JPH085528A - Focused ion beam apparatus for producing cross-section sample for transmission electron microscope and method for producing the sample - Google Patents

Focused ion beam apparatus for producing cross-section sample for transmission electron microscope and method for producing the sample

Info

Publication number
JPH085528A
JPH085528A JP6141852A JP14185294A JPH085528A JP H085528 A JPH085528 A JP H085528A JP 6141852 A JP6141852 A JP 6141852A JP 14185294 A JP14185294 A JP 14185294A JP H085528 A JPH085528 A JP H085528A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
transmission electron
ion beam
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6141852A
Other languages
Japanese (ja)
Other versions
JP3058394B2 (en
Inventor
Fumitoshi Yasuo
文利 安尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6141852A priority Critical patent/JP3058394B2/en
Publication of JPH085528A publication Critical patent/JPH085528A/en
Application granted granted Critical
Publication of JP3058394B2 publication Critical patent/JP3058394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30466Detecting endpoint of process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To provide a focused ion beam apparatus. for producing a cross-section sample for a transmission electron microscope and a method for producing the sample Wherein a thickness of a worked surface of the sample for the transmission electron microscope can be quantitatively monitored to automatically detect a work finishing point with an optimum sample thickness and further uniformity in thickness of a part being worked can be easily determined. CONSTITUTION:A focused ion beam apparatus comprises a working chamber 60 with a cross-section sample 41 for a transmission electron microscope placed, an ion gun 10 for emitting an ion beam 11 to the sample 41 placed in the working chamber 60, an electron gun 20 for emitting an electron beam 21 to a worked part of the sample 41 at an angle of approximately 90 deg. with respect to the ion beam 11 emitted from the ion gun 10, a transmission electron detector 30 placed oppositely to the electron gun 20 for receiving the electron beam which has transmitted through the sample 41 to detect a current amount of the electron beam which has transmitted, and a low voltage electrode 50 placed in the vicinity of a position for fixing the sample 41 to surround the sample 41 for absorbing secondary electrons 12 generated by the ion beam 11 and the electron beam 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透過電子顕微鏡用断面
試料作成用集束イオンビーム装置及び透過電子顕微鏡用
断面試料作成方法に関し、特に、LSIチップの不良箇
所等の特定微小部の透過電子顕微鏡用断面試料を作成す
る透過電子顕微鏡用断面試料作成用集束イオンビーム装
置及び透過電子顕微鏡用断面試料作成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focused ion beam device for preparing a cross-section sample for a transmission electron microscope and a method for preparing a cross-section sample for a transmission electron microscope, and particularly to a transmission electron microscope for a specific minute portion such as a defective portion of an LSI chip. The present invention relates to a focused ion beam device for preparing a cross-section sample for a transmission electron microscope for preparing a cross-section sample for a transmission electron microscope and a method for preparing a cross-section sample for a transmission electron microscope.

【0002】[0002]

【従来の技術】最近、LSIデバイスの微細化やLSI
材料薄膜化に伴い、LSIデバイス性能を決定する微細
構造の観察評価が極めて重要である。特に、トランジス
タのゲート絶縁膜には数nm厚の極薄膜も採用され、こ
うした微細構造の観察評価にはコンマ数nm以下程度の
高い空間分解能が必要とされている。また、LSIデバ
イスの微細トランジスタのリークの原因となり、様々な
不良を引き起こす結晶欠陥の評価も、LSIの性能向上
や歩留まり向上において極めて重要である。これらの目
的に対応できる唯一の評価装置として透過電子顕微鏡
(TEM)がある。
2. Description of the Related Art Recently, miniaturization of LSI devices and LSI
As the material becomes thinner, it is very important to observe and evaluate the fine structure that determines the LSI device performance. In particular, an extremely thin film having a thickness of several nm is also used as a gate insulating film of a transistor, and a high spatial resolution of a comma of several nm or less is required for the observation and evaluation of such a fine structure. In addition, evaluation of crystal defects that cause various defects and cause leakage of fine transistors of an LSI device is also extremely important in improving the performance and yield of the LSI. A transmission electron microscope (TEM) is the only evaluation device that can meet these purposes.

【0003】透過電子顕微鏡は、0.2nm程度という
高分解能観察評価装置の中でも最も高い空間分解能を有
しており、極薄膜化されたLSIゲート絶縁膜等まで観
察評価できる唯一の手段である。また、結晶欠陥を高い
空間分解能で直接観察できるのも透過電子顕微鏡だけで
ある。更に、透過電子顕微鏡は、観察だけでなくX線マ
イクロアナライザー(EPMA)等との複合化で1nm
程度の空間分解能での元素分析が可能であり、他の分析
方法の中で最も空間分解能の高いオージェ電子分光分析
法(AES)と比較しても1/20程度の空間分解能を
有しており、微細化の進むLSIデバイス解析において
極めて有用な解析手法に位置付けされている。
The transmission electron microscope has the highest spatial resolution of the high-resolution observation and evaluation apparatus of about 0.2 nm, and is the only means for observing and evaluating even extremely thin LSI gate insulating films. Only the transmission electron microscope can directly observe crystal defects with high spatial resolution. In addition, the transmission electron microscope is not only for observation, but it can also be combined with an X-ray microanalyzer (EPMA) etc.
Elemental analysis with a spatial resolution of about 1 is possible, and has a spatial resolution of about 1/20 as compared with Auger electron spectroscopy (AES), which has the highest spatial resolution among other analysis methods. It is positioned as an extremely useful analysis method in LSI device analysis, which is becoming more and more miniaturized.

【0004】透過電子顕微鏡による観察評価には、試料
を透過した電子線の投影像が用いられる。このため、透
過電子顕微鏡用の試料は電子線を透過できる厚さに加工
する必要がある。具体的には、500nm以下程度の薄
膜化が必要であり、特に結晶構造等を評価するための高
分解能観察を行うには試料を100nm以下程度まで薄
膜化する必要がある。
A projection image of an electron beam transmitted through the sample is used for observation and evaluation with a transmission electron microscope. Therefore, the sample for a transmission electron microscope needs to be processed to have a thickness that allows the electron beam to pass therethrough. Specifically, it is necessary to reduce the film thickness to about 500 nm or less, and particularly to perform high resolution observation for evaluating the crystal structure etc., it is necessary to thin the sample to about 100 nm or less.

【0005】一般に、LSIの透過電子顕微鏡用試料作
成は機械的に試料を薄くした後に、イオンビームで最終
の薄膜化が行われているが、これは広い範囲に形成され
た薄膜や、同一形状が繰り返されるLSIパターンの任
意の場所を対象とした場合であり、微細化されたLSI
の特定箇所、例えば故障トランジスタやオープンコンタ
クト等を評価する場合、薄膜化の加工部の位置がずれる
と観察評価箇所が失われる虞があるため、透過電子顕微
鏡用試料作成では1μm以下の位置精度で特定箇所を薄
膜化する必要がある。これには、単純な機械研磨とイオ
ンビーム加工では対応が不可能であり、幾つかの試料加
工方法が案出されている。
Generally, in the preparation of a sample for a transmission electron microscope of an LSI, the sample is mechanically thinned and then finally thinned by an ion beam. This is a thin film formed in a wide range or the same shape. This is a case where an arbitrary position of an LSI pattern in which
When evaluating a specific part such as a defective transistor or open contact, the observation evaluation part may be lost if the position of the processed part for thinning is displaced. Therefore, in the sample preparation for the transmission electron microscope, the position accuracy is 1 μm or less. It is necessary to thin the specific part. This cannot be dealt with by simple mechanical polishing and ion beam processing, and several sample processing methods have been devised.

【0006】以下、LSIチップの不良箇所等の特定微
小部の断面の透過電子顕微鏡観察や分析を行うための透
過電子顕微鏡用試料を機械研磨により加工する方法につ
いて図4a〜図4gを用いて説明する。
A method of mechanically polishing a sample for a transmission electron microscope for performing a transmission electron microscope observation or analysis of a cross section of a specific minute portion such as a defective portion of an LSI chip will be described below with reference to FIGS. 4a to 4g. To do.

【0007】(1−1)顕微鏡を具備したレーザマーカ
ーあるいは集束イオンビーム装置等により、図4aに示
すように、透過電子顕微鏡観察を所望する特定微小部4
2周辺に穴開けによりマーキング43を行う。なお、特
定微小部42がマーキング43のためのレーザーやイオ
ンビーム照射の熱的影響や穴開けの飛散物汚染を受けな
いように、マーキングは特定微小部42から20μm程
度以上離れた位置に行うとよい。マーキングの大きさや
深さについては、後の加工での位置確認の点では大きい
ほどよい反面、マーキングの際の熱や飛散物を抑える必
要性から大きさは5μm以下程度、深さは1〜5μm程
度が良いと考えられる。試料加工に実体顕微鏡等の低倍
率顕微鏡を用いる必要がある場合には、前記マーキング
に加えて特定微小部42から更に40μm以上離れた位
置に大きさ10μm程度のマーキングを追加するとよ
い。
(1-1) As shown in FIG. 4a, a specific minute portion 4 desired to be observed by a transmission electron microscope by a laser marker equipped with a microscope, a focused ion beam device, or the like.
2 Marking 43 is performed by making a hole in the periphery. It should be noted that the marking is performed at a position about 20 μm or more away from the specific minute portion 42 so that the specific minute portion 42 is not affected by the thermal influence of the laser or the ion beam irradiation for the marking 43 and the scattered matter contamination of the holes. Good. Regarding the size and depth of marking, the larger the position, the better in terms of position confirmation in later processing. However, the size and depth are about 5 μm or less and the depth is 1 to 5 μm due to the need to suppress heat and flying objects during marking. The degree is considered good. When it is necessary to use a low-magnification microscope such as a stereomicroscope for sample processing, it is advisable to add a marking having a size of about 10 μm at a position further separated by 40 μm or more from the specific minute portion 42 in addition to the marking.

【0008】(1−2)表面保護のため試料41の表面
にガラス44を貼着する。
(1-2) Glass 44 is attached to the surface of the sample 41 for surface protection.

【0009】(1−3)マーキングを参考にして、ダイ
シングマシンの高速回転外周刃61により観察または分
析を所望する特定微小領域周辺を透過電子顕微鏡に導入
可能な1.5mm□以下程度に切断する。この際、切断
面としては、図4b、4cに示すように、透過電子顕微
鏡用の試料41の観察または分析を所望する断面と平行
な面及びこれに垂直な面を選択する。試料41の観察/
分析を所望する断面に垂直な方向の切断幅は、狭いほう
が次の研磨で時間短縮できるため、切断時に観察または
分析を所望する特定微小部42が破損しない範囲、例え
ば100〜200μm幅で狭く切断する。
(1-3) With reference to the marking, the periphery of a specific minute region desired to be observed or analyzed is cut into about 1.5 mm □ or less which can be introduced into a transmission electron microscope by a high-speed rotating outer peripheral blade 61 of a dicing machine. . At this time, as the cutting plane, as shown in FIGS. 4b and 4c, a plane parallel to the cross section desired to observe or analyze the sample 41 for the transmission electron microscope and a plane perpendicular thereto are selected. Observation of sample 41 /
A narrower cutting width in the direction perpendicular to the cross section desired to be analyzed can shorten the time for the next polishing, and therefore, a narrow cut in a range where the specific minute portion 42 desired to be observed or analyzed at the time of cutting is not damaged, for example, 100 to 200 μm width. To do.

【0010】(1−4)試料41の観察または分析を希
望する断面と平行な二つの切断面を、図4d、4eに示
すように、研磨治具70と回転研磨盤71とにより機械
研磨する。この際、マーキングを参考にして一側面が観
察/分析を希望する特定微小部42に対して10μm程
度の距離になるまで研磨する。試料41の一側面と対向
する他側面を特定微小部42から70μm程度の距離に
なるまで研磨する。これによって研磨面の間隔である試
料41の幅は80μm程度になる。なお、ここまでの研
磨は、比較的研磨速度の速い5〜15μm程度の研磨粒
を用いる。特定微小部42に近い試料41の一側面であ
る研磨面は、この段階で更に細かい1μm以下の研磨粒
を用いて鏡面仕上げを行う。
(1-4) Two cutting planes parallel to the desired cross section of the sample 41 for observation or analysis are mechanically polished by a polishing jig 70 and a rotary polishing plate 71 as shown in FIGS. 4d and 4e. . At this time, referring to the marking, the one side surface is polished until the distance becomes about 10 μm with respect to the specific minute portion 42 desired to be observed / analyzed. One side surface of the sample 41 and the other side surface facing the same are polished from the specific minute portion 42 to a distance of about 70 μm. As a result, the width of the sample 41, which is the distance between the polishing surfaces, becomes about 80 μm. Note that the polishing up to this point uses polishing particles of about 5 to 15 μm, which have a relatively high polishing rate. The polishing surface, which is one side surface of the sample 41 near the specific minute portion 42, is mirror-finished at this stage by using finer polishing particles of 1 μm or less.

【0011】(1−5)試料41を、図4fに示すよう
に、特定微小部42から遠い試料41の他側面である鏡
面仕上げをしていない研磨面を上にして回転ステージ7
3上に固定し、回転研磨ディスク72により観察/分析
所望部を中心にディンプルグラインダー研磨する。ディ
ンプルグラインダー研磨は、まず5〜10μmの研磨材
を用いて分析/観察希望部付近の厚さが20〜30μm
になるまで研磨する。それから、1μm以下の研磨粒を
用いて分析/観察希望部の鏡面仕上げを行う。
(1-5) As shown in FIG. 4f, the sample 41 is rotated on the rotary stage 7 with the polished surface, which is the other side surface of the sample 41 away from the specific minute portion 42, which is not mirror-finished.
Then, the dimple grinder is polished around the desired portion for observation / analysis with the rotary polishing disk 72. In the dimple grinder polishing, a thickness of 20 to 30 μm near the analysis / observation desired portion is first obtained by using an abrasive material of 5 to 10 μm.
Grind until Then, a mirror finish of the analysis / observation desired portion is performed using abrasive grains of 1 μm or less.

【0012】(1−6)試料41の分析/観察希望部を
中心に、図4gに示すように、透過電子顕微鏡用メッシ
ュ80に貼る。
(1-6) The sample 41 is attached to a transmission electron microscope mesh 80, as shown in FIG.

【0013】(1−7)イオンミリング装置により両面
よりイオンミリングし、500nm以下の厚さを得る。
(1-7) Ion milling is performed from both sides with an ion milling device to obtain a thickness of 500 nm or less.

【0014】(1−8)透過電子顕微鏡により試料41
の観察分析を行う。
(1-8) Sample 41 by transmission electron microscope
Observe and analyze.

【0015】次に、特開平2−132345号公報及び
特開平5−180739号公報に開示されている集束イ
オンビーム装置による透過電子顕微鏡用試料の加工方法
について図5a〜図5gを用いて説明する。
Next, a method of processing a sample for a transmission electron microscope by the focused ion beam apparatus disclosed in JP-A-2-132345 and JP-A-5-180739 will be described with reference to FIGS. 5A to 5G. .

【0016】(2−1)前述の(1ー1)、(1ー3)
と同様の方法により、図5a〜図5cに示すように、試
料にマーキングを行うと共に試料41の切断を行う。必
要に応じて更に試料の観察/分析希望領域を、図5dに
示すように、ダイシングマシンの高速回転外周刃61に
より薄く削る。
(2-1) The aforementioned (1-1) and (1-3)
By the same method as described above, the sample is marked and the sample 41 is cut as shown in FIGS. 5a to 5c. If necessary, the observation / analysis desired region of the sample is further thinly cut by a high-speed rotating outer peripheral blade 61 of the dicing machine as shown in FIG. 5d.

【0017】(2−2)集束イオンビーム装置により観
察/分析希望の特定微小部42付近に集束イオンビーム
11を、図5e、5fに示すように、試料表面方向より
照射する。この際、集束イオンビーム11は、、図5g
に示すように、観察/分析希望断面と平行な一辺を有す
る長方形領域81、82にラスタ走査し、この領域をス
パッタエッチングする。集束イオンビーム11のビーム
電流やビーム径等を適当に選択しながらラスタ走査領域
を徐々に観察/分析希望断面に近付け、図5fに示すよ
うに、断面加工を行う。この加工を観察/分析希望の特
定微小部42の両側から行うことでこの微小部の薄膜化
を行い、透過電子顕微鏡の試料とする。
(2-2) Focused ion beam 11 is irradiated with the focused ion beam 11 in the vicinity of the specific minute portion 42 desired to be observed / analyzed from the sample surface direction as shown in FIGS. 5e and 5f. At this time, the focused ion beam 11 is as shown in FIG.
As shown in (1), a rectangular region 81, 82 having one side parallel to the desired observation / analysis cross section is raster-scanned, and this region is sputter-etched. While appropriately selecting the beam current, beam diameter, etc. of the focused ion beam 11, the raster scanning region is gradually brought closer to the desired cross section for observation / analysis, and the cross section is processed as shown in FIG. 5f. By performing this processing from both sides of the specific minute portion 42 desired to be observed / analyzed, the minute portion is thinned and used as a sample for a transmission electron microscope.

【0018】なお、集束イオンビーム11は、図6
(c)に示すように、逆円錐形であり、試料表面に対し
て垂直にビーム照射すると、垂直断面が得られない。よ
って、図6(c)に示すように、試料41を所定角度θ
だけ傾けて垂直断面を得る。この角度θは集束イオンビ
ーム装置や加工条件によって異なるため、事前に条件出
しを行う必要があり、一般的には3〜5度程度の傾斜で
加工が行われている。また、実際の加工の際には、断続
的に加工を中断し、加工形状を集束イオンビームによる
2次イオン像や2次電子像観察、走査型電子顕微鏡に試
料を移しての観察、電子線照射機能を有する集束イオン
ビーム装置では装置内にて電子線照射による2次電子像
観察等によって評価し、不具合があれば集束イオンビー
ムの調整や条件変更、試料の角度調整を適宜行う。
The focused ion beam 11 is shown in FIG.
As shown in (c), it has an inverted conical shape, and when a beam is irradiated perpendicularly to the sample surface, a vertical cross section cannot be obtained. Therefore, as shown in FIG.
Only tilt to get a vertical cross section. Since this angle θ differs depending on the focused ion beam device and processing conditions, it is necessary to set the conditions in advance, and processing is generally performed with an inclination of about 3 to 5 degrees. Also, during the actual processing, the processing is interrupted intermittently, and the processed shape is observed by a secondary ion image or secondary electron image by a focused ion beam, observation by moving the sample to a scanning electron microscope, and electron beam. In a focused ion beam apparatus having an irradiation function, evaluation is performed by observing secondary electron images by electron beam irradiation in the apparatus, and if there is a problem, adjustment of focused ion beam, change of conditions, and angle adjustment of sample are appropriately performed.

【0019】(2−3)試料41の分析/観察希望部を
中心にして、図5gに示すように、透過電子顕微鏡用メ
ッシュ80に貼る。
(2-3) As shown in FIG. 5g, the sample 41 is attached to a transmission electron microscope mesh 80, centering on the desired portion for analysis / observation.

【0020】(2−4)透過電子顕微鏡により試料41
の観察分析を行う。
(2-4) Sample 41 by transmission electron microscope
Observe and analyze.

【0021】集束イオンビーム加工の終了点は以下の方
法により決定する。
The end point of the focused ion beam processing is determined by the following method.

【0022】(1)イオンビーム照射によって得られる
2次イオン像や2次電子像等で加工部の形状観察を行
い、加工部の厚さを観察像から判断し、加工終了点を決
定する。なお、画像分解能は数十nmである。
(1) The shape of the processed portion is observed with a secondary ion image or secondary electron image obtained by ion beam irradiation, the thickness of the processed portion is judged from the observed image, and the processing end point is determined. The image resolution is several tens of nm.

【0023】(2)集束イオンビーム加工と走査型電子
顕微鏡観察とを交互に行い、走査型電子顕微鏡による加
工部の観察像から加工部の厚さを判断し、加工終了点を
決定する。あるいは、集束イオンビーム加工と走査型電
子顕微鏡観察とを交互に行い、透過電子顕微鏡観察像の
解像度から試料完成度を判定する。
(2) Focused ion beam processing and scanning electron microscope observation are performed alternately, the thickness of the processed portion is determined from the observation image of the processed portion by the scanning electron microscope, and the processing end point is determined. Alternatively, focused ion beam processing and scanning electron microscope observation are alternately performed, and the sample perfection is determined from the resolution of the transmission electron microscope observation image.

【0024】(3)特開平4−76437号公報に開示
されているように、イオン銃とは別に電子銃を具備した
集束イオンビーム装置あるいはイオン銃を使って電子ビ
ームが照射できる集束イオンビーム装置においては、集
束イオンビーム装置内で集束イオンビーム加工と電子ビ
ームによる観察を交互に行い、観察像から加工部の厚さ
を判断し、加工終了点を決定する。
(3) As disclosed in Japanese Patent Laid-Open No. 4-76437, a focused ion beam device equipped with an electron gun in addition to an ion gun or a focused ion beam device capable of irradiating an electron beam using the ion gun In the above, in the focused ion beam device, focused ion beam processing and observation with an electron beam are alternately performed, the thickness of the processed portion is judged from the observed image, and the processing end point is determined.

【0025】[0025]

【発明が解決しようとする課題】従来の機械研磨による
透過電子顕微鏡用試料の加工方法では、観察評価を希望
する微小部に対して加工位置精度が機械研磨の段階で数
μmであり、LSIの不良箇所を観察するための加工に
必要な1μm以下の精度が得られない。
In the conventional method of processing a sample for a transmission electron microscope by mechanical polishing, the processing position accuracy for a minute portion desired to be observed and evaluated is several μm at the mechanical polishing stage, and The accuracy of 1 μm or less required for processing for observing a defective portion cannot be obtained.

【0026】従来の集束イオンビーム装置による透過電
子顕微鏡用試料の加工方法では、集束イオンビームによ
る2次イオン像や2次電子像観察で加工形状を評価する
場合、あるいは集束イオンビームによる2次イオン像や
2次電子像観察で加工面の厚さを評価して加工終了点を
判断する場合、加工目標厚さが数十〜百数十nmである
のに対して、集束イオンビームのビーム系が最小で10
0nm程度であり、得られる2次イオン像や2次電子像
の分解能もイオンビーム径に準じるため、画像上で正確
な厚さの判断が難しく、試料作成の成功率が低くなる。
集束イオンビームでの観察は加工と交互に行うため、加
工終了点を超過して加工する虞がある。逆円錐状の集束
イオンビームで断面加工を行うため、図6(c)に示す
ように試料を傾斜させて加工するが、集束イオンビーム
の調整ばらつき等から加工毎に加工断面は表面に対して
垂直な面からずれてしまう。例えば、加工面両面の角度
が2度傾斜している場合、最表面の各部の幅に対して3
μm深さの位置では厚さは100nmのずれが生じる。
この状態で最表面9にて加工部の幅が目標の100nm
に達した場合、傾きの方向によって3μmの深さでは2
00nmの幅もしくは0nmとなり、穴が開くことにな
る。深さ3μmはLSIデバイス構造の表面からの厚さ
に相当する。また、加工部の幅が200nmでは、格子
像観察等の高分解能観察は困難である。こうした加工面
の垂直方向に対する角度誤差を集束イオンビームによる
観察分解能で、しかも上方からの観察で評価することは
不可能であり、観察評価希望部の各厚さを正確に評価で
きないため、透過電子顕微鏡用試料作成の成功率は低く
なる。
In the conventional method for processing a sample for a transmission electron microscope using a focused ion beam apparatus, a secondary ion image by a focused ion beam or a secondary electron image by a focused ion beam is used to evaluate a processed shape, or a secondary ion by a focused ion beam is used. When the processing end point is judged by evaluating the thickness of the processed surface by observing an image or a secondary electron image, the processing target thickness is several tens to one hundred and several tens nm, whereas the focused ion beam beam system is used. Is at least 10
Since it is about 0 nm, and the resolution of the obtained secondary ion image and secondary electron image conforms to the ion beam diameter, it is difficult to accurately determine the thickness on the image, and the success rate of sample preparation becomes low.
Since the observation with the focused ion beam is performed alternately with the processing, there is a possibility that the processing may be performed beyond the processing end point. Since the cross-section is processed by the inverted conical focused ion beam, the sample is tilted and processed as shown in FIG. 6C. However, the processed cross section is different from the surface for each processing due to variations in adjustment of the focused ion beam. It deviates from the vertical plane. For example, when the angles of both sides of the processed surface are inclined by 2 degrees, the width of each part of the outermost surface is 3
At the position of μm depth, the thickness is deviated by 100 nm.
In this state, the width of the processed part on the outermost surface 9 is 100 nm which is the target.
2 is reached at a depth of 3 μm depending on the tilt direction.
The width becomes 00 nm or 0 nm, and a hole is opened. The depth of 3 μm corresponds to the thickness from the surface of the LSI device structure. Further, when the width of the processed portion is 200 nm, high resolution observation such as lattice image observation is difficult. It is impossible to evaluate such an angular error with respect to the vertical direction of the machined surface with the observation resolution of the focused ion beam, and it is impossible to observe it from above. The success rate of preparing a sample for a microscope is low.

【0027】集束イオンビームによる加工形状や加工終
了点を走査型電子顕微鏡で判断する場合、もしくは透過
電子顕微鏡による観察像で判断する場合、集束イオンビ
ーム加工と電子顕微鏡観察を交互に行うため、試料の入
れ替え等に時間を要し、加工時間が長くなる。一般に加
工時間は3〜5時間であるのに対して観察を加えると試
料交換、観察、集束イオンビーム再調整で1回最低1時
間程度の時間を必要とし、2〜3回の観察を加えるだけ
で集束イオンビーム加工の開始から終了までの所要時間
の1.5から2倍となる。集束イオンビーム加工と電子
顕微鏡観察を交互に行う場合、集束イオンビームでの再
加工の際に、図6(a)、(b)に示すように、試料の
入れ替えによって加工方向に誤差が生じ、観察部の厚さ
が不均一になり、良好な観察が困難になる。電子顕微鏡
では、観察分解能は数nm以下であり、イオンビームに
よる観察法に比べて加工部表面の厚さは正確に評価でき
る。但し、加工形状の観察評価、例えば加工面の垂直方
向に対する角度誤差は上方からの観察で評価することは
困難であり、観察希望部の正確な膜厚評価はできない。
観察後、再び集束イオンビーム加工を行う際には、集束
イオンビームは再調整が必要であり、条件が変わり、評
価結果からのフィードバックもできない。
When the processing shape and the processing end point by the focused ion beam are judged by the scanning electron microscope or the observation image by the transmission electron microscope, the focused ion beam processing and the electron microscope observation are alternately carried out. It takes a long time to replace, and the processing time becomes long. Generally, the processing time is 3 to 5 hours, but if observation is added, it takes at least 1 hour at least once for sample exchange, observation, and focused ion beam readjustment, and only 2 to 3 times are added. Therefore, the time required from the start to the end of focused ion beam processing is 1.5 to 2 times. When the focused ion beam processing and the electron microscope observation are alternately performed, when reprocessing with the focused ion beam, as shown in FIGS. 6A and 6B, an error occurs in the processing direction due to the replacement of the sample, The thickness of the observation portion becomes non-uniform, and good observation becomes difficult. With an electron microscope, the observation resolution is several nm or less, and the thickness of the surface of the processed portion can be evaluated more accurately than in the observation method using an ion beam. However, it is difficult to observe and evaluate the processed shape, for example, the angle error with respect to the vertical direction of the processed surface, and it is difficult to accurately evaluate the film thickness of the observation desired portion.
When the focused ion beam is processed again after the observation, the focused ion beam needs to be readjusted, the conditions are changed, and the feedback from the evaluation result cannot be performed.

【0028】電子ビーム照射機能を具備した集束イオン
ビーム装置において、集束イオンビーム加工の終了点の
判断を電子ビームにより得られる2次電子像等の観察で
行う場合、イオン銃が電子銃を兼用している場合はもと
より、イオン銃とは別に電子銃を持つ場合でも、集束イ
オンビーム加工中はイオンビーム照射によって発生する
2次電子のため、電子ビームによる2次電子像観察はで
きない。従って、加工と観察とを同時にはできず、加工
終了点を超過して加工する虞がある。加工部上方からの
観察のため、加工面の垂直方向に対する傾きは正確に評
価できない。
In a focused ion beam apparatus having an electron beam irradiation function, when the end point of the focused ion beam processing is judged by observing a secondary electron image or the like obtained by the electron beam, the ion gun also serves as an electron gun. However, even if the electron gun is provided separately from the ion gun, the secondary electron image cannot be observed by the electron beam because of the secondary electrons generated by the ion beam irradiation during the focused ion beam processing. Therefore, processing and observation cannot be performed at the same time, and there is a risk of processing beyond the processing end point. Since it is observed from above the machined part, the inclination of the machined surface with respect to the vertical direction cannot be accurately evaluated.

【0029】本発明は、上記のような課題を解消するた
めになされたもので、透過電子顕微鏡用試料の加工面の
厚さを定量的にモニターして最良の試料厚さを自動的に
検出でき、更に加工中に加工部の厚さの均一性が容易に
判断できる透過電子顕微鏡用断面試料作成用集束イオン
ビーム装置及び透過電子顕微鏡用断面試料作成方法を提
供することを目的とする。
The present invention has been made to solve the above problems, and quantitatively monitors the thickness of the processed surface of a sample for a transmission electron microscope to automatically detect the best sample thickness. It is an object of the present invention to provide a focused ion beam device for preparing a cross-section sample for a transmission electron microscope and a cross-section sample preparation method for a transmission electron microscope, which enables the uniformity of the thickness of a processed portion to be easily determined during processing.

【0030】[0030]

【課題を解決するための手段】本発明によれば、前述の
目的は、透過電子顕微鏡用断面試料を作成するためのイ
オンビームを発射するイオン銃手段と、該イオン銃手段
から発射されるイオンビームに対して60度〜90度程
度の角度で前記透過電子顕微鏡用断面試料の加工部分に
電子ビームを照射する電子銃手段と、該電子銃手段に対
向して配置されかつ前記透過電子顕微鏡用断面試料を透
過した電子ビームを受けて透過した電子ビームの電流量
を検出する検出手段とを具備する請求項1の透過電子顕
微鏡用断面試料作成用集束イオンビーム装置によって達
成される。
According to the present invention, the above-mentioned object is to provide an ion gun means for emitting an ion beam for producing a cross-section sample for a transmission electron microscope, and an ion emitted from the ion gun means. Electron gun means for irradiating the processed portion of the cross-section sample for the transmission electron microscope with an electron beam at an angle of about 60 to 90 degrees with respect to the beam, and for the transmission electron microscope, the electron gun means being arranged to face the electron gun means. A focused ion beam device for preparing a cross-section sample for a transmission electron microscope according to claim 1, further comprising a detection unit that receives an electron beam that has passed through the cross-section sample and detects a current amount of the electron beam that has passed through the cross-section sample.

【0031】本発明によれば、前述の目的は、前記透過
電子顕微鏡用断面試料を固定する位置の近傍に、イオン
ビーム及び電子ビームの照射により発生した2次電子を
吸収する電極手段を具備する請求項2の透過電子顕微鏡
用断面試料作成用集束イオンビーム装置によって達成さ
れる。
According to the present invention, the above-mentioned object is provided with an electrode means for absorbing secondary electrons generated by irradiation of an ion beam and an electron beam in the vicinity of a position where the cross-section sample for a transmission electron microscope is fixed. This is achieved by the focused ion beam device for producing a cross-sectional sample for a transmission electron microscope according to claim 2.

【0032】本発明によれば、前述の目的は、透過電子
顕微鏡による断面観察を必要とする試料を透過電子顕微
鏡に装着可能な厚さに切断する工程と、集束イオンビー
ムによって更に観察領域を薄くする工程と、集束イオン
ビームで薄膜化を進めながら試料の加工部に電子ビーム
を照射する工程と、試料を透過する電子ビームの電流量
を検出する工程と、前記検出した電流量に基づき試料の
加工部を電子ビームにより走査して加工部の厚さの均一
性を評価する工程とを具備する請求項3の透過電子顕微
鏡用断面試料作成方法によって達成される。
According to the present invention, the above-mentioned object is to cut a sample, which requires cross-sectional observation by a transmission electron microscope, into a thickness that can be mounted on the transmission electron microscope, and to further thin the observation region by a focused ion beam. The step of irradiating the processed portion of the sample with the electron beam while promoting the thinning with the focused ion beam, the step of detecting the current amount of the electron beam passing through the sample, and the step of measuring the sample based on the detected current amount. The method for producing a cross-section sample for a transmission electron microscope according to claim 3, further comprising the step of scanning the processed portion with an electron beam to evaluate the uniformity of the thickness of the processed portion.

【0033】本発明によれば、前述の目的は、透過電子
顕微鏡による断面観察を必要とする試料を透過電子顕微
鏡に装着可能な厚さに切断する工程と、集束イオンビー
ムによって更に観察領域を薄くする工程と、集束イオン
ビームで薄膜化を進めながら試料の加工部に電子ビーム
を照射する工程と、試料を透過する電子ビームの電流量
を検出する工程と、前記検出した電流量に基づき試料の
加工終了点を検出する工程とを具備する請求項4の透過
電子顕微鏡用断面試料作成方法によって達成される。
According to the present invention, the above-mentioned object is to cut a sample that requires cross-sectional observation with a transmission electron microscope to a thickness that can be mounted on the transmission electron microscope, and to further thin the observation region with a focused ion beam. The step of irradiating the processed portion of the sample with the electron beam while promoting the thinning with the focused ion beam, the step of detecting the current amount of the electron beam passing through the sample, and the step of measuring the sample based on the detected current amount. The method for producing a cross-section sample for a transmission electron microscope according to claim 4, further comprising the step of detecting a processing end point.

【0034】[0034]

【作用】請求項1の透過電子顕微鏡用断面試料作成用集
束イオンビーム装置によれば、イオン銃手段により集束
イオンビームを試料表面に対して任意の加速電圧、ビー
ム電流、ビーム径で照射し、試料表面の任意の領域をラ
スタ走査する。イオンビーム加工中に、電子銃手段によ
り任意の加速電圧、ビーム電流、ビーム径で加工面の任
意の位置に電子ビームをイオンビームに対して60度〜
90度程度の角度で試料に照射し、試料を透過した電子
ビームを検出手段により受け、検出手段により透過した
電子ビームの電流量を検出し、透過ビームの電流値が予
め設定された値に達した段階で集束イオンビームにより
加工を終了する。
According to the focused ion beam device for preparing a cross-section sample for a transmission electron microscope of claim 1, the focused ion beam is irradiated onto the sample surface by an ion gun means at an arbitrary accelerating voltage, beam current and beam diameter. Raster scan an arbitrary area on the sample surface. During ion beam processing, the electron beam is moved by an electron gun means at an arbitrary accelerating voltage, beam current, and beam diameter at an arbitrary position on the processing surface from 60 degrees to the ion beam.
The sample is irradiated at an angle of about 90 degrees, the electron beam transmitted through the sample is received by the detection unit, the current amount of the electron beam transmitted by the detection unit is detected, and the current value of the transmitted beam reaches a preset value. The processing is completed by the focused ion beam at the stage.

【0035】請求項2の透過電子顕微鏡用断面試料作成
用集束イオンビーム装置によれば、任意の正の電圧が印
加された電極手段により試料に照射された集束イオンビ
ームによる2次電子等の電子を吸収し、検出手段に達し
て透過電子ビーム電流量検出の妨げとならないようにす
る。
According to the focused ion beam device for preparing a cross-section sample for a transmission electron microscope of claim 2, electrons such as secondary electrons by the focused ion beam irradiated to the sample by the electrode means to which an arbitrary positive voltage is applied. Is absorbed so that it does not interfere with the detection of the amount of transmitted electron beam current reaching the detection means.

【0036】請求項3の透過電子顕微鏡用断面試料作成
方法によれば、透過電子顕微鏡用断面試料を作成する
際、透過電子顕微鏡による断面観察を必要とする試料を
透過電子顕微鏡に装着可能な厚さに切断し、集束イオン
ビームによって更に観察領域を薄くし、集束イオンビー
ムで薄膜化を進めながら加工部に電子ビームを照射し、
その透過ビームの電流量を検出し、検出した電流値に基
づき前記試料の加工部分の厚さの均一性を評価し、この
評価に基づき均一な厚さの透過電子顕微鏡用断面試料を
作成する。
According to the method for preparing a cross-section sample for a transmission electron microscope of claim 3, when a cross-section sample for a transmission electron microscope is prepared, a thickness which allows a sample requiring cross-section observation by the transmission electron microscope to be mounted on the transmission electron microscope. Cut into small pieces, further thin the observation region with a focused ion beam, and irradiate the processed part with an electron beam while proceeding with thinning with a focused ion beam,
The amount of current of the transmitted beam is detected, the uniformity of the thickness of the processed portion of the sample is evaluated based on the detected current value, and a cross-sectional sample for a transmission electron microscope having a uniform thickness is created based on this evaluation.

【0037】請求項4の透過電子顕微鏡用断面試料作成
方法によれば、透過電子顕微鏡用断面試料を作成する
際、透過電子顕微鏡による断面観察を必要とする試料を
透過電子顕微鏡に装着可能な厚さに切断し、集束イオン
ビームによって更に観察領域を薄くし、集束イオンビー
ムで薄膜化を進めながら加工部に電子ビームを照射し、
試料を透過する電子ビームをモニタし、加工終了点を検
出する工程により透過電子顕微鏡用断面試料を作成す
る。
According to the method for preparing a cross-section sample for a transmission electron microscope of claim 4, when a cross-section sample for a transmission electron microscope is prepared, a sample which requires cross-section observation by the transmission electron microscope can be attached to the transmission electron microscope. Cut into small pieces, further thin the observation region with a focused ion beam, and irradiate the processed part with an electron beam while proceeding with thinning with a focused ion beam,
A cross-sectional sample for a transmission electron microscope is created by the process of monitoring the electron beam passing through the sample and detecting the processing end point.

【0038】[0038]

【実施例】以下、請求項1の透過電子顕微鏡用断面試料
作成用集束イオンビーム装置の実施例を図1を参照しな
がら説明する。本実施例は、透過電子顕微鏡用試料の加
工面の厚さを定量的にモニターして最良の試料厚さを自
動的に検出でき、更に加工中に加工部の厚さの均一性が
容易に判断できる透過電子顕微鏡用断面試料作成用集束
イオンビーム装置を提供することを課題とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a focused ion beam device for producing a cross-section sample for a transmission electron microscope according to claim 1 will be described below with reference to FIG. In the present embodiment, the thickness of the processed surface of the sample for transmission electron microscope can be quantitatively monitored to automatically detect the best sample thickness, and the uniformity of the thickness of the processed portion can be easily made during the processing. An object of the present invention is to provide a focused ion beam device for cross-section sample preparation for a transmission electron microscope that can be judged.

【0039】本実施例は、透過電子顕微鏡用断面試料4
1を配置する加工室60と、加工室60に配置された試
料41にイオンビーム11を発射するイオン銃手段とし
てのイオン銃10と、イオン銃10から発射されるイオ
ンビーム11に対して約90度の角度で試料41の加工
部分に電子ビーム21を照射する電子銃手段としての電
子銃20と、該電子銃20に対向して配置されかつ前記
透過電子顕微鏡用断面試料41を透過した電子ビームを
受けて透過した電子ビームの電流量を検出する検出手段
としての透過電子検出器30と、前記試料41を固定す
る位置の近傍に試料41を囲むように配置され、かつイ
オンビーム11及び電子ビーム21により発生する2次
電子12を吸収して正確な透過ビーム電流量が測定でき
なくなるのを防止する電極手段としての低電圧電極50
とを具備している。
This example is a cross-sectional sample 4 for a transmission electron microscope.
1 to the processing chamber 60, the ion gun 10 as the ion gun means for emitting the ion beam 11 to the sample 41 placed in the processing chamber 60, and the ion beam 11 emitted from the ion gun 10 is about 90. An electron gun 20 as an electron gun means for irradiating the processed portion of the sample 41 with an electron beam 21 at an angle of degrees, and an electron beam which is arranged so as to face the electron gun 20 and which has passed through the transmission electron microscope cross-section sample 41. The transmitted electron detector 30 as a detection means for detecting the amount of current of the electron beam that has been received and transmitted, and the ion beam 11 and the electron beam which are arranged so as to surround the sample 41 in the vicinity of the position where the sample 41 is fixed. Low voltage electrode 50 as an electrode means for preventing secondary electron 12 generated by 21 from being absorbed and preventing an accurate amount of transmitted beam current from being measured.
Is provided.

【0040】試料41は、図示しない試料導入系によっ
て加工室60内部に搬送され、図示しないステージ駆動
系によって適宜駆動されるように構成されている。イオ
ンビーム11及び電子ビーム21はそれぞれラスタ走査
可能であり、図示しない2次イオン検出器あるいは2次
電子検出器によりそれぞれのビームの照射領域の形状観
察が行えるように構成されている。なお、本実施例の動
作は後述の透過電子顕微鏡用断面試料作成方法の実施例
と同じなので説明を省略する。
The sample 41 is carried into the processing chamber 60 by a sample introduction system (not shown), and is appropriately driven by a stage drive system (not shown). The ion beam 11 and the electron beam 21 can be raster-scanned, respectively, and the shape of the irradiation region of each beam can be observed by a secondary ion detector or a secondary electron detector (not shown). The operation of this embodiment is the same as the embodiment of the method for preparing a cross-sectional sample for a transmission electron microscope, which will be described later, and thus the description thereof will be omitted.

【0041】次に、請求項3及び4の透過電子顕微鏡用
断面試料作成方法の実施例について図2a〜図2g及び
図3a〜図3hを参照しながら説明する。本実施例は、
透過電子顕微鏡用試料の加工面の厚さを定量的にモニタ
ーして最良の試料厚さを自動的に検出でき、更に加工中
に加工部の厚さの均一性が容易に判断できる透過電子顕
微鏡用断面試料作成方法を提供することを課題とする。
Next, an embodiment of the method for preparing a cross-section sample for a transmission electron microscope according to claims 3 and 4 will be described with reference to FIGS. 2a to 2g and 3a to 3h. In this example,
Transmission electron microscope that can quantitatively monitor the thickness of the processed surface of the sample for the transmission electron microscope and automatically detect the best sample thickness, and can easily determine the uniformity of the thickness of the processed part during processing. An object is to provide a method for preparing a cross-section sample for use.

【0042】LSIチップ41上の不良トランジスタ等
を透過電子顕微鏡による断面観察/分析を希望する特定
微小部42の周囲に集束イオンビーム装置あるいは顕微
鏡を具備したレーザマーカー等により、図2aに示すよ
うに、穴開けによりマーキング43を行う。なお、特定
微小部42がマーキング43のためのレーザーやイオン
ビーム照射の熱的影響や穴開けの飛散物汚染を受けない
ように、マーキングは特定微小部42から20μm程度
以上離れた位置に行うとよい。マーキングの大きさや深
さについては、後の加工での位置確認の点では大きいほ
どよい反面、マーキングの際の熱や飛散物を抑える必要
性から大きさは5μm以下程度、深さは1〜5μm程度
が良い。マーキングを参考にして、ダイシングマシンの
高速回転外周刃61により観察または分析を所望する特
定微小領域周辺を透過電子顕微鏡に導入可能な1.5m
m□以下程度に切断する。
As shown in FIG. 2A, a defective transistor or the like on the LSI chip 41 is observed by a transmission electron microscope around a specific minute portion 42 desired to be observed / analyzed by a focused ion beam device or a laser marker equipped with a microscope. The marking 43 is performed by making a hole. It should be noted that the marking is performed at a position about 20 μm or more away from the specific minute portion 42 so that the specific minute portion 42 is not affected by the thermal influence of the laser or the ion beam irradiation for the marking 43 and the scattered matter contamination of the holes. Good. Regarding the size and depth of marking, the larger the position, the better in terms of position confirmation in later processing. However, the size and depth are about 5 μm or less and the depth is 1 to 5 μm due to the need to suppress heat and flying objects during marking. The degree is good. With reference to the marking, the high-speed rotating outer peripheral blade 61 of the dicing machine can introduce the periphery of a specific minute region desired to be observed or analyzed into a transmission electron microscope.
Cut to less than m □.

【0043】この際、切断面としては、図2bに示すよ
うに、透過電子顕微鏡用の試料41の観察または分析を
所望する断面と平行な面を選択する。試料41の観察/
分析を所望する断面に垂直な方向の切断幅は、狭いほう
が後の集束イオンビーム加工の範囲が小さくできるた
め、垂直な方向の切断幅は、切断時にチッピング等で観
察/分析を所望する特定微小部42が破損しない範囲、
例えば100〜200μm幅で狭く切断する。必要に応
じて更に試料の観察/分析希望部表面近傍を、図2dに
示すように、更にダイシングマシンの高速回転外周刃6
1により薄く削る。
At this time, as the cutting plane, as shown in FIG. 2B, a plane parallel to the cross section desired to observe or analyze the sample 41 for the transmission electron microscope is selected. Observation of sample 41 /
The narrower the cutting width in the direction perpendicular to the cross section where analysis is desired, the narrower the range of the focused ion beam processing to be performed later, so the cutting width in the vertical direction is the specific minute size desired to be observed / analyzed by chipping during cutting. Range where part 42 is not damaged,
For example, it is cut narrowly with a width of 100 to 200 μm. If necessary, further observe / analyze the sample near the surface of the desired portion, and as shown in FIG.
Cut thinly with 1.

【0044】加工したLSIチップを集束イオンビーム
装置に導入する。集束イオンビーム装置内にLSIチッ
プを導入する際、LSIチップの向きは、加工断面が集
束イオンビーム装置内部の電子銃20に対して対向する
ように設定する。集束イオンビーム装置にてラスタ走査
により観察/分析希望断面を一辺とする長方形領域8
1、82に集束イオンビーム11を照射し、観察/分析
希望断面の薄膜化加工を行う。長方形領域81は透過電
子検出器30と対向しており、長方形領域82は集束イ
オンビーム装置内の電子銃20と対向する断面を含む領
域である。この集束イオンビーム加工に際しては、まず
領域81の加工を行う。領域81の加工は段階的に集束
イオンビーム11のビーム電流/ビーム径を下げながら
断面加工の位置精度や加工面の均一性を高める。
The processed LSI chip is introduced into a focused ion beam device. When the LSI chip is introduced into the focused ion beam apparatus, the orientation of the LSI chip is set so that the processed cross section faces the electron gun 20 inside the focused ion beam apparatus. Observation / analysis by raster scanning with a focused ion beam device Rectangular area 8 with one side of desired cross section
The focused ion beam 11 is irradiated to the Nos. 1 and 82, and thinning processing of the desired cross section for observation / analysis is performed. The rectangular region 81 faces the transmission electron detector 30, and the rectangular region 82 is a region including a cross section facing the electron gun 20 in the focused ion beam apparatus. In this focused ion beam processing, the area 81 is processed first. The processing of the region 81 increases the position accuracy of the cross-section processing and the uniformity of the processed surface while gradually reducing the beam current / beam diameter of the focused ion beam 11.

【0045】一般的な加工条件は、加速電圧25〜30
kV、Gaイオンビームを用い、ビーム電流2000p
A程度で目標とする特定微小部42から数μm離れた位
置まで加工し、続いてビーム電流400pA程度で特定
微小部42から1μm離れた位置まで加工する。更に、
ビーム電流100pA程度で特定微小部42を含む位置
まで加工し、最終的にビーム電流数十pA程度のビーム
で加工面の仕上げを行う。なお、集束イオンビーム11
は逆円錐形であり、試料表面に対して垂直にビーム照射
すると、垂直断面が得られないので、試料41をビーム
条件に応じて3〜5度程度傾斜して加工を行う。
General processing conditions are acceleration voltage 25 to 30.
Beam current 2000p using kV, Ga ion beam
The processing is performed at a position of about A to a position several μm away from the target specific minute portion 42, and then to a position of 1 μm from the specific minute portion 42 at a beam current of about 400 pA. Furthermore,
A beam current of about 100 pA is processed to a position including the specific minute portion 42, and finally a processed surface is finished with a beam having a beam current of about several tens pA. The focused ion beam 11
Is an inverted conical shape, and when a beam is irradiated perpendicularly to the sample surface, a vertical cross section cannot be obtained. Therefore, the sample 41 is processed with an inclination of about 3 to 5 degrees depending on the beam conditions.

【0046】領域81の加工完了後、同様の方法により
領域82の加工を行う。領域82の加工において、加工
部の厚さが1μm程度になった段階で、観察/分析希望
断面にほぼ垂直に電子ビーム21を照射し、試料の断面
加工部を透過した透過電子を透過電子検出器30により
検出する。
After the processing of the area 81 is completed, the area 82 is processed by the same method. In the processing of the region 82, when the thickness of the processed portion becomes about 1 μm, the electron beam 21 is irradiated substantially perpendicular to the desired cross section for observation / analysis, and the transmitted electrons transmitted through the processed portion of the cross section of the sample are detected by the transmitted electron. It is detected by the container 30.

【0047】電子ビームの加速電圧は10kV以上に設
定する。シリコンの場合、加速電圧10kV以上であれ
ば電子ビームは1μmの厚さを透過する。よって、この
電子ビーム照射により検出器30で透過電子が検出され
る。なお、検出器30としては、高感度で検出速度の速
いチャンネルトロンなどが有効であるが、試料の材質や
電子ビーム電流の設定によってファラデーカップ等も使
用できる。検出器30に印加する電圧や電子ビームの電
流は検出される透過電子ビーム電流に応じて適当に設定
する。電子ビームを図3a、3bのように同一材料の範
囲で上下、左右に操作し、この間の透過ビーム電流を検
出すると、加工部の厚さが均一な場合、図3cに示すよ
うに、均一な波形が得られる。一方、図3e、3f、及
び3gに示すように、加工部の厚さが不均一な場合、透
過ビーム電流波形は図3dに示すような波形となる。こ
の段階で確認された加工部の不均一は、これ以降の加工
における集束イオンビーム形状や試料角度等の補正で最
終的に修正可能である。
The acceleration voltage of the electron beam is set to 10 kV or higher. In the case of silicon, the electron beam transmits a thickness of 1 μm if the acceleration voltage is 10 kV or higher. Therefore, the transmitted electrons are detected by the detector 30 by this electron beam irradiation. As the detector 30, a channeltron having a high sensitivity and a high detection speed is effective, but a Faraday cup or the like can be used depending on the material of the sample and the setting of the electron beam current. The voltage applied to the detector 30 and the electron beam current are appropriately set according to the detected transmitted electron beam current. As shown in FIGS. 3a and 3b, when the electron beam is operated up and down, left and right within the range of the same material, and the transmitted beam current is detected, if the processed portion has a uniform thickness, as shown in FIG. The waveform is obtained. On the other hand, as shown in FIGS. 3e, 3f, and 3g, when the thickness of the processed portion is not uniform, the transmitted beam current waveform becomes the waveform shown in FIG. 3d. The nonuniformity of the processed portion confirmed at this stage can be finally corrected by correcting the focused ion beam shape, the sample angle, and the like in the subsequent processing.

【0048】透過ビーム電流検出を続けながら集束イオ
ンビーム加工により領域82の加工を行う。加工分の厚
さが薄くなるにつれて透過ビーム電流が増加する。検出
される透過ビーム電流の増加に合わせて電子ビーム21
の加速電圧を段階的に下げると、図3hに示すように、
電子ビームの透過厚さも下がるので、適切に加速電圧を
選択すれば透過ビーム電流変化によって加工部の厚さの
変化を正確に検知できる。シリコン材料の場合、最終的
な電子ビーム21の加速電圧を3kV以下程度に設定す
れば、透過ビーム電流の値で500〜1000Å程度の
厚さを検出できる。事前に良好な透過電子顕微鏡試料を
用いて透過電流量の条件出しを行い、加工終了点とする
透過ビーム電流量を決定しておけば、自動的に加工終了
点を検知できる。
The region 82 is processed by focused ion beam processing while continuing to detect the transmitted beam current. The transmitted beam current increases as the thickness of the processed portion decreases. As the transmitted beam current detected increases, the electron beam 21
When the accelerating voltage of is gradually reduced, as shown in FIG.
Since the transmission thickness of the electron beam also decreases, it is possible to accurately detect the change in the thickness of the processed portion due to the change in the transmission beam current by appropriately selecting the acceleration voltage. In the case of a silicon material, if the final accelerating voltage of the electron beam 21 is set to about 3 kV or less, a thickness of about 500 to 1000 Å can be detected by the value of the transmitted beam current. If a good transmission electron microscope sample is used in advance to set the conditions for the amount of transmitted current and the amount of transmitted beam current to be the processing end point is determined, the processing end point can be detected automatically.

【0049】なお、この透過電子ビーム検出の際には、
低電圧電極50に正の低い電位を与え、集束イオンビー
ム照射によって発生する多量の2次電子12を回収する
ことで、透過電子ビーム電流検出精度劣化を防止し、集
束イオンビーム照射中でも透過電子ビーム電流検出が可
能となり、加工の超過を防ぐ。
When detecting the transmitted electron beam,
By applying a positive low potential to the low-voltage electrode 50 and collecting a large amount of secondary electrons 12 generated by focused ion beam irradiation, deterioration of the transmitted electron beam current detection accuracy is prevented, and the transmitted electron beam is irradiated even during focused ion beam irradiation. It is possible to detect the current and prevent over-processing.

【0050】また、イオンビームや電子ビームへの悪影
響を防ぐため、低電圧電極50の材料には非磁性金属を
用い、磁化を防ぐ。低電圧電極50に印加する電圧は、
数kV〜30kV程度の集束イオンビームや電子ビーム
軌道に影響を与えず、かつ集束イオンビーム照射で発生
した数十eVの2次電子の回収効率が上がるように+数
十Vに設定する。
In order to prevent adverse effects on the ion beam and electron beam, a nonmagnetic metal is used as the material of the low voltage electrode 50 to prevent magnetization. The voltage applied to the low voltage electrode 50 is
It is set to + several tens V so as not to affect the focused ion beam or electron beam orbit of several kV to 30 kV and to improve the recovery efficiency of the secondary electrons of several tens eV generated by the irradiation of the focused ion beam.

【0051】領域81を先に加工する理由については、
透過電子検出器30と対向する断面側の加工領域81に
集束イオンビーム11を照射している状態では、集束イ
オンビームの散乱イオンが透過電子検出器30側に入
り、正確な透過ビーム電流値が測定しにくいため、透過
電子検出器30側の断面の加工領域を先に完了させ、集
束イオンビームの散乱イオンが検出器30に入りにくい
領域82の加工段階で透過ビーム電流量検出による加工
部の厚さ評価や終了点検出を行うためである。
The reason why the region 81 is processed first is as follows.
In the state where the focused ion beam 11 is applied to the processing area 81 on the cross section side facing the transmitted electron detector 30, the scattered ions of the focused ion beam enter the side of the transmitted electron detector 30, and the accurate transmitted beam current value is Since it is difficult to measure, the processing area of the cross section on the side of the transmission electron detector 30 is completed first, and at the processing stage of the area 82 where scattered ions of the focused ion beam are hard to enter the detector 30, the processing portion of the processing portion by the transmission beam current amount detection is processed. This is because the thickness is evaluated and the end point is detected.

【0052】試料41の分析/観察希望部を中心に、図
2gに示すように、透過電子顕微鏡用メッシュ80に貼
る。透過電子顕微鏡により試料41の観察分析を行う。
以上、集束イオンビームによる加工について述べたが、
加工部の膜厚や膜厚均一性の評価としてイオンミリング
等の加工においても使用可能である。
The analysis / observation desired portion of the sample 41 is attached to a transmission electron microscope mesh 80, as shown in FIG. 2g. The sample 41 is observed and analyzed by a transmission electron microscope.
The processing with a focused ion beam has been described above.
It can also be used in processing such as ion milling to evaluate the film thickness and film thickness uniformity of the processed portion.

【0053】[0053]

【発明の効果】請求項1記載の透過電子顕微鏡用断面試
料作成用集束イオンビーム装置及び請求項3、4記載の
透過電子顕微鏡用断面試料作成方法によれば、均一な厚
さの観察断面を形成することができると供に加工の超過
を防止することができる。これにより、加工部の厚さの
ばらつきが50%以下の精度で検出でき、これを加工段
階で修正できるため、最終段階では加工部の厚さのばら
つきを50nm以下にでき、加工領域内のほぼ全域で高
分解能観察を行うことができる。断面試料作成において
試料厚さが数値化して検出できるので、材料毎に条件出
しを行えば、オペレータの熟練度に影響なく最適な厚さ
の透過電子顕微鏡試料作成が行える。
According to the focused ion beam device for preparing a cross-section sample for a transmission electron microscope according to claim 1 and the method for preparing a cross-section sample for a transmission electron microscope according to claims 3 and 4, an observation cross section having a uniform thickness can be obtained. When it can be formed, it is possible to prevent excess processing. As a result, the variation in the thickness of the processed portion can be detected with an accuracy of 50% or less, and this can be corrected in the processing stage. Therefore, the variation in the thickness of the processed portion can be reduced to 50 nm or less at the final stage, and the variation in the processed area is almost the same. High-resolution observation can be performed over the entire area. Since the sample thickness can be numerically detected and detected in the cross-section sample preparation, the transmission electron microscope sample preparation of the optimum thickness can be performed without affecting the skill level of the operator if the conditions are set for each material.

【0054】請求項2の透過電子顕微鏡用断面試料作成
用集束イオンビーム装置によれば、イオンビーム及び電
子ビームの照射により発生した2次電子が透過電子検出
器に検出されて透過電子ビーム電流検出精度が劣化する
ことを防止できる。また、集束イオンビーム照射中でも
透過電子ビーム電流検出が可能となり、集束イオンビー
ム照射中でも加工の超過を防止することができる。これ
により、断面試料の加工精度が向上できると共に、断面
試料の作成を容易に行うことができる。
According to the focused ion beam apparatus for preparing a cross-section sample for a transmission electron microscope of claim 2, secondary electrons generated by irradiation of an ion beam and an electron beam are detected by a transmission electron detector to detect a transmission electron beam current. It is possible to prevent the accuracy from deteriorating. Further, it becomes possible to detect the transmitted electron beam current even during irradiation of the focused ion beam, and it is possible to prevent the processing from being exceeded even during irradiation of the focused ion beam. Thereby, the processing accuracy of the cross-section sample can be improved, and the cross-section sample can be easily created.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の透過電子顕微鏡用断面試料作成用集束
イオンビーム装置の実施例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a focused ion beam device for producing a cross-section sample for a transmission electron microscope of the present invention.

【図2a】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 2a is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope of the present invention.

【図2b】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 2b is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope of the present invention.

【図2c】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 2c is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope of the present invention.

【図2d】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 2d is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope according to the present invention.

【図2e】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 2e is a diagram showing an example of a method for producing a cross-sectional sample for a transmission electron microscope of the present invention.

【図2f】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 2f is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope of the present invention.

【図2g】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 2g is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope according to the present invention.

【図3a】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 3a is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope of the present invention.

【図3b】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 3b is a diagram showing an example of the method for preparing a cross-sectional sample for a transmission electron microscope of the present invention.

【図3c】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 3c is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope of the present invention.

【図3d】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 3d is a diagram showing an example of the method for producing a cross-sectional sample for a transmission electron microscope of the present invention.

【図3e】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 3e is a diagram showing an example of a method for producing a cross-sectional sample for a transmission electron microscope of the present invention.

【図3f】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 3f is a diagram showing an example of the method for producing a cross-sectional sample for a transmission electron microscope of the present invention.

【図3g】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 3g is a diagram showing an example of a method for preparing a cross-sectional sample for a transmission electron microscope of the present invention.

【図3h】本発明の透過電子顕微鏡用断面試料作成方法
の実施例を示す図である。
FIG. 3h is a diagram showing an example of the method for producing a cross-sectional sample for a transmission electron microscope of the present invention.

【図4a】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 4a is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図4b】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 4b is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図4c】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 4c is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図4d】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 4d is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図4e】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 4e is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図4f】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 4f is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図4g】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 4g is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図5a】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 5a is a view showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図5b】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 5b is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図5c】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 5c is a view showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図5d】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 5d is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図5e】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 5e is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図5f】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 5f is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図5g】従来の透過電子顕微鏡用断面試料作成方法を
示す図である。
FIG. 5g is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【図6】従来の透過電子顕微鏡用断面試料作成方法を示
す図である。
FIG. 6 is a diagram showing a conventional cross-sectional sample preparation method for a transmission electron microscope.

【符号の説明】[Explanation of symbols]

10 イオン銃 20 電子銃 30 透過電子検出器 40 試料 50 低電圧電極 10 Ion gun 20 Electron gun 30 Transmission electron detector 40 Sample 50 Low voltage electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01J 37/31 9172−5E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01J 37/31 9172-5E

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透過電子顕微鏡用断面試料を作成するた
めのイオンビームを発射するイオン銃手段と、該イオン
銃手段から発射されるイオンビームに対して60度〜9
0度程度の角度で前記透過電子顕微鏡用断面試料の加工
部分に電子ビームを照射する電子銃手段と、該電子銃手
段に対向して配置されかつ前記透過電子顕微鏡用断面試
料を透過した電子ビームを受けて透過した電子ビームの
電流量を検出する検出手段とを具備する透過電子顕微鏡
用断面試料作成用集束イオンビーム装置。
1. An ion gun means for emitting an ion beam for producing a cross-section sample for a transmission electron microscope, and 60 ° to 9 ° with respect to the ion beam emitted from the ion gun means.
Electron gun means for irradiating the processed portion of the cross-section sample for transmission electron microscope with an electron beam at an angle of about 0 degree, and an electron beam arranged to face the electron gun means and transmitted through the cross-section sample for transmission electron microscope. A focused ion beam device for producing a cross-section sample for a transmission electron microscope, comprising: a detection unit that detects the amount of current of an electron beam that has been received and transmitted.
【請求項2】 前記透過電子顕微鏡用断面試料を固定す
る位置の近傍に、イオンビーム及び電子ビームの照射に
より発生した2次電子を吸収する電極手段を具備する請
求項1記載の透過電子顕微鏡用断面試料作成用集束イオ
ンビーム装置。
2. The transmission electron microscope according to claim 1, further comprising an electrode means for absorbing secondary electrons generated by irradiation of an ion beam and an electron beam, in the vicinity of a position where the cross-section sample for the transmission electron microscope is fixed. Focused ion beam device for cross-section sample preparation.
【請求項3】 透過電子顕微鏡による断面観察を必要と
する試料を透過電子顕微鏡に装着可能な厚さに切断する
工程と、イオンビームによって更に観察領域を薄くする
工程と、前記イオンビームで薄膜化を進めながら前記試
料の加工部に電子ビームを照射する工程と、前記試料を
透過する電子ビームの電流量を検出する工程と、前記検
出した電流量に基づき前記試料の加工部を前記電子ビー
ムにより走査して加工部の厚さの均一性を評価する工程
とを具備する透過電子顕微鏡用断面試料作成方法。
3. A step of cutting a sample that requires cross-sectional observation with a transmission electron microscope into a thickness that can be attached to the transmission electron microscope, a step of further thinning an observation region with an ion beam, and a thinning with the ion beam. The step of irradiating the processed portion of the sample with an electron beam while advancing the step, the step of detecting the amount of current of the electron beam passing through the sample, and the processed portion of the sample by the electron beam based on the detected amount of current. A method for preparing a cross-section sample for a transmission electron microscope, comprising the step of scanning to evaluate the uniformity of the thickness of the processed portion.
【請求項4】 透過電子顕微鏡による断面観察を必要と
する試料を透過電子顕微鏡に装着可能な厚さに切断する
工程と、イオンビームによって更に観察領域を薄くする
工程と、前記イオンビームで薄膜化を進めながら前記試
料の加工部に電子ビームを照射する工程と、前記試料を
透過する電子ビームの電流量を検出する工程と、前記検
出した電流量に基づき前記試料の加工終了点を検出する
工程とを具備する透過電子顕微鏡用断面試料作成方法。
4. A step of cutting a sample that requires cross-sectional observation with a transmission electron microscope into a thickness that can be attached to the transmission electron microscope, a step of further thinning an observation region with an ion beam, and a thinning with the ion beam. Irradiating the processed part of the sample with an electron beam while advancing the step, detecting the amount of current of the electron beam passing through the sample, and detecting the processing end point of the sample based on the detected amount of current. A method for preparing a cross-section sample for a transmission electron microscope, comprising:
JP6141852A 1994-06-23 1994-06-23 Preparation method for cross-section specimen for transmission electron microscope Expired - Fee Related JP3058394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6141852A JP3058394B2 (en) 1994-06-23 1994-06-23 Preparation method for cross-section specimen for transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6141852A JP3058394B2 (en) 1994-06-23 1994-06-23 Preparation method for cross-section specimen for transmission electron microscope

Publications (2)

Publication Number Publication Date
JPH085528A true JPH085528A (en) 1996-01-12
JP3058394B2 JP3058394B2 (en) 2000-07-04

Family

ID=15301669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6141852A Expired - Fee Related JP3058394B2 (en) 1994-06-23 1994-06-23 Preparation method for cross-section specimen for transmission electron microscope

Country Status (1)

Country Link
JP (1) JP3058394B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035226A1 (en) * 1995-04-29 1996-11-07 Bal-Tec Ag Ion beam preparation device for electron microscopy
US6527967B1 (en) 1998-07-16 2003-03-04 Seiko Instruments, Inc. Thin piece forming method
US6683308B2 (en) 2002-01-17 2004-01-27 Fab Solutions, Inc. Method and apparatus for measuring thickness of thin film
US6809534B2 (en) 2000-05-30 2004-10-26 Fab Solutions, Inc. Semiconductor device test method and semiconductor device tester
US6842663B2 (en) 2001-03-01 2005-01-11 Fab Solutions, Inc. Production managing system of semiconductor device
US6850079B2 (en) 2002-01-17 2005-02-01 Fab Solutions, Inc. Film thickness measuring apparatus and a method for measuring a thickness of a film
US6897440B1 (en) 1998-11-30 2005-05-24 Fab Solutions, Inc. Contact hole standard test device
US6943043B2 (en) 2001-03-02 2005-09-13 Fab Solutions, Inc. Surface contamination analyzer for semiconductor wafers, method used therein and process for fabricating semiconductor device
US6946857B2 (en) 1999-11-05 2005-09-20 Fab Solutions, Inc. Semiconductor device tester
WO2006011185A1 (en) * 2004-07-23 2006-02-02 Fujitsu Limited Semiconductor device examining method, its examining device, and semiconductor device suited to the examination
JP2006079846A (en) * 2004-09-07 2006-03-23 Canon Inc Cross section evaluation device of sample and cross section evaluation method of sample
JP2006098189A (en) * 2004-09-29 2006-04-13 Jeol Ltd Method and apparatus for producing sample
JP2006127850A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
WO2006073063A1 (en) * 2005-01-07 2006-07-13 Sii Nanotechnology Inc. Method and apparatus for measuring thin film sample, and method and apparatus for manufacturing thin film sample
KR100844280B1 (en) * 2006-12-26 2008-07-07 한국기초과학지원연구원 An appartus for compensating the error of holder for tem use and a method thereof
JP2008267895A (en) * 2007-04-18 2008-11-06 Sii Nanotechnology Inc Coating thickness measuring method and device, and sample manufacturing method and device
JP2009175046A (en) * 2008-01-25 2009-08-06 Denso Corp Processing device and producing method of thin-film sample
JP2010507782A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
WO2010051546A2 (en) 2008-10-31 2010-05-06 Fei Company Measurement and endpointing of sample thickness
KR100975851B1 (en) * 2008-09-18 2010-08-16 한국과학기술원 Specimen Preparation Equipment
JP2010230672A (en) * 2009-03-27 2010-10-14 Fei Co Method of forming image while milling work piece
JP2011154920A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Ion milling device, sample processing method, processing device, and sample driving mechanism
WO2012077554A1 (en) 2010-12-06 2012-06-14 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and method of irradiating charged particle beam
US8247785B2 (en) 2007-06-06 2012-08-21 Carl Zeiss Nts Gmbh Particle beam device and method for use in a particle beam device
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
JP2013104671A (en) * 2011-11-10 2013-05-30 Fujitsu Ltd Device and method for producing samples
JP2015532709A (en) * 2012-07-27 2015-11-12 ガタン インコーポレイテッドGatan Inc. Ion beam sample preparation apparatus and method
JP2017528899A (en) * 2014-07-25 2017-09-28 イー エイ フィシオネ インストルメンツ インコーポレーテッドE.A.Fischione Instruments, Inc. Microscope sample preparation equipment
JPWO2021130843A1 (en) * 2019-12-24 2021-07-01
JPWO2021130842A1 (en) * 2019-12-24 2021-07-01
CN113295500A (en) * 2021-06-29 2021-08-24 上海华力微电子有限公司 Preparation method of transmission electron microscope planar sample
CN113865915A (en) * 2021-09-18 2021-12-31 长江存储科技有限责任公司 Detection method of sliced sample

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825797B2 (en) * 2011-02-08 2015-12-02 株式会社ブリヂストン Evaluation method for polymer materials

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996035226A1 (en) * 1995-04-29 1996-11-07 Bal-Tec Ag Ion beam preparation device for electron microscopy
US6527967B1 (en) 1998-07-16 2003-03-04 Seiko Instruments, Inc. Thin piece forming method
US6940296B2 (en) 1998-11-30 2005-09-06 Fab Solutions, Inc. Contact hole standard test device, method of forming the same, method of testing contact hole, method and apparatus for measuring a thickness of a film, and method of testing a wafer
US6982418B2 (en) 1998-11-30 2006-01-03 Fab Solutions, Inc. Contact hole standard test device, method of forming the same, method of testing contact hole, method and apparatus for measuring a thickness of a film, and method of testing a wafer
US6897440B1 (en) 1998-11-30 2005-05-24 Fab Solutions, Inc. Contact hole standard test device
US7232994B2 (en) 1998-11-30 2007-06-19 Fab Solutions, Inc. Contact hole standard test device, method of forming the same, method of testing contact hole, method and apparatus for measuring a thickness of a film, and method of testing a wafer
US6967327B2 (en) 1998-11-30 2005-11-22 Fab Solutions, Inc. Contact hole standard test device, method of forming the same, method testing contact hole, method and apparatus for measuring a thickness of a film, and method of testing a wafer
US6946857B2 (en) 1999-11-05 2005-09-20 Fab Solutions, Inc. Semiconductor device tester
US7385195B2 (en) 1999-11-05 2008-06-10 Topcon Corporation Semiconductor device tester
US6975125B2 (en) 1999-11-05 2005-12-13 Fab Solutions, Inc. Semiconductor device tester
US7049834B2 (en) 2000-05-30 2006-05-23 Fab Solutions, Inc Semiconductor device test method and semiconductor device tester
US7550982B2 (en) 2000-05-30 2009-06-23 Topcon Corporation Semiconductor device test method for comparing a first area with a second area
US6914444B2 (en) 2000-05-30 2005-07-05 Fab Solutions, Inc. Semiconductor device test method and semiconductor device tester
US7420379B2 (en) 2000-05-30 2008-09-02 Topcon Corporation Semiconductor device test method and semiconductor device tester
US6809534B2 (en) 2000-05-30 2004-10-26 Fab Solutions, Inc. Semiconductor device test method and semiconductor device tester
US6900645B2 (en) 2000-05-30 2005-05-31 Fab Solutions, Inc. Semiconductor device test method and semiconductor device tester
US6842663B2 (en) 2001-03-01 2005-01-11 Fab Solutions, Inc. Production managing system of semiconductor device
US7321805B2 (en) 2001-03-01 2008-01-22 Fab Solutions, Inc. Production managing system of semiconductor device
US6943043B2 (en) 2001-03-02 2005-09-13 Fab Solutions, Inc. Surface contamination analyzer for semiconductor wafers, method used therein and process for fabricating semiconductor device
US7700380B2 (en) 2001-03-02 2010-04-20 Topcon Corporation Surface contamination analyzer for semiconductor wafers, method used therein and process for fabricating semiconductor device
US7795593B2 (en) 2001-03-02 2010-09-14 Topcon Corporation Surface contamination analyzer for semiconductor wafers
US6850079B2 (en) 2002-01-17 2005-02-01 Fab Solutions, Inc. Film thickness measuring apparatus and a method for measuring a thickness of a film
US7002361B2 (en) 2002-01-17 2006-02-21 Fab Solutions, Inc. Film thickness measuring apparatus and a method for measuring a thickness of a film
US6683308B2 (en) 2002-01-17 2004-01-27 Fab Solutions, Inc. Method and apparatus for measuring thickness of thin film
WO2006011185A1 (en) * 2004-07-23 2006-02-02 Fujitsu Limited Semiconductor device examining method, its examining device, and semiconductor device suited to the examination
JPWO2006011185A1 (en) * 2004-07-23 2008-05-01 富士通株式会社 Semiconductor device inspection method, inspection device thereof, and semiconductor device suitable for the inspection
US7465923B2 (en) 2004-07-23 2008-12-16 Fujitsu Limited Testing method for semiconductor device, testing apparatus therefor, and semiconductor device suitable for the test
JP4567684B2 (en) * 2004-07-23 2010-10-20 富士通セミコンダクター株式会社 Measuring method and measuring device
JP2006079846A (en) * 2004-09-07 2006-03-23 Canon Inc Cross section evaluation device of sample and cross section evaluation method of sample
JP4486462B2 (en) * 2004-09-29 2010-06-23 日本電子株式会社 Sample preparation method and sample preparation apparatus
JP2006098189A (en) * 2004-09-29 2006-04-13 Jeol Ltd Method and apparatus for producing sample
US7928377B2 (en) 2004-10-27 2011-04-19 Hitachi High-Technologies Corporation Charged particle beam apparatus and sample manufacturing method
JP2006127850A (en) * 2004-10-27 2006-05-18 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
JPWO2006073063A1 (en) * 2005-01-07 2008-06-12 エスアイアイ・ナノテクノロジー株式会社 Thin film sample measurement method and apparatus, and thin film sample preparation method and apparatus
WO2006073063A1 (en) * 2005-01-07 2006-07-13 Sii Nanotechnology Inc. Method and apparatus for measuring thin film sample, and method and apparatus for manufacturing thin film sample
JP4987486B2 (en) * 2005-01-07 2012-07-25 エスアイアイ・ナノテクノロジー株式会社 Thin film sample measurement method and apparatus, and thin film sample preparation method and apparatus
US7518109B2 (en) 2005-01-07 2009-04-14 Sii Nanotechnology Inc. Method and apparatus of measuring thin film sample and method and apparatus of fabricating thin film sample
US8993962B2 (en) 2006-10-20 2015-03-31 Fei Company Method and apparatus for sample extraction and handling
US9581526B2 (en) 2006-10-20 2017-02-28 Fei Company Method for S/TEM sample analysis
US9349570B2 (en) 2006-10-20 2016-05-24 Fei Company Method and apparatus for sample extraction and handling
JP2010507781A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
US9336985B2 (en) 2006-10-20 2016-05-10 Fei Company Method for creating S/TEM sample and sample structure
JP2010507782A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
US9275831B2 (en) 2006-10-20 2016-03-01 Fei Company Method for S/TEM sample analysis
US9006651B2 (en) 2006-10-20 2015-04-14 Fei Company Method for creating S/TEM sample and sample structure
US8890064B2 (en) 2006-10-20 2014-11-18 Fei Company Method for S/TEM sample analysis
US8536525B2 (en) 2006-10-20 2013-09-17 Fei Company Method for creating S/TEM sample and sample structure
US8525137B2 (en) 2006-10-20 2013-09-03 Fei Company Method for creating S/TEM sample and sample structure
US8455821B2 (en) 2006-10-20 2013-06-04 Fei Company Method for S/TEM sample analysis
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
KR100844280B1 (en) * 2006-12-26 2008-07-07 한국기초과학지원연구원 An appartus for compensating the error of holder for tem use and a method thereof
JP2008267895A (en) * 2007-04-18 2008-11-06 Sii Nanotechnology Inc Coating thickness measuring method and device, and sample manufacturing method and device
US8247785B2 (en) 2007-06-06 2012-08-21 Carl Zeiss Nts Gmbh Particle beam device and method for use in a particle beam device
JP2009175046A (en) * 2008-01-25 2009-08-06 Denso Corp Processing device and producing method of thin-film sample
KR100975851B1 (en) * 2008-09-18 2010-08-16 한국과학기술원 Specimen Preparation Equipment
WO2010051546A2 (en) 2008-10-31 2010-05-06 Fei Company Measurement and endpointing of sample thickness
JP2012507728A (en) * 2008-10-31 2012-03-29 エフ イー アイ カンパニ Sample thickness measurement and end-pointing
EP2351062A4 (en) * 2008-10-31 2012-10-31 Fei Co Measurement and endpointing of sample thickness
JP2015038509A (en) * 2008-10-31 2015-02-26 エフ イー アイ カンパニFei Company Processing endpoint detection method
EP2351062A2 (en) * 2008-10-31 2011-08-03 FEI Company Measurement and endpointing of sample thickness
US9184025B2 (en) 2008-10-31 2015-11-10 Fei Company Measurement and endpointing of sample thickness
JP2010230672A (en) * 2009-03-27 2010-10-14 Fei Co Method of forming image while milling work piece
JP2011154920A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Ion milling device, sample processing method, processing device, and sample driving mechanism
WO2012077554A1 (en) 2010-12-06 2012-06-14 株式会社日立ハイテクノロジーズ Charged particle beam apparatus and method of irradiating charged particle beam
JP2013104671A (en) * 2011-11-10 2013-05-30 Fujitsu Ltd Device and method for producing samples
JP2015532709A (en) * 2012-07-27 2015-11-12 ガタン インコーポレイテッドGatan Inc. Ion beam sample preparation apparatus and method
US10110854B2 (en) 2012-07-27 2018-10-23 Gatan, Inc. Ion beam sample preparation apparatus and methods
JP2017528899A (en) * 2014-07-25 2017-09-28 イー エイ フィシオネ インストルメンツ インコーポレーテッドE.A.Fischione Instruments, Inc. Microscope sample preparation equipment
EP3194926A4 (en) * 2014-07-25 2018-04-04 E.A. Fischione Instruments, Inc. Apparatus for preparing a sample for microscopy
JPWO2021130843A1 (en) * 2019-12-24 2021-07-01
JPWO2021130842A1 (en) * 2019-12-24 2021-07-01
WO2021130842A1 (en) * 2019-12-24 2021-07-01 株式会社日立ハイテク Ion milling device
WO2021130843A1 (en) * 2019-12-24 2021-07-01 株式会社日立ハイテク Ion milling device
TWI767464B (en) * 2019-12-24 2022-06-11 日商日立全球先端科技股份有限公司 Ion Milling Device
CN113295500A (en) * 2021-06-29 2021-08-24 上海华力微电子有限公司 Preparation method of transmission electron microscope planar sample
CN113865915A (en) * 2021-09-18 2021-12-31 长江存储科技有限责任公司 Detection method of sliced sample
CN113865915B (en) * 2021-09-18 2023-10-13 长江存储科技有限责任公司 Slice sample detection method

Also Published As

Publication number Publication date
JP3058394B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
JPH085528A (en) Focused ion beam apparatus for producing cross-section sample for transmission electron microscope and method for producing the sample
JP3957750B2 (en) Ion beam preparation device for electron microscopy
EP1643535B1 (en) Method and equipment for specimen preparation
CN107084869B (en) High throughput TEM fabrication process and hardware for backside thinning of cross-sectional view thin layers
US9733164B2 (en) Lamella creation method and device using fixed-angle beam and rotating sample stage
US7297944B2 (en) Ion beam device and ion beam processing method, and holder member
US8835845B2 (en) In-situ STEM sample preparation
US6810105B2 (en) Methods and apparatus for dishing and erosion characterization
JP2013257317A5 (en)
US7427753B2 (en) Method of cross-section milling with focused ion beam (FIB) device
JP3892360B2 (en) Ion beam equipment
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
JP2004087174A (en) Ion beam device, and working method of the same
JP2000035390A (en) Method for thin-piece preparation machining
JPH11108813A (en) Method and device for preparing sample
JP3677895B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof
JP4090567B2 (en) Wafer inspection processing apparatus and wafer inspection processing method
JP4091060B2 (en) Wafer inspection processing apparatus and wafer inspection processing method
JP4170048B2 (en) Ion beam apparatus and ion beam processing method
JP4303276B2 (en) Electron beam and ion beam irradiation apparatus and sample preparation method
JP2005043382A (en) Sample preparing device for observing three-dimensional structure, electron microscope, and method thereof
JPH04373125A (en) Converged ion beam device and processing method using that
JPH11354598A (en) Wafer inspection device
WO2023112131A1 (en) Ion milling device
JP4232848B2 (en) Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080421

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees