JPH0853561A - Method for producing finely porous elastomer film - Google Patents

Method for producing finely porous elastomer film

Info

Publication number
JPH0853561A
JPH0853561A JP21077594A JP21077594A JPH0853561A JP H0853561 A JPH0853561 A JP H0853561A JP 21077594 A JP21077594 A JP 21077594A JP 21077594 A JP21077594 A JP 21077594A JP H0853561 A JPH0853561 A JP H0853561A
Authority
JP
Japan
Prior art keywords
film
stretching
weight
ethylene
biaxial stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21077594A
Other languages
Japanese (ja)
Inventor
Hidenori Ishizuka
英紀 石塚
Hideaki Toda
英明 戸田
Kenji Miyasaka
健司 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Tonen Sekiyu Kagaku KK
Priority to JP21077594A priority Critical patent/JPH0853561A/en
Publication of JPH0853561A publication Critical patent/JPH0853561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a finely porous film capable of being stretched in a stretching process without causing the breakage of the film and without lowering the generation efficiency of voids due to the stretchability of the film, and good in the balance between water vapor permeability and water resistance and in the balance between the physical properties of the film in the MD and TD directions. CONSTITUTION:The method for producing the finely porous elastomer film comprises forming a film from a thermoplastic elastomer composition produced by adding 90-120 pts.wt. of a surfacetreated inorganic filler having an average particle diameter of 1.8-3.0mum to 100 pts.wt. of a resin composition comprising 20-50wt.% of an ethylene-propylene-diene copolymer and 80-50wt.% of an ethylene-vinyl acetate copolymer, biaxially stretching the formed film preferably into the lengths of 2-3.5 times in the longitudinal and lateral directions, respectively, and subsequently annealing the biaxially stretched film under smaller stretching times than those in the biaxial stretching process preferably under the stretching of 1.5-2.5 times (smaller than those in the biaxial stretching process) in the longitudinal and lateral directions, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微多孔性エラストマー
フィルムの製造方法に関し、特に、透湿性等の具備が必
要な衣料、衛生用品、メディカル用品、サージカル関係
用品等の分野で有用な微多孔性エラストマーフィルムを
得るのに有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a microporous elastomer film, and in particular, it is useful in the fields of clothing, hygiene products, medical products, surgical-related products, etc., which are required to have moisture permeability. The present invention relates to a technique effective for obtaining a hydrophilic elastomer film.

【0002】[0002]

【従来の技術】一般に、ポリマーフイルムを微多孔化す
る技術として、微粉末状無機質充填剤を配合したポリマ
ー組成物をシート化した後、延伸する方法がある。この
方法により、熱可塑性エラストマー組成物からシートを
作り、延伸して孔径10μm以下の多孔性シートを製造
する方法が提案されている(特開昭60−166436
号公報)。一方、エチレンープロピレンージェン共重合
体ゴムとエチレンー酢酸ビニル共重合体と無機質充填剤
を配合してなる熱可塑性エラストマー組成物を用いて、
一軸延伸して薄膜の微多孔性エラストマーフィルムを製
造する方法も提案されている(特開平5−50522号
公報)。
2. Description of the Related Art Generally, as a technique for making a polymer film microporous, there is a method in which a polymer composition containing a fine powdery inorganic filler is formed into a sheet and then stretched. According to this method, a method has been proposed in which a sheet is made from a thermoplastic elastomer composition and stretched to produce a porous sheet having a pore size of 10 μm or less (JP-A-60-166436).
Issue). On the other hand, using a thermoplastic elastomer composition obtained by blending an ethylene-propylene-diene copolymer rubber, an ethylene-vinyl acetate copolymer and an inorganic filler,
A method of uniaxially stretching to produce a thin microporous elastomer film has also been proposed (Japanese Patent Laid-Open No. 5-50522).

【0003】[0003]

【発明が解決しようとする課題】しかし、前者の方法で
は、薄膜化するとブロッキングを生じる為、その膜厚は
0.15〜0.16mmと厚いシート状の製品しか得ら
れない。また、後者の方法では、薄膜の微多孔性フィル
ムを得ることができるが、延伸によりポリマーと無機質
充填剤との界面でミクロ単位の孔(ボイド)を形成させ
ても、フイルムの伸縮性との関係から、そのボイドが縮
まってしまい、透湿性という面では、なお改良の余地を
残している。ところで、当該延伸による薄膜の微多孔性
フィルムについては、透湿性の度合いと耐水性の度合い
とのバランスをとることが必要で、例えば透湿度が高く
ボイドの孔径が大きくなり過ぎると、耐水度が低下して
しまう。また、フイルムの縦/横(MD/TD)方向の
物性バランスをとることが必要である。
However, in the former method, since blocking occurs when the film is thinned, only a thick sheet-like product having a film thickness of 0.15 to 0.16 mm can be obtained. Further, in the latter method, a thin microporous film can be obtained, but even if micropores (voids) are formed at the interface between the polymer and the inorganic filler by stretching, the film has stretchability. Due to the relationship, the void shrinks, and there is still room for improvement in terms of moisture permeability. By the way, for the thin microporous film by the stretching, it is necessary to balance the degree of moisture permeability and the degree of water resistance, for example, if the moisture permeability is high and the pore size of the void is too large, the water resistance is high. Will fall. In addition, it is necessary to balance the physical properties of the film in the longitudinal / transverse (MD / TD) directions.

【0004】本発明は、かかる従来技術に鑑み、延伸に
よる薄膜の微多孔性フィルムを得ること、フイルムの伸
縮性によるボイドの発生効率を低下させることなく薄膜
の微多孔性フィルムを得ること、透湿度と耐水度とのバ
ランスがとれた微多孔性フィルムを得ること、フイルム
のMD/TD方向の物性バランスがとれた微多孔性フィ
ルムを得ること、延伸時にフィルムの破膜のない製法を
提供することにある。また、本発明の他の目的並びに新
規な特徴は、以下の記述からも明らかになるであろう。
In view of the above-mentioned prior art, the present invention provides a thin microporous film by stretching, obtains a thin microporous film without reducing the void generation efficiency due to the stretchability of the film, and To provide a microporous film having a well-balanced humidity and water resistance, to obtain a microporous film having a well-balanced physical property in the MD / TD direction of the film, and to provide a production method without film breakage during stretching. Especially. Further, other objects and novel features of the present invention will be apparent from the following description.

【0005】[0005]

【課題を解決するための手段】本発明は、エチレンープ
ロピレンージェン共重合体ゴム20〜50重量%とエチ
レンー酢酸ビニル共重合体80〜50重量%とからなる
樹脂組成物100重量部に対して平均粒径が1.8〜
3.0μmの表面処理無機質充填剤90〜120重量部
を配合してなる熱可塑性エラストマー組成物より製膜し
たフイルムを二軸延伸後、当該二軸延伸時の延伸倍率よ
りも小さな延伸倍率の下で当該二軸延伸フイルムをアニ
ール処理することを特徴とする微多孔性エラストマーフ
ィルムの製造方法に係るものであり、好ましい実施態様
として、二軸延伸時の延伸倍率が縦方向および横方向に
2〜3.5倍で、アニール処理時の延伸倍率が縦方向お
よび横方向に1.5〜2.5倍(但し、二軸延伸時の倍
率よりも小であること)であることを特徴とする。
The present invention is based on 100 parts by weight of a resin composition comprising 20 to 50% by weight of an ethylene-propylene-propylene copolymer rubber and 80 to 50% by weight of an ethylene-vinyl acetate copolymer. And the average particle size is 1.8-
After biaxially stretching a film formed from a thermoplastic elastomer composition containing 90 to 120 parts by weight of a 3.0 μm surface-treated inorganic filler, under a draw ratio smaller than the draw ratio during the biaxial stretching. The present invention relates to a method for producing a microporous elastomer film, which comprises subjecting the biaxially stretched film to an annealing treatment. As a preferred embodiment, the stretching ratio during biaxial stretching is 2 to 2 in the machine direction and the transverse direction. It is 3.5 times, and the draw ratio during annealing is 1.5 to 2.5 times in the machine direction and the transverse direction (provided that it is smaller than the draw ratio during biaxial drawing). .

【0006】本発明で使用されるエチレン−プロピレン
−ジエン共重合体ゴム(以下、EPDMということもあ
る)とは、エチレン、プロピレン及びジエン化合物を含
む共重合体のことである。前記ジエン化合物としては、
エチリデンノルボルネン、1,4−ヘキサジエン、ジシ
クロペンタジエンなどがある。上記EPDMは、プロピ
レンの含有率が10〜80重量%であることが好まし
く、より好ましくは、15〜70重量%でである。
The ethylene-propylene-diene copolymer rubber (hereinafter sometimes referred to as EPDM) used in the present invention is a copolymer containing ethylene, propylene and a diene compound. As the diene compound,
Examples include ethylidene norbornene, 1,4-hexadiene, dicyclopentadiene and the like. The EPDM preferably has a propylene content of 10 to 80% by weight, more preferably 15 to 70% by weight.

【0007】当該EPDMの数平均分子量は40万〜6
0万が好ましく、密度は0.87g/cm3 以下が好ま
しい。さらに、EPDMのメルトインデックス(190
℃,2.16kg荷重)としては、0.1〜5.0g/
10分の範囲内が好ましく、より好ましくは0.1〜
1.0g/10分である。
The EPDM has a number average molecular weight of 400,000 to 6
It is preferably 0,000, and the density is preferably 0.87 g / cm 3 or less. In addition, the melt index of EPDM (190
C, 2.16 kg load), 0.1-5.0 g /
It is preferably within 10 minutes, more preferably 0.1 to 10.
It is 1.0 g / 10 minutes.

【0008】当該EPDMは、基本的には上記の各成分
からなるものであるが、この共重合体の特性を損なわな
い範囲内で、たとえばブテン−1あるいは4−メチルペ
ンテン−1などのα−オレフィンを含んでいてもよい。
The EPDM basically consists of the above-mentioned components, but within a range that does not impair the characteristics of the copolymer, for example, α-such as butene-1 or 4-methylpentene-1. It may contain an olefin.

【0009】本発明で使用されるエチレン−酢酸ビニル
共重合体(以下、EVAということもある)は、酢酸ビ
ニルの含有率が5〜30重量%であり、かつメルトイン
デックス(190℃,2.16kg荷重)が0.2〜2
5g/10分の共重合体が好ましい。酢酸ビニルの含有
量が5重量%未満であると、ゴム弾性が劣り、一方、3
0重量%を超えるとフィルムがブロッキングし、製膜が
困難となる。好ましい酢酸ビニルの含有量は15〜30
重量%である。またメルトインデックスについては、
0.2g/10分未満であると製膜加工性が劣り、25
g/10分を超えると空冷インフレ−ション法による製
膜が困難となる。好ましいメルトインデックスは15〜
25g/10分である。
The ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as EVA) used in the present invention has a vinyl acetate content of 5 to 30% by weight and a melt index (190 ° C., 2. 16 kg load) is 0.2-2
A 5 g / 10 min copolymer is preferred. When the content of vinyl acetate is less than 5% by weight, rubber elasticity is poor, while 3
If it exceeds 0% by weight, the film will be blocked and it will be difficult to form a film. The preferred vinyl acetate content is 15-30.
% By weight. For melt index,
If it is less than 0.2 g / 10 minutes, the film forming processability is poor, and 25
If it exceeds g / 10 minutes, film formation by the air-cooled inflation method becomes difficult. The preferred melt index is 15-
It is 25 g / 10 minutes.

【0010】当該EPDMとEVAとからなる樹脂組成
物中のEPDMの配合割合は、樹脂成分を基準(100
重量%)として、20〜50重量%である。このEPD
Mの配合割合が20重量%より低いと、得られるエラス
トマ−フィルムの伸縮性が低下し、また引張応力が大と
なったりする、一方、50重量%より高いと、エラスト
マ−フィルムの薄膜成形性を低下させる。
The blending ratio of EPDM in the resin composition comprising the EPDM and EVA is based on the resin component (100
% By weight) is 20 to 50% by weight. This EPD
When the compounding ratio of M is lower than 20% by weight, the elasticity of the obtained elastomer film is lowered and the tensile stress becomes large, while when it is higher than 50% by weight, the thin film formability of the elastomer film is increased. Lower.

【0011】これに対して上記EVAの配合割合は、樹
脂成分を基準(100重量%)として80〜50重量%
である。当該EVAの配合割合の限定理由は、80重量
%より高いと、エラストマ−フィルムの伸びが不十分と
なり、また50重量%より低いと、薄膜成形性が低下す
る。
On the other hand, the blending ratio of EVA is 80 to 50% by weight based on the resin component (100% by weight).
Is. The reason for limiting the blending ratio of the EVA is that if it is higher than 80% by weight, the elongation of the elastomer film becomes insufficient, and if it is lower than 50% by weight, the thin-film moldability deteriorates.

【0012】本発明で使用される無機質充填剤として
は、タルク、炭酸カルシウム、セッコウ、カ−ボンブラ
ック、クレ−、カオリン、シリカ、ケイソウ土、炭酸マ
グネシウム、炭酸バリウム、硫酸マグネシウム、硫酸バ
リウム、硫酸カルシウム、リン酸カルシウム、水酸化ア
ルミニウム、酸化亜鉛、水酸化マグネシウム、酸化カル
シウム、酸化マグネシウム、酸化チタン、アルミナ、マ
イカ、シラスバル−ン、ゼオライト、珪酸白土、セメン
ト、シリカフュ−ム、雲母粉等を使用することができる
が、タルク、酸化チタン、炭酸カルシウム、シリカ等が
特に好ましい。これらの無機質充填剤は、単独であるい
は組み合わせて使用することができる。無機質充填剤は
ステアリン酸やシランカップリング剤等の表面処理剤で
その表面を処理したものを用いることが好ましく、未処
理のものでは親和性が低下するため、延伸時に粉落ちや
破膜の原因となり好ましくない。表面処理の度合いは、
0.5〜1.5PHF(無機質充填剤100重量部に対
する表面処理剤の重量部)程度がよい。無機質充填剤
は、その平均粒径が1.8〜3.0μmの粉末状の無機
質充填剤を添加することが好ましい。無機質充填剤の平
均粒径が1.8μm未満では、微細孔が発生しずらくな
り、効率的に透湿性を付与できない。一方、その平均粒
径が3.0μmを超える場合には、透湿度は高くなるが
ボイドの孔径が大きくなるために、耐水度およびフイル
ム強度が低下してしまい好ましくない。上記無機質充填
剤の添加量の合計は前述のEPDM+EVAの重量を基
準(100重量部)として、90〜120重量部であ
る。90重量未満では、透湿度が不足し、また、120
重量部を超えると、ボイドの発生効率が高すぎるため、
孔径が大きくなり、耐水度およびフイルム強度が低下し
てしまい好ましくない。
The inorganic fillers used in the present invention include talc, calcium carbonate, gypsum, carbon black, clay, kaolin, silica, diatomaceous earth, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate and sulfuric acid. Use calcium, calcium phosphate, aluminum hydroxide, zinc oxide, magnesium hydroxide, calcium oxide, magnesium oxide, titanium oxide, alumina, mica, silas balun, zeolite, silicate clay, cement, silica fume, mica powder, etc. However, talc, titanium oxide, calcium carbonate, silica and the like are particularly preferable. These inorganic fillers can be used alone or in combination. As the inorganic filler, it is preferable to use one whose surface is treated with a surface treatment agent such as stearic acid or a silane coupling agent, and the untreated one causes a decrease in affinity, which may cause powder falling or film breakage during stretching. Is not preferable. The degree of surface treatment is
It is preferably about 0.5 to 1.5 PHF (parts by weight of surface treatment agent to 100 parts by weight of inorganic filler). As the inorganic filler, it is preferable to add a powdery inorganic filler having an average particle diameter of 1.8 to 3.0 μm. If the average particle size of the inorganic filler is less than 1.8 μm, it becomes difficult to generate fine pores, and moisture permeability cannot be efficiently imparted. On the other hand, when the average particle diameter exceeds 3.0 μm, the water vapor transmission rate becomes high but the void diameter becomes large, so that the water resistance and the film strength decrease, which is not preferable. The total amount of the inorganic filler added is 90 to 120 parts by weight based on the weight of EPDM + EVA (100 parts by weight). If it is less than 90 weight, the water vapor permeability is insufficient,
If it exceeds the weight part, the void generation efficiency is too high,
It is not preferable because the pore size becomes large and the water resistance and the film strength decrease.

【0013】本発明における熱可塑性エラストマ−組成
物には、さらに、ポリオレフィンを添加することができ
る。上記ポリオレフィンとしては、低密度ポリエチレ
ン、線状低密度ポリエチレン、中密度ポリエチレン、高
密度ポリエチレン等のポリエチレンが好ましい。上記ポ
リオレフィンの添加量は前述のEPDM+EVAの重量
を基準(100重量部)として、1〜10重量部とする
のが好ましい。
Polyolefin may be further added to the thermoplastic elastomer composition of the present invention. As the polyolefin, polyethylene such as low density polyethylene, linear low density polyethylene, medium density polyethylene, and high density polyethylene is preferable. The amount of the polyolefin added is preferably 1 to 10 parts by weight based on the weight of EPDM + EVA (100 parts by weight).

【0014】本発明における熱可塑性エラストマ−組成
物には、熱安定剤、紫外線吸収剤、帯電防止剤、酸化防
止剤、色剤など各種添加剤を適宜必要に応じて配合する
こともできる。
Various additives such as a heat stabilizer, a UV absorber, an antistatic agent, an antioxidant, and a coloring agent may be appropriately blended in the thermoplastic elastomer composition of the present invention.

【0015】上記熱可塑性エラストマ−組成物よりなる
延伸前フイルムは、Tーダイ法によっても製膜できる
が、MD/TDバランスや薄膜化等の点で、空冷インフ
レーション法により製膜したインフレーション膜が好ま
しい。当該インフレーション膜は、例えば、前記組成物
を、160℃以下の温度で混練し、空冷インフレーショ
ン法によりブローアップ比2.0〜5.0により成膜す
ることにより得られる。このようなフイルムの製造方法
等については、特開平3ー128945号公報に開示の
事項が適用できる。
The pre-stretched film made of the above-mentioned thermoplastic elastomer composition can be formed into a film by the T-die method, but an inflation film formed by the air-cooled inflation method is preferable in terms of MD / TD balance and thinning. . The inflation film is obtained, for example, by kneading the composition at a temperature of 160 ° C. or lower and forming the film by an air-cooling inflation method with a blow-up ratio of 2.0 to 5.0. The matters disclosed in JP-A-3-128945 can be applied to the method for producing such a film.

【0016】上記フイルムの厚みは、用途により適宜選
択されるが、例えば延伸後のフイルム厚を30〜50μ
mとする場合には、80〜120μm程度が好ましい。
The thickness of the above-mentioned film is appropriately selected depending on the application, but for example, the film thickness after stretching is 30 to 50 μm.
When it is m, it is preferably about 80 to 120 μm.

【0017】上記フイルムは、二軸延伸後、当該二軸延
伸時の延伸倍率よりも小さな延伸倍率の下でアニール処
理する。アニール処理(アニーリング)とは、延伸後の
フイルムの両端を例えばテンターにて保持したまま加熱
して熱固定(熱処理)することをいい、アニーリング
は、例えば、温度30〜60℃で30秒〜10分間空気
浴中で行うことができる。本発明者等の鋭意検討によれ
ば、上記フイルムを好ましくはMD方向およびTD方向
に2〜3.5倍に二軸延伸し、その際の延伸倍率の下で
当該フイルムをアニール処理したところ、当該フイルム
の伸縮性との関係等から、残留応力が大きすぎてフイル
ムが破膜してしまうことが判明した。また、二軸延伸後
のフイルムを、延伸された状態から直ちに解放すると、
フイルムの伸縮性により、フイルムが縮み、設定した延
伸倍率よりもかなり低倍率のフイルムしか得られないこ
とも判明した。そこで、当該二軸延伸時の延伸倍率より
も小さく好ましくはMD方向およびTD方向に1.5〜
2.5倍(但し、二軸延伸時の倍率よりも小であるこ
と)に戻し、延伸後の残留応力を小さくした倍率の下で
当該フイルムをアニール処理することにより、延伸時に
フィルムの破膜がなく、フイルムの伸縮性によるボイド
の発生効率を低下させることなく延伸による薄膜の微多
孔性フィルムを得ることができ、また、前記熱可塑性エ
ラストマー組成とも相まって、透湿度と耐水度とのバラ
ンスがとれ、また、当該二軸延伸により、フイルムのM
D/TD方向の物性バランスがとれた微多孔性フィルム
を得ることができた。尚、アニール処理の条件が前記の
下限に満たない場合は、そのアニール処理効果がなく、
一方、上限を超えると破膜や孔径が大きく成るために耐
水性が悪くなる。
After the biaxial stretching, the film is annealed at a stretching ratio smaller than the stretching ratio during the biaxial stretching. The annealing treatment (annealing) refers to heating and heat-setting (heat treatment) while holding both ends of the stretched film with, for example, tenter, and the annealing is performed at a temperature of 30 to 60 ° C. for 30 seconds to 10 seconds. It can be done in an air bath for a minute. According to the earnest studies by the present inventors, the film is biaxially stretched preferably in the MD and TD directions by a factor of 2 to 3.5, and the film is annealed under a stretching ratio at that time, From the relationship with the stretchability of the film, it was found that the residual stress was too large and the film ruptured. Also, when the film after biaxial stretching is immediately released from the stretched state,
It was also found that due to the stretchability of the film, the film shrinks and only a film with a considerably lower draw ratio than the set draw ratio can be obtained. Therefore, it is smaller than the stretching ratio during the biaxial stretching, and preferably 1.5 to 1.5 in the MD and TD directions.
The film is broken at the time of stretching by returning the film to 2.5 times (however, it must be smaller than the ratio at the time of biaxial stretching) and annealing the film under the ratio at which the residual stress after stretching is reduced. There is no, it is possible to obtain a thin microporous film by stretching without reducing the void generation efficiency due to the stretchability of the film, and, in combination with the thermoplastic elastomer composition, the balance between moisture permeability and water resistance. By the biaxial stretching, the film M
A microporous film having a well-balanced physical property in the D / TD direction could be obtained. If the annealing condition is less than the above lower limit, there is no annealing effect and
On the other hand, when the content exceeds the upper limit, the water rupture and the pore size become large and the water resistance becomes poor.

【0018】本発明の上記手法により、所定の延伸倍率
で、かなりの厚さまで薄膜化された微多孔性エラストマ
ーフィルムが得られる。当該エラストマーフィルムの厚
さは、用途により適宜選択されるが、例えば、30〜5
0μm程度厚のものが得られる。
By the above method of the present invention, a microporous elastomer film thinned to a considerable thickness can be obtained at a predetermined stretching ratio. The thickness of the elastomer film is appropriately selected depending on the application, but is, for example, 30 to 5
A thickness of about 0 μm can be obtained.

【0019】[0019]

【実施例】次に、本発明の実施例を示す。なお、実施例
及び比較例における試験方法は次の通りである。 (1)透湿度;JIS Z0208に準拠。 (2)耐水度;JIS L1092に準拠。 (3)破断強度;JIS L1096に準拠。 (4)破断伸度:JIS L1092に準拠。 (5)50%2サイクル歪;JIS L1096に準
拠。 但し、上記破断強度、破断伸度および50%2サイクル
歪の測定値は、MD/TD値である。
EXAMPLES Next, examples of the present invention will be shown. The test methods in Examples and Comparative Examples are as follows. (1) Water vapor transmission rate; conforms to JIS Z0208. (2) Water resistance: According to JIS L1092. (3) Breaking strength; conforms to JIS L1096. (4) Breaking elongation: According to JIS L1092. (5) 50% 2-cycle strain; conforming to JIS L1096. However, the measured values of the breaking strength, the breaking elongation, and the 50% 2-cycle strain are MD / TD values.

【0020】実施例1.エチレン−プロピレン−ジエン
共重合体(数平均分子量45万、密度0.87g/cm
3、MI=0.1g/10分、プロピレン含有量27重
量%)40重量%と、エチレン−酢酸ビニル共重合体
(酢酸ビニル含有量28重量%、MI=20g/10
分)60重量%からなる樹脂組成物100重量部に、ス
テアリン酸処理炭酸カルシウム(平均粒径2μm、ステ
アリン酸1.0PHF)100重量部を配合してなる組
成物を、160℃にて二軸混練機により溶融混練し、空
冷インフレ−ション法により下記の条件で80μm厚の
原反フイルムを成膜した。 ダイ径・・・150mm、 ブロ−比・・・3.5, 押出機のシリンダ温度・・・160℃ ダイ出口の樹脂温度・・・・170℃、 ダイ出口の樹脂圧力・・・・350kg/cm2、 押出し量・・・100kg/hr、 引取速度・・10m/分、
Example 1. Ethylene-propylene-diene copolymer (number average molecular weight 450,000, density 0.87 g / cm
3 , MI = 0.1 g / 10 min, propylene content 27% by weight) 40% by weight, ethylene-vinyl acetate copolymer (vinyl acetate content 28% by weight, MI = 20 g / 10
Min) 60 parts by weight of a resin composition consisting of 60 parts by weight, and 100 parts by weight of stearic acid-treated calcium carbonate (average particle size: 2 μm, stearic acid: 1.0 PHF) are added to the composition at 160 ° C. The raw film having a thickness of 80 μm was formed into a film by the air-cooled inflation method under the following conditions. Die diameter ・ ・ ・ 150mm, Blow ratio ・ ・ ・ 3.5, Extruder cylinder temperature ・ ・ ・ 160 ° C Resin temperature at die outlet ・ ・ ・ 170 ° C, Resin pressure at die outlet ・ ・ ・ 350kg / cm 2 , extrusion rate ... 100 kg / hr, take-up speed ... 10 m / min,

【0021】次いで、上記で得られた原反フイルムを、
二軸延伸機にて下記の条件下で、また、表1に示すよう
に、当初、延伸倍率(MDxTD=2.5x2.5)で
延伸後、当該延伸倍率をMDxTD=1.5x1.5に
戻して、その延伸倍率の下で当該原反フイルムをアニー
ル処理した。 延伸方法・・・同時二軸延伸、 延伸速度・・・10m/分、 予熱温度/時間・・・45℃/90秒、 アニール温度/時間・・・40℃/60秒(空気浴)、
Next, the original film obtained above is
In a biaxial stretching machine, under the following conditions, and as shown in Table 1, initially, after stretching at a draw ratio (MDxTD = 2.5x2.5), the draw ratio is MDxTD = 1.5x1.5. After returning, the original film was annealed under the draw ratio. Stretching method: Simultaneous biaxial stretching, Stretching speed: 10 m / min, Preheating temperature / hour: 45 ° C./90 seconds, Annealing temperature / hour: 40 ° C./60 seconds (air bath),

【0022】得られたエラストマーフィルムについて、
透湿度、耐水度、破断強度、破断伸度および50%2サ
イクル歪を測定した。その結果を表1に示す。
Regarding the obtained elastomer film,
The moisture vapor transmission rate, water resistance, breaking strength, breaking elongation, and 50% 2-cycle strain were measured. The results are shown in Table 1.

【0023】実施例2.実施例1において、原反フイル
ムを二軸延伸機にて、当初、延伸倍率(MDxTD=
3.5x3.5)で延伸後、当該延伸倍率をMDxTD
=2.5x2.5に戻して、その延伸倍率の下で当該原
反フイルムをアニール処理した以外は実施例1と同様に
して、但し厚みが32μm厚のエラストマーフィルムを
得た。得られたエラストマーフィルムについて、実施例
1と同様に物性を測定した。その結果を表1に示す。
Example 2. In Example 1, the original film was initially stretched by a biaxial stretching machine (MDxTD =
3.5x3.5), and then draw at MDxTD
= 2.5 × 2.5 and the original film was annealed under the stretching ratio, in the same manner as in Example 1 except that an elastomer film having a thickness of 32 μm was obtained. Physical properties of the obtained elastomer film were measured in the same manner as in Example 1. The results are shown in Table 1.

【0024】比較例1.実施例2において、原反フイル
ムを二軸延伸機にて、延伸倍率(MDxTD=3.5x
3.5)で延伸後、当該延伸倍率を戻さずに、そのまま
の延伸倍率の下で当該原反フイルムをアニール処理した
ところ、当該アニール時にフィルムは破膜してしまっ
た。
Comparative Example 1 In Example 2, the original film was stretched by a biaxial stretching machine (MDxTD = 3.5x).
After stretching in 3.5), the original film was annealed under the same stretching ratio without returning the stretching ratio, and the film was broken during the annealing.

【0025】比較例2.実施例1において、原反フイル
ムを二軸延伸機にて、延伸倍率(MDxTD=2.5x
2.5)で延伸後、当該延伸倍率を戻さずに、そのまま
の延伸倍率(MDxTD=2.5x2.5)の下で当該
原反フイルムをアニール処理した。
Comparative Example 2 In Example 1, the original film was stretched by a biaxial stretching machine (MDxTD = 2.5x).
After stretching in 2.5), the original film was annealed under the same stretching ratio (MDxTD = 2.5x2.5) without returning the stretching ratio.

【0026】比較例3.実施例1において、原反フイル
ムを延伸倍率MDxTD=2.5x2.5にて延伸した
が、そのまま放置し、アニール処理を行わなかったとこ
ろ、当該延伸フィルムの延伸倍率は、MDxTD=1.
7x1.7に低下してしまった。
Comparative Example 3 In Example 1, the original film was stretched at a stretching ratio MDxTD = 2.5 × 2.5, but was left as it was and was not annealed. The stretching ratio of the stretched film was MDxTD = 1.
It has fallen to 7x1.7.

【0027】比較例4.実施例2において、原反フイル
ムを延伸倍率MDxTD=3.5x3.5にて延伸した
が、そのまま放置し、アニール処理を行わなかったとこ
ろ、当該延伸フィルムの延伸倍率は、MDxTD=2.
6x2.6に低下してしまった。
Comparative Example 4 In Example 2, the original film was stretched at a stretching ratio MDxTD = 3.5 × 3.5, but was left as it was and was not subjected to annealing treatment. The stretching ratio of the stretched film was MDxTD = 2.
It has dropped to 6x2.6.

【0028】上記比較例1〜4で得られたフィルムにつ
いて、但し比較例1を除いて実施例1と同様に物性を測
定した。これら結果を当該比較例1に示す結果と併せて
表1に示す。
Physical properties of the films obtained in Comparative Examples 1 to 4 were measured in the same manner as in Example 1 except for Comparative Example 1. These results are shown in Table 1 together with the results shown in Comparative Example 1.

【0029】比較例5.実施例1において、ステアリン
酸処理炭酸カルシウムをその平均粒径が1.5μmのも
のに代えた以外は実施例1と同様にして、エラストマー
フィルムを得た。得られたエラストマーフィルムについ
て、実施例1と同様に物性を測定した。その結果を表1
に示す。
Comparative Example 5. An elastomer film was obtained in the same manner as in Example 1 except that the stearic acid-treated calcium carbonate was replaced with one having an average particle size of 1.5 μm. Physical properties of the obtained elastomer film were measured in the same manner as in Example 1. The results are shown in Table 1.
Shown in

【0030】比較例6.実施例1において、ステアリン
酸処理炭酸カルシウムをその平均粒径が4.0μmのも
のに代えた以外は実施例1と同様にして、エラストマー
フィルムを得た。得られたエラストマーフィルムについ
て、実施例1と同様に物性を測定した。その結果を表1
に示す。
Comparative Example 6. An elastomer film was obtained in the same manner as in Example 1, except that the stearic acid-treated calcium carbonate was replaced with one having an average particle size of 4.0 μm. Physical properties of the obtained elastomer film were measured in the same manner as in Example 1. The results are shown in Table 1.
Shown in

【0031】比較例7.実施例1において、ステアリン
酸処理炭酸カルシウムの配合量を60重量部とした以外
は実施例1と同様にして、エラストマーフィルムを得
た。得られたエラストマーフィルムについて、実施例1
と同様に物性を測定した。その結果を表1に示す。
Comparative Example 7. An elastomer film was obtained in the same manner as in Example 1, except that the amount of stearic acid-treated calcium carbonate was changed to 60 parts by weight. About the obtained elastomer film, Example 1
The physical properties were measured in the same manner as in. The results are shown in Table 1.

【0032】比較例8.実施例1において、ステアリン
酸処理炭酸カルシウムの配合量を150重量部とした以
外は実施例1と同様にして、エラストマーフィルムを得
た。得られたエラストマーフィルムについて、実施例1
と同様に物性を測定した。その結果を表1に示す。
Comparative Example 8. An elastomer film was obtained in the same manner as in Example 1 except that the amount of stearic acid-treated calcium carbonate was changed to 150 parts by weight. About the obtained elastomer film, Example 1
The physical properties were measured in the same manner as in. The results are shown in Table 1.

【0033】比較例9.実施例1において、ステアリン
酸処理を施していない炭酸カルシウムを使用した以外は
実施例1と同様にして、エラストマーフィルムの延伸を
行ったが、延伸時に破膜した。また、そのフイルムの表
面に触れると、炭酸カルシウムの粉末が手に付着する程
に粉落ちの傾向が大きかった。その結果を表1に示す。
尚、表1中において、縦と横の倍率は同じで、当該表1
中には、一方向のみの倍率で示した(例えば、2.5な
らば2.5X2.5倍を示す)。
Comparative Example 9. The elastomer film was stretched in the same manner as in Example 1 except that calcium carbonate that had not been treated with stearic acid was used. However, the film was ruptured during stretching. Moreover, when the surface of the film was touched, the powder of calcium carbonate had a large tendency to fall off to the extent that it adhered to the hand. The results are shown in Table 1.
In Table 1, the vertical and horizontal magnifications are the same.
Some of them are shown in magnification only in one direction (for example, 2.5 means 2.5 × 2.5 times).

【0034】[0034]

【表1】 [Table 1]

【0035】上記表1に示す結果から次のことが分る。 延伸倍率とアニールとの関係 表1に示すように、二軸延伸時の延伸倍率好ましくはM
D方向およびTD方向に2〜3.5倍よりも小さく好ま
しくはMD方向およびTD方向に1.5〜2.5倍(但
し、二軸延伸時の倍率よりも小であること)に戻し、延
伸後の残留応力を小さくした倍率の下で当該フイルムを
アニール処理することにより、適度な大きさの微細孔を
有する、透湿性、耐水性のバランスに優れ、比較的にM
D/TD方向の物性バランスが良好な伸縮姓フイルムが
得られることが判る。(実施例1、2)。延伸倍率と、
アニール時の倍率を同じにした場合[3.5×3.5
倍](比較例1)では、延伸によって発生した微細孔
は、フィルムにかかる残留応力によって拡大し破膜して
しまう。延伸倍率が2.5×2.5(比較例2)であれ
ば延伸は可能であるが、同様の理由で微細孔が拡大する
ために、耐水度が極端に低下する。延伸後アニール工程
がない場合(比較例3,4)、延伸後に二軸延伸機のチ
ャックからはずしたフィルムは、急激に収縮してしまっ
た。実施例1,2に示すように延伸後アニールを行う事
により二軸延伸機からはずした後の急激な収縮はなくな
った。また実施例1,2に示すようにアニールを行うこ
とで、初めて効率的に透湿性を付与する事ができた。 炭酸カルシウムの平均粒径と添加量との関係 表1に示すように炭酸カルシウム(CaCO3)の平均
粒径が小さいと(比較例6)、微細孔が発生しずらくな
り、効率的に透湿性を付与できない。通常の市販されて
いる炭酸カルシウム充填ポリエチレンフィルムであれ
ば、この程度の粒径で十分な透湿度を有するフィルムが
得られるが、本発明で得られるフィルムは伸縮性を有す
るために、一度形成された微細穴が収縮してしまい、こ
れよりも平均粒径を大きくしなければ、効率的にボイド
を発生させられなかった。平均粒径が大きくなると(比
較例6)、透湿度は高くなるが、ボイドの孔径が大きく
なるために、耐水度が低下してしまう。それに対して適
当な粒径であれば、透湿度、耐水度の物性バランスが良
好なエラストマーフィルムが得られた。炭酸カルシウム
の添加量が少ないと、透湿度が不足し(比較例7)、ま
た、添加量が多すぎると、ボイドの発生効率が高すぎる
ため、孔径が大きくなり耐水度およびフイルム物性が低
下する(比較例8)。
The following can be seen from the results shown in Table 1 above. Relationship between Draw Ratio and Annealing As shown in Table 1, the draw ratio during biaxial stretching is preferably M.
Less than 2 to 3.5 times in the D direction and the TD direction, preferably 1.5 to 2.5 times in the MD direction and the TD direction (provided that it is smaller than the magnification at the time of biaxial stretching), By annealing the film under a ratio that reduces the residual stress after stretching, it has fine pores of an appropriate size, excellent moisture permeability and water resistance, and is relatively M
It can be seen that a stretchable film having a good physical property balance in the D / TD direction can be obtained. (Examples 1 and 2). Stretching ratio,
When the same magnification is used during annealing [3.5 x 3.5
Double] (Comparative Example 1), the micropores generated by stretching are expanded and broken due to the residual stress applied to the film. If the draw ratio is 2.5 × 2.5 (Comparative Example 2), the drawing is possible, but for the same reason, the micropores are enlarged, and the water resistance is extremely lowered. When the post-stretching annealing step was not performed (Comparative Examples 3 and 4), the film removed from the chuck of the biaxial stretching machine after stretching rapidly contracted. By performing annealing after stretching as shown in Examples 1 and 2, the rapid shrinkage after removal from the biaxial stretching machine disappeared. Moreover, by performing the annealing as shown in Examples 1 and 2, the moisture permeability could be efficiently imparted for the first time. Relationship between Average Particle Size of Calcium Carbonate and Addition Amount As shown in Table 1, when the average particle size of calcium carbonate (CaCO 3 ) is small (Comparative Example 6), micropores are less likely to be formed, and the transparent particles are efficiently transmitted. Wetness cannot be imparted. With a commercially available calcium carbonate-filled polyethylene film, a film having sufficient moisture permeability at such a particle size can be obtained, but since the film obtained in the present invention has elasticity, it is formed once. Also, the fine holes contracted, and voids could not be efficiently generated unless the average particle size was made larger than this. When the average particle diameter becomes large (Comparative Example 6), the water vapor permeability becomes high, but the pore diameter of the void becomes large, so that the water resistance decreases. On the other hand, when the particle size was appropriate, an elastomer film having a good balance of physical properties such as moisture permeability and water resistance was obtained. When the amount of calcium carbonate added is small, the moisture vapor transmission rate is insufficient (Comparative Example 7), and when the amount added is too large, the void generation efficiency is too high, resulting in an increase in the pore size and deterioration in water resistance and film physical properties. (Comparative example 8).

【0036】[0036]

【発明の効果】以上本発明によれば、延伸時にフィルム
の破膜がなく、フイルムの伸縮性によるボイドの発生効
率を低下させることなく延伸による薄膜の微多孔性フィ
ルムを得ることができ、また、透湿度と耐水度とのバラ
ンスがとれ、さらに、フイルムのMD/TD方向の物性
バランスがとれた微多孔性フィルムを得ることができ
た。
As described above, according to the present invention, there is no film breakage during stretching, and a thin microporous film can be obtained by stretching without lowering the void generation efficiency due to the stretchability of the film. It was possible to obtain a microporous film in which the moisture permeability and the water resistance were well balanced and the physical properties of the film in the MD / TD direction were well balanced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 31/04 LDH // C08L 23/08 LDJ 23/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08L 31/04 LDH // C08L 23/08 LDJ 23/16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】エチレンープロピレンージェン共重合体ゴ
ム20〜50重量%とエチレンー酢酸ビニル共重合体8
0〜50重量%とからなる樹脂組成物100重量部に対
して平均粒径が1.8〜3.0μmの表面処理無機質充
填剤90〜120重量部を配合してなる熱可塑性エラス
トマー組成物より製膜したフイルムを二軸延伸後、当該
二軸延伸時の延伸倍率よりも小さな延伸倍率の下で当該
二軸延伸フイルムをアニール処理することを特徴とする
微多孔性エラストマーフィルムの製造方法。
1. An ethylene-propylene-propylene copolymer rubber 20 to 50% by weight and an ethylene-vinyl acetate copolymer 8
From a thermoplastic elastomer composition obtained by blending 90 to 120 parts by weight of a surface-treated inorganic filler having an average particle size of 1.8 to 3.0 μm with 100 parts by weight of a resin composition consisting of 0 to 50% by weight. A method for producing a microporous elastomer film, comprising biaxially stretching a formed film, and then annealing the biaxially stretched film under a stretching ratio smaller than the stretching ratio at the time of the biaxial stretching.
【請求項2】二軸延伸時の延伸倍率が縦方向および横方
向に2〜3.5倍で、アニール処理時の延伸倍率が縦方
向および横方向に1.5〜2.5倍(但し、二軸延伸時
の倍率よりも小であること)であることを特徴とする、
請求項1に記載の微多孔性エラストマーフィルムの製造
方法。
2. The stretching ratio during biaxial stretching is 2 to 3.5 times in the longitudinal and transverse directions, and the stretching ratio during annealing is 1.5 to 2.5 times in the longitudinal and transverse directions. , Which is smaller than the magnification at the time of biaxial stretching).
The method for producing the microporous elastomer film according to claim 1.
JP21077594A 1994-08-12 1994-08-12 Method for producing finely porous elastomer film Pending JPH0853561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21077594A JPH0853561A (en) 1994-08-12 1994-08-12 Method for producing finely porous elastomer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21077594A JPH0853561A (en) 1994-08-12 1994-08-12 Method for producing finely porous elastomer film

Publications (1)

Publication Number Publication Date
JPH0853561A true JPH0853561A (en) 1996-02-27

Family

ID=16594943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21077594A Pending JPH0853561A (en) 1994-08-12 1994-08-12 Method for producing finely porous elastomer film

Country Status (1)

Country Link
JP (1) JPH0853561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204634A (en) * 2015-04-15 2016-12-08 日東電工株式会社 Stretchable film and product including same
US11305034B2 (en) 2015-04-15 2022-04-19 Nitto Denko Corporation Stretchable film and product including same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204634A (en) * 2015-04-15 2016-12-08 日東電工株式会社 Stretchable film and product including same
US10772984B2 (en) 2015-04-15 2020-09-15 Nitto Denko Corporation Elastic porous film and article
US11305034B2 (en) 2015-04-15 2022-04-19 Nitto Denko Corporation Stretchable film and product including same

Similar Documents

Publication Publication Date Title
US5667902A (en) High moisture barrier polypropylene-based film
JPS63276529A (en) Air-permeable film manufactured from molten embossed polyolefine/filler precursor film
JPS60154034A (en) Stretched polyethylene film
JP3140464B2 (en) High molecular weight polyethylene biaxially oriented film, method for producing the same, and surface-modified high molecular weight polyethylene biaxially oriented film
AU627180B2 (en) A composition comprising polymers of but-1-ene and propylene
JPH0362738B2 (en)
JPH08269261A (en) Polypropylene composition
JPH10292059A (en) Production of air-permeable film
JPH0550522A (en) Manufacture of microscopically porous elastomer film
JPH0853561A (en) Method for producing finely porous elastomer film
KR20140136214A (en) manufacturing method of film using recycled resin with waste silage film
JPH04335043A (en) Production of porous film
KR101909577B1 (en) Manufacturing method of polypropylene composition for higher transparency, softness and shrinkage
JP2003327731A (en) Polyolefin resin porous membrane
JP2004209672A (en) Laminated film and its manufacturing method
JPS6218435A (en) Production of gas-permeable film
US20230151170A1 (en) Stretch film and method for producing same
JP2001261868A (en) Porous film and process for producing the same
JP2505517B2 (en) Moisture-permeable film or sheet resin composition, moisture-permeable film or sheet and method for producing the same
JP3438958B2 (en) Laminated sheet
JP2896267B2 (en) High molecular weight polyethylene oriented film and production method thereof
JP3461951B2 (en) Polyolefin composition
JP4143215B2 (en) Polypropylene composition for stretched film
JPH10237189A (en) Monoaxially oriented polypropylene film
JPH0723432B2 (en) Porous film