路図であ
って、被測定回線1、2、制御用電源E、制御条件S、
条件受信リレーRlからなるケーブルを用いた制御回線
に対して、その制御用電源Eの正側回線に接続する測定
用抵抗Rs、それと直列に接続される測定用電源Es、
その測定用電源Esをバイパスして、測定用抵抗Rsを
大地に接続するスイッチSW、そのスイッチを制御する
と共に、電源Esを接続したとき(第1の状態)の測定
された電流Isと、その測定用電源Esをバイパスし
て、測定用抵抗Rsを大地に接続したとき(第2の状
態)の電流Is’との差を計算し、被測定回線の絶縁状
態を測定し、警報を出力する処理装置3から構成されて
いる。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram including a circuit to be measured, wherein the circuits to be measured 1 and 2, a control power source E, a control condition S,
For a control line using a cable consisting of a condition receiving relay Rl, a measurement resistor Rs connected to the positive line of the control power supply E, a measurement power supply Es connected in series with the resistance Rs,
A switch SW that bypasses the measurement power supply Es and connects the measurement resistance Rs to the ground, controls the switch, and also measures a measured current Is when the power supply Es is connected (first state), Calculate the difference from the current Is' when the measurement resistor Rs is connected to the ground (second state), bypassing the measurement power supply Es, measure the insulation state of the circuit to be measured, and output an alarm. It comprises a processing device 3.

【0018】ここにrp、rmはそれぞれ回線の正側と
負側の大地との絶縁抵抗である。処理装置3は内部に有
するプログラムされた制御論理により、一定時間毎(処
理装置3に対して指示入力をすることによって任意に設
定可能)に、測定用抵抗Rs、それと直列に接続される
測定用電源Esを被測定回線1,2に接続し、測定用抵
抗Rsに流れる測定用電流Isを、その両端の電位差、
又は直接電流測定用ディバイスで読取る。その後、直ち
に測定用電源Esを切り離し、測定用抵抗Rsを直接大
地に接続し、測定用抵抗Rsに流れる測定用電流Is’
を測定する。測定した結果からIs−Is’を計算し、
その値から機能回路が動作中か否かを判断し、絶縁抵抗
の劣化を検出する機能をもつ。
Here, rp and rm are insulation resistances between the positive and negative grounds of the line, respectively. The processing device 3 has a measurement resistor Rs and a measurement resistor Rs connected in series with the measurement resistor Rs at regular time intervals (can be arbitrarily set by inputting an instruction to the processing device 3) by a programmed control logic contained therein. The power supply Es is connected to the circuits 1 and 2 to be measured, and the measuring current Is flowing through the measuring resistor Rs is applied to the potential difference between both ends thereof.
Or read directly with the current measurement device. Thereafter, the measuring power supply Es is immediately disconnected, the measuring resistor Rs is directly connected to the ground, and the measuring current Is' flowing through the measuring resistor Rs is performed.
Is measured. Is-Is' is calculated from the measured result,
It has a function of judging whether the functional circuit is operating or not from the value and detecting deterioration of the insulation resistance.

【0019】計測のために、回線に加える測定用電源E
sによって流れる電流は、回線の対地コンデンサ容量の
影響によって、指数間数的に増加し安定するまでに時間
が懸ることがある。この場合、測定用抵抗Rsを直接大
地に接続して流れる測定用電流Is’も安定するまで時
間が懸る。このような場合、処理装置3の論理を、Is
を短時間に3回以上計測し、その直後、測定用抵抗Rs
を直接大地に接続して流れる測定用電流Is’も3回以
上計測する。この複数の計測値から、回線のコンデンサ
容量を等価的に計算し、時定数をもとめ、安定するまで
時間をかけずに実際の絶縁抵抗の低下を検知することも
できる。
For measurement, a measurement power supply E added to the line
The current flowing due to s may exponentially increase exponentially and take time to stabilize due to the effect of the ground capacitance of the line. In this case, it takes time until the measurement current Is ′ flowing when the measurement resistance Rs is directly connected to the ground is stabilized. In such a case, the logic of the processing device 3 is changed to Is
Is measured three times or more in a short time, and immediately thereafter, the measuring resistor Rs
Is directly connected to the ground, and the measurement current Is ′ flowing therethrough is also measured three times or more. From the plurality of measured values, the capacitance of the line capacitor can be calculated equivalently, the time constant can be determined, and the decrease in the actual insulation resistance can be detected without taking time until the line becomes stable.

【0020】[0020]

【発明の効果】請求項1ないし3の発明は前記のように
説明したように構成された電線路(被測定回線)につい
て、被監視回路の電源電圧の影響も、測定端での大地電
位と絶縁抵抗に対する大地電位の影響も受けず、換言す
ると接地点での電位の変動があっても確実に絶縁不良の
検知ができる。また、メガーで測定するような被監視回
路の機能を停止することなく、絶縁抵抗の劣化の測定が
リアルタイムにできるという優れた効果がある。
According to the first to third aspects of the present invention, the influence of the power supply voltage of the monitored circuit on the electric line (measured line) configured as described above is not affected by the ground potential at the measuring end. The insulation resistance is not affected by the ground potential, in other words, even if the potential at the ground point fluctuates, the insulation failure can be reliably detected. Further, there is an excellent effect that the deterioration of the insulation resistance can be measured in real time without stopping the function of the monitored circuit as measured by a megger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施の形態を示す被測定回線を含
む回路構成図である。
FIG. 1 is a circuit diagram including a circuit to be measured according to an embodiment of the present invention.

【図2】測定点アースと、正負それぞれの回線の絶縁抵
抗のアースそれぞれが、理論的大地アースに対し持って
いる電位差を含めた等価回路を示す図面である。
FIG. 2 is a drawing showing an equivalent circuit including a potential difference between a measurement point ground and a ground of the insulation resistance of each of the positive and negative lines with respect to a theoretical ground.

【図3】測定用の電源なしで、測定用抵抗で直接接地し
たときの等価回路(接点が構成されているとき)を示す
図面である。
FIG. 3 is a drawing showing an equivalent circuit (when a contact is formed) when directly grounded by a measuring resistor without a measuring power supply.

【図4】測定点アースと、正負それぞれの回線の絶縁抵
抗のアースそれぞれが、理論的大地アースに対し持って
いる電位差を含めた、接点が構成されていないときの価
回路を示す図面である。
FIG. 4 is a drawing showing a value circuit when a contact is not formed, including a potential difference between a measurement point ground and a ground of insulation resistance of each of positive and negative lines with respect to a theoretical ground. .

【図5】測定用の電源なしで、測定用抵抗で直接接地し
たときの等価回路(接点が構成されていないとき)を示
す図面である。
FIG. 5 is a drawing showing an equivalent circuit (when no contact is formed) when directly grounded by a measuring resistor without a measuring power supply.

【図6】図1と対応する従来の回路構成図である。FIG. 6 is a conventional circuit configuration diagram corresponding to FIG.

【図7】図6の等価回路とその各閉路電流を示す図面で
ある。
7 is a drawing showing an equivalent circuit of FIG. 6 and respective closing currents thereof.

【図8】接点が構成されていないときの等価回路を示す
図面である。
FIG. 8 is a drawing showing an equivalent circuit when no contact is formed.

【符号の説明】[Explanation of symbols]

1,2 被測定回線 3 処理装置 E 制御用電源 S 制御条件 Rl 条件受信リレー(負荷) Rs 測定用抵抗 Es 測定用電源 Is 第1の状態で流れる測定用電流 Is’ 第2の状態で流れる測定用電流 SW スイッチ rp、rm 絶縁抵抗 1, 2 Circuit under test 3 Processing equipment E Control power supply S Control condition R1 Conditional reception relay (load) Rs Measurement resistance Es Measurement power supply Is Measurement current flowing in first state Is' Measurement flowing in second state Current SW switch rp, rm Insulation resistance

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G014 AA04 AB31 AC18 2G028 AA01 BF05 CG03 DH03 FK01 MS01 5H410 CC02 DD02 FF05 FF09 FF21 FF28  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G014 AA04 AB31 AC18 2G028 AA01 BF05 CG03 DH03 FK01 MS01 5H410 CC02 DD02 FF05 FF09 FF21 FF28

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定回線と大地間に、直列に接続した
測定用抵抗と測定用電源を介して測定用電圧を印加し、
該電圧の印加によって測定用抵抗と被測定回線に流れる
測定用電流から被測定回線と大地間の絶縁抵抗を測定す
る回線の絶縁抵抗測定方法において、前記測定用抵抗を
測定用電源と直列に接続した第1の状態と、測定用電源
から切り離して大地に直接接続した第2の状態に切り換
え可能とし、第1の状態で流れる測定用電流と第2の状
態で流れる測定用電流との差を計算し、その電流値から
被測定回線の絶縁抵抗の良否を判断することを特徴とす
る回線の絶縁抵抗測定方法。
1. A measuring voltage is applied between a circuit to be measured and ground via a measuring resistor and a measuring power supply connected in series,
In a method for measuring insulation resistance between a circuit to be measured and the ground from a measurement resistance and a measurement current flowing through the circuit to be measured by applying the voltage, the measurement resistance is connected in series with a power supply for measurement. The first state and the second state which is separated from the measurement power supply and directly connected to the ground can be switched, and the difference between the measurement current flowing in the first state and the measurement current flowing in the second state is determined. A method for measuring the insulation resistance of a line, comprising calculating and judging the insulation resistance of the line to be measured from the current value.
【請求項2】 被測定回線と大地間に、直列に接続した
測定用抵抗と測定用電源を介して測定用電圧を印加し、
該電圧の印加によって測定用抵抗と被測定回線に流れる
測定用電流から被測定回線と大地間の絶縁抵抗を測定す
る回線の絶縁抵抗測定装置において、前記測定用抵抗を
測定用電源と直列に接続した第1の状態と、測定用電源
から切り離して大地に直接接続した第2の状態に切り換
え可能とするスイッチを設け、このスイッチを切り換え
制御する機能を有するとともに、第1の状態で流れる測
定用電流と第2の状態で流れる測定用電流を読み込んで
両電流の差を計算し、その電流値から被測定回線の絶縁
抵抗の良否を判断する機能を有する処理装置を設けたこ
とを特徴とする回線の絶縁抵抗測定装置。
2. A voltage for measurement is applied between a circuit to be measured and the ground via a measuring resistor and a measuring power supply connected in series,
In an insulation resistance measuring device for measuring insulation resistance between a circuit to be measured and the ground from a resistance for measurement and a measurement current flowing through a circuit to be measured by applying the voltage, the measurement resistance is connected in series with a power supply for measurement. A switch that can be switched between the first state and the second state that is separated from the power supply for measurement and directly connected to the earth, has a function of controlling switching of the switch, and has a function of controlling the switch in the first state. A processing device having a function of reading the current and the measuring current flowing in the second state, calculating the difference between the two currents, and judging whether the insulation resistance of the line to be measured is good or not from the current value. Line insulation resistance measuring device.
【請求項3】 処理装置は、第1の状態で流れる測定用
電流を短時間で3回以上計測し、回線の該測定用電流に
対する時定数を求め、その直後に第2の状態で流れる測
定用電流も3回以上計測し、回線の該測定用電流に対す
る時定数を求め、この複数の計測値から回線のコンデン
サ容量を等価的に計算し、時定数を求め、それによって
第1の状態で流れる測定用電流と第2の状態で流れる測
定用電流が最終値に収斂するまで待たずに短時間で被測
定回線の絶縁抵抗の良否を判断するようになっている請
求項2記載の回線の絶縁抵抗測定装置。
3. The processing device measures the measuring current flowing in the first state three times or more in a short time, obtains a time constant for the measuring current of the line, and immediately after that, measures the measuring current flowing in the second state. The measurement current is also measured three or more times, the time constant of the line for the measurement current is determined, the capacitance of the line is equivalently calculated from the plurality of measured values, and the time constant is determined. 3. The circuit according to claim 2, wherein the quality of the insulation resistance of the circuit to be measured is determined in a short time without waiting for the flowing measurement current and the measurement current flowing in the second state to converge to the final value. Insulation resistance measuring device.
JP2000173212A 2000-06-09 2000-06-09 Line insulation resistance measuring device Expired - Lifetime JP4043168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000173212A JP4043168B2 (en) 2000-06-09 2000-06-09 Line insulation resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000173212A JP4043168B2 (en) 2000-06-09 2000-06-09 Line insulation resistance measuring device

Publications (2)

Publication Number Publication Date
JP2001349914A true JP2001349914A (en) 2001-12-21
JP4043168B2 JP4043168B2 (en) 2008-02-06

Family

ID=18675492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173212A Expired - Lifetime JP4043168B2 (en) 2000-06-09 2000-06-09 Line insulation resistance measuring device

Country Status (1)

Country Link
JP (1) JP4043168B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466320A3 (en) * 2010-12-17 2016-05-04 Zigor Corporación, S.A. Measuring the electrical insulation resistance of a DC voltage source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619410B2 (en) * 2009-12-17 2014-11-05 日置電機株式会社 Inspection method and inspection apparatus
CN102721872A (en) * 2012-03-13 2012-10-10 北京元六鸿远电子技术有限公司 8-position semi-automatic insulating resistance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466320A3 (en) * 2010-12-17 2016-05-04 Zigor Corporación, S.A. Measuring the electrical insulation resistance of a DC voltage source

Also Published As

Publication number Publication date
JP4043168B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
EP0833423A2 (en) Apparatus and method for monitoring an earth-leakage state of a power distribution system
CN203455462U (en) Electric vehicle power battery pack insulation detection apparatus
EP0748100A3 (en) A cable monitoring system with multiple branch terminations
US10197612B2 (en) Continuity test system and method
JP2001349914A (en) Method and device for measuring insulation resistance of line
GB2408809A (en) Power line loop impedance testing
EP0901264B1 (en) Telecommunications line termination test
JPH01502391A (en) Cable failure detection device
KR20010039198A (en) The method of faulted section detection using comparision of zero sequenc current angle
US5638051A (en) Method and apparatus for monitoring an electrical drive
JP5428030B1 (en) Insulation monitoring device
CN107390158B (en) Automobile charging pile system and method capable of carrying out electric energy metering virtual load test
US11959975B2 (en) Method and monitoring device for determining a partial insulation resistance and a partial system leakage capacitance in a branched ungrounded power supply system
JPH05288790A (en) Overhead earth wire current sensor disconnection detector
JP4297333B2 (en) Railway line insulation resistance measuring method and apparatus
JPS60262069A (en) Monitoring of deterioration in insulation of power cable
EP0570654A1 (en) A remote eart resistance meter
JPH0262831B2 (en)
RU2260812C2 (en) Device for determining the place of one-phase ground in the networks with insulated neutral
JP2872115B2 (en) ISDN terminal
JPH0473755B2 (en)
JP4246955B2 (en) Subscriber line test method
US647970A (en) Apparatus for indicating leakage of current from electric conductors.
JPH0442779Y2 (en)
JPH10247866A (en) Method and device for estimating insulating failure fault position for balanced cable

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4043168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term