JPH0853058A - Antiskid control of four-wheel drive vehicle - Google Patents

Antiskid control of four-wheel drive vehicle

Info

Publication number
JPH0853058A
JPH0853058A JP21048394A JP21048394A JPH0853058A JP H0853058 A JPH0853058 A JP H0853058A JP 21048394 A JP21048394 A JP 21048394A JP 21048394 A JP21048394 A JP 21048394A JP H0853058 A JPH0853058 A JP H0853058A
Authority
JP
Japan
Prior art keywords
wheel
wheel drive
wheels
skid control
rear wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21048394A
Other languages
Japanese (ja)
Other versions
JP2736745B2 (en
Inventor
Yasushi Suganuma
靖 菅沼
Atsushi Osanai
淳 小山内
Hiroshi Oshiro
浩 大城
Hiroaki Kosugi
宏昭 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nisshinbo Holdings Inc
Original Assignee
Honda Motor Co Ltd
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6210483A priority Critical patent/JP2736745B2/en
Priority to DE1995129491 priority patent/DE19529491B4/en
Publication of JPH0853058A publication Critical patent/JPH0853058A/en
Application granted granted Critical
Publication of JP2736745B2 publication Critical patent/JP2736745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/322Systems specially adapted for vehicles driven by more than one axle, e.g. Four Wheel-Drive vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To correctly carry out the antiskid control by carrying out control so that the average of the slip rate of a rear wheel becomes smaller than that of a front wheel, during the antiskid control. CONSTITUTION:When the number of revolution of a pump 41 on the front wheel 15, 18 side is increased larger than that of a pump 42 on the rear wheel 16, 17 side, a hydraulic pressure is generated to operate an actuator, and a multidisc clutch 43 is press-attached to increase the restraining force of the front wheels 15 and 18 and the rear wheels 16 and 17, and the approximation to the four-wheel drive mode is performed. In the reverse case, the restraining force for the front wheels 15 and 18 and the rear wheels 16 and 17 is weakened, and the approximation to the two-wheel drive mode is performed. During the antiskid control, the transition from the four-wheel drive mode to the two-wheel drive mode is controlled so that the average value of the slip rate between the rear wheels 16 and 17 and the front wheels 15 and 18 is obtained, and the slip rate of the rear wheels 16 and 17 becomes smaller than that of the front wheels 15 and 18. Accordingly, the transition to the two-wheel drive mode can be facilitated, and the correct antiskid control can be carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、前輪と後輪の拘束力を
可変にする四輪駆動車輌のアンチスキッド制御方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-skid control method for a four-wheel drive vehicle in which the restraining force between the front wheels and the rear wheels is variable.

【0002】[0002]

【従来の技術】従来、前輪回転数が後輪回転数に対して
大きくなると、前輪と後輪の拘束力が強くなり4輪駆動
モードに近づき、逆に、前輪回転数が後輪回転数に対し
て小さくなると、前輪と後輪の拘束力が弱まり2輪駆動
モードに近づく制御、即ち可変4輪駆動制御が行われて
いる。この制御により、前進加速時は4輪駆動モードに
近づき、前進定速時または減速時は2輪駆動モードに近
づく。
2. Description of the Related Art Conventionally, when the front wheel rotation speed becomes larger than the rear wheel rotation speed, the restraining force between the front wheel and the rear wheel becomes stronger and the four-wheel drive mode is approached. Conversely, the front wheel rotation speed becomes the rear wheel rotation speed. When it becomes smaller, the restraining force of the front wheels and the rear wheels is weakened, and control for approaching the two-wheel drive mode, that is, variable four-wheel drive control is performed. By this control, the vehicle approaches the four-wheel drive mode during forward acceleration and the two-wheel drive mode during constant forward speed or deceleration.

【0003】[0003]

【発明が解決しようとする課題】従来、アンチスキッド
制御時は、前輪と後輪に対して独立にブレーキ制御が行
われるために、前輪回転数と後輪回転数の大小が変動す
る。その結果、アンチスキッド制御時に4輪駆動モード
に近づくことがある。それ故、4輪駆動モード傾向が大
きい場合、車輪速から求めた推定車体速と実際の実車体
速とがずれることがある。
Conventionally, during the anti-skid control, since the front wheel and the rear wheel are independently brake-controlled, the front wheel rotational speed and the rear wheel rotational speed fluctuate. As a result, the four-wheel drive mode may be approached during anti-skid control. Therefore, when the four-wheel drive mode tendency is large, the estimated vehicle body speed obtained from the wheel speed may deviate from the actual vehicle body speed.

【0004】[0004]

【本発明の目的】本発明は、前輪と後輪の拘束力を変化
する四輪駆動において、より正確にアンチスキッド制御
を行うことにある。
SUMMARY OF THE INVENTION It is an object of the present invention to more accurately perform antiskid control in four-wheel drive in which the restraining force between the front wheels and the rear wheels is changed.

【0005】[0005]

【問題点を解決するための手段】本発明は、前輪の回転
数が後輪の回転数よりも大きい時の方が、その逆の時よ
りも前輪と後輪の拘束力が大きい4輪駆動車輌のアンチ
スキッド制御方法において、アンチスキッド制御中で前
輪と後輪の拘束力が大きい場合、後輪の減圧モードへの
移行しきい値を浅くし、後輪のブレーキ液圧の減圧信号
を出し易くすることを特徴とする、4輪駆動車輌のアン
チスキッド制御方法、又は、アンチスキッド制御中で前
輪と後輪の拘束力が大きい場合、後輪の減圧パルスを増
大させることにより、後輪の回転数の増大を図り、前輪
と後輪の拘束力を弱める方向に制御することを特徴とす
る、4輪駆動車輌のアンチスキッド制御方法、又は、ア
ンチスキッド制御中は、後輪のブレーキ液圧の増圧タイ
ミングを遅延することにより、後輪の回転数の減少を抑
えて、前輪と後輪の拘束力を弱める方向に制御すること
を特徴とする、4輪駆動車輌のアンチスキッド制御方
法、又は、アンチスキッド制御中は、後輪のブレーキ液
圧の増圧パルスを減少することにより、後輪の回転数の
減少を抑えて、前輪と後輪の拘束力を弱める方向に制御
することを特徴とする、4輪駆動車輌のアンチスキッド
制御方法にある。
The present invention is a four-wheel drive in which the front wheel and rear wheel restraining force is greater when the front wheel rotational speed is greater than the rear wheel rotational speed, and vice versa. In the anti-skid control method of a vehicle, if the front and rear wheels have a large restraining force during anti-skid control, the threshold value for shifting the rear wheel to the decompression mode is made shallow, and the rear wheel brake fluid pressure reduction signal is output. Anti-skid control method for a four-wheel drive vehicle, or when the restraining force between the front wheels and the rear wheels is large during the anti-skid control, by increasing the pressure reduction pulse of the rear wheels, An anti-skid control method for a four-wheel drive vehicle characterized by increasing the number of revolutions and controlling the restraining force between the front wheels and the rear wheels to weaken, or the brake fluid pressure of the rear wheels during the anti-skid control. Delay the pressure increase timing of Is used to suppress the decrease in the number of rotations of the rear wheels and to control the restraining force between the front wheels and the rear wheels in a direction of weakening the restraining force of the front wheels and the rear wheels. By controlling the brake fluid pressure increase pulse of the rear wheels, the decrease in the rotational speed of the rear wheels is suppressed, and the restraining force between the front wheels and the rear wheels is controlled to be weakened. It is in the anti-skid control method of the vehicle.

【0006】[0006]

【実施例】以下、図面を用いて実施例を説明する。EXAMPLES Examples will be described below with reference to the drawings.

【0007】<イ>ABS制御の概要(図1、図2) アンチスキッド(ABS)制御は、ブレーキペダル11
が踏み込まれることにより、マスタシリンダ12から発
生した液圧がABS液圧ユニット2を介して各車輪15
〜18のホイールブレーキ14にかかり、車輪に制動が
かかる。ブレーキが強くかかり、車輪がスリップする
と、車輪速センサ51からの信号を基に電子制御装置3
により、ABS液圧ユニット2を介して各車輪15〜1
8に対してアンチスキッド制御が行われる。なお、電子
制御装置3は、専用ハード装置、また、入力装置31、
処理装置32、出力装置33など一般のコンピュータ装
置の構成をとることができる。
<A> Outline of ABS control (FIGS. 1 and 2) The brake pedal 11 is used for anti-skid (ABS) control.
When the wheel is depressed, the hydraulic pressure generated from the master cylinder 12 is transferred to each wheel 15 via the ABS hydraulic unit 2.
The wheel brakes 14 to 18 are applied to brake the wheels. When the brake is applied strongly and the wheels slip, the electronic control unit 3 is based on the signal from the wheel speed sensor 51.
As a result, each wheel 15 to 1 is passed through the ABS hydraulic unit 2.
The anti-skid control is performed for 8. The electronic control unit 3 includes a dedicated hardware device, an input device 31,
The configuration of a general computer device such as the processing device 32 and the output device 33 can be adopted.

【0008】<ロ>液圧系統の概略構成(図3) 液圧系統は、X配管の例を示してあり、マスターシリン
ダ12を介して、独立した2系統の第1液圧回路21と
第2液圧回路22を有している。主リザーバ13は、マ
スターシリンダに供給するブレーキ液の液溜めである。
第1液圧回路21は、入力弁23を介して右前輪18と
左後輪17のホイールブレーキ14に接続され、出力弁
24を介して補助リザーバ27に接続されている。同様
に、第2液圧回路22は、入力弁23を介して右後輪1
6と左前輪15のホイールブレーキ14に接続され、出
力弁24を介して補助リザーバ27に接続されている。
<B> Schematic configuration of hydraulic system (FIG. 3) The hydraulic system shows an example of X piping, and the two independent first hydraulic circuits 21 and 21 are provided via the master cylinder 12. It has two hydraulic circuits 22. The main reservoir 13 is a reservoir of brake fluid supplied to the master cylinder.
The first hydraulic circuit 21 is connected to the wheel brakes 14 of the right front wheel 18 and the left rear wheel 17 via the input valve 23, and is connected to the auxiliary reservoir 27 via the output valve 24. Similarly, the second hydraulic circuit 22 connects the right rear wheel 1 via the input valve 23.
6 and the wheel brake 14 of the left front wheel 15, and is connected to the auxiliary reservoir 27 via the output valve 24.

【0009】アンチスキッド制御ブレーキ用ポンプ25
は、モータ26により駆動される。電子制御装置3は、
車輪速センサ51の信号を受け、車輪速と推定車体速か
ら車輪のスリップ率を求め、これが所定のしきい値を越
えると、アンチスキッド制御を開始し、第1乃至第2液
圧回路21、22の液圧を増大させるためモータ26を
作動してポンプ25を働かせると共に、入力弁23と出
力弁24の開閉を制御して、補助リザーバ27のブレー
キ液を第1乃至第2液圧回路21、22に供給し、ホイ
ールブレーキ14のブレーキ液圧を調整する。
Anti-skid control brake pump 25
Are driven by the motor 26. The electronic control unit 3
Upon receiving the signal from the wheel speed sensor 51, the slip ratio of the wheel is obtained from the wheel speed and the estimated vehicle body speed. When this exceeds a predetermined threshold value, the anti-skid control is started, and the first and second hydraulic circuits 21, In order to increase the hydraulic pressure of 22, the motor 26 is operated to operate the pump 25, and the opening and closing of the input valve 23 and the output valve 24 are controlled so that the brake fluid in the auxiliary reservoir 27 is removed from the first and second hydraulic circuits 21. , 22 to adjust the brake fluid pressure of the wheel brakes 14.

【0010】<ハ>アンチスキッド装置の動作状態例
(図4) 図4において、横軸は制動開始後の時間経過を示してお
り、図4(a)は、推定車体速、車輪速、スリップしき
い値を示している。図4(b)は、車輪加速度を示して
いる。図4(c)は入力弁の作動状態を、図4(d)は
出力弁の作動状態を、図4(e)は制動トルクを示して
いる。
<C> Example of operating state of anti-skid device (FIG. 4) In FIG. 4, the horizontal axis represents the passage of time after the start of braking, and FIG. 4 (a) shows the estimated vehicle speed, wheel speed, and slip. Shows the threshold. FIG. 4B shows the wheel acceleration. 4C shows the operating state of the input valve, FIG. 4D shows the operating state of the output valve, and FIG. 4E shows the braking torque.

【0011】制動の開始により車輪が減速され減速度
しきい値に達すると、車輪がロックに向かっていると判
断して入力弁を閉じ、増圧を禁止して制動トルクをほぼ
一定に維持する(時刻t1付近)。
When the wheel is decelerated by the start of braking and reaches the deceleration threshold value, it is determined that the wheel is approaching the lock, the input valve is closed, the pressure increase is prohibited, and the braking torque is maintained substantially constant. (Around time t1).

【0012】この際、液圧制御系の作動遅れ等によっ
て制動トルクは過大となっているため、車輪速は更に低
下し続け、更なる減速度しきい値に達するか、又はスリ
ップしきい値を越えると、車輪ロックの危険が生じたも
のと判断し出力弁を開き制動トルクを減少させる(時刻
t2付近)。
At this time, since the braking torque is excessive due to the operation delay of the hydraulic control system and the like, the wheel speed continues to further decrease and reaches the further deceleration threshold value or the slip threshold value. If it exceeds, it is determined that the risk of wheel locking has occurred, the output valve is opened, and the braking torque is reduced (near time t2).

【0013】この場合、設定された減圧パルスが終了
するか、若しくは車輪が加速度を示した時点で出力弁を
閉じ、減圧を禁止し制動トルクをほぼ一定に維持する
(時刻t3付近)。
In this case, the output valve is closed at the time when the set pressure reducing pulse ends or when the wheel indicates acceleration, the pressure reducing is prohibited, and the braking torque is maintained substantially constant (around time t3).

【0014】制動トルクが減少するに伴い、車輪の加
速度は次第に大きくなり、その結果、スリップしきい値
以下に戻り、かつ設定加速度以上になると車輪が回復に
向かっていると判断し、出力弁は閉じたままで制動トル
クをほぼ一定に維持する(時刻t4付近)。
As the braking torque decreases, the acceleration of the wheels gradually increases. As a result, when the wheel returns to the slip threshold or less and exceeds the set acceleration, it is determined that the wheels are recovering, and the output valve The braking torque is maintained substantially constant with the door closed (near time t4).

【0015】車輪加速度が安定して一定時間継続する
と、入力弁を瞬間的に開きながら、制動トルクを段階的
に増大させる(時刻t5付近)。
When the wheel acceleration is stable and continues for a certain period of time, the braking torque is increased stepwise while opening the input valve instantaneously (around time t5).

【0016】制動トルクが増大するに伴い、車輪が再
び減速を始め、減速度しきい値に達すると、車輪がロッ
クに向かっていると判断して入力弁を閉じ、増圧を禁止
することによって制動トルクはほぼ一定に保持される
(時刻t6付近)。以降は、以上のサイクルを車両停止
まで繰り返す。
As the braking torque increases, the wheels begin to decelerate again, and when the deceleration threshold is reached, it is determined that the wheels are approaching the lock, the input valve is closed, and the pressure increase is prohibited. The braking torque is kept substantially constant (near time t6). After that, the above cycle is repeated until the vehicle stops.

【0017】<ニ>4輪駆動におけるABS制御(図5
〜図7) 前輪の回転数が後輪の回転数よりも大きい時の方が、そ
の逆の時よりも前輪と後輪の拘束力が大きい4輪駆動車
輌は、前輪回転数と後輪回転数に同調して回転する2個
のポンプを設け、これらポンプ間の吐出・吸入の循環油
量の差を利用して、前輪側のポンプ(フロントポンプ)
41の回転数が後輪側のポンプ(リヤポンプ)42の回
転数より大きくなると、油圧を発生してアクチュエータ
を作動させ、多板クラッチ43を圧接して前輪と後輪の
拘束力を高め、4輪駆動モードに近づける。逆に、前輪
側のポンプ(フロントポンプ)41の回転数が後輪側の
ポンプ(リヤポンプ)42の回転数より小さくなると、
油圧が減少し、多板クラッチ43が緩み、前輪と後輪の
拘束力が弱まり、2輪駆動モードに近づく。このよう
に、前輪回転数と後輪回転数の大小により、4輪駆動モ
ード傾向と2輪駆動モード傾向が切り替わる(例えば特
開平3ー224830号公報参照)。又、前輪と後輪と
の間にワンウエイクラッチが設けられたものがある(例
えば実開昭59ー188731号公報参照)。
<D> ABS control in four-wheel drive (see FIG. 5)
(Fig. 7) The front wheel rotation speed and the rear wheel rotation speed are greater in the four-wheel drive vehicle in which the front wheel and the rear wheel have a greater binding force when the front wheel rotation speed is higher than the rear wheel rotation speed, and vice versa. Two pumps that rotate in synchronism with the number are installed, and the pump on the front wheel side (front pump) is used by utilizing the difference in the amount of circulating oil for discharge and suction between these pumps.
When the rotation speed of 41 becomes higher than the rotation speed of the pump (rear pump) 42 on the rear wheel side, hydraulic pressure is generated to operate the actuator, and the multi-plate clutch 43 is pressed to increase the restraining force between the front wheel and the rear wheel. Move closer to wheel drive mode. On the contrary, when the rotation speed of the front wheel side pump (front pump) 41 becomes lower than the rotation speed of the rear wheel side pump (rear pump) 42,
The hydraulic pressure is reduced, the multi-plate clutch 43 is loosened, the restraining force between the front wheels and the rear wheels is weakened, and the two-wheel drive mode is approached. In this way, the tendency of the four-wheel drive mode and the tendency of the two-wheel drive mode are switched depending on the magnitude of the front wheel rotation speed and the rear wheel rotation speed (see, for example, Japanese Patent Laid-Open No. 3-224830). Also, there is one in which a one-way clutch is provided between the front wheel and the rear wheel (see, for example, Japanese Utility Model Laid-Open No. 59-188731).

【0018】制御中の推定車体速は、基本的に4つの車
輪速の最高車輪速を選ぶと、実車体速に近い推定車体速
を算出することができる。ただし、4輪共ロックに向か
った場合は、その原理が使えず、所定の傾きで減速する
推定車体速を使う。
As the estimated vehicle body speed during control, basically, if the highest wheel speed among the four wheel speeds is selected, the estimated vehicle body speed close to the actual vehicle body speed can be calculated. However, when going to lock all four wheels, the principle cannot be used, and the estimated vehicle speed for deceleration at a predetermined inclination is used.

【0019】2輪駆動モードの傾向が大きい場合では、
図6に示されているように、いずれかの車輪が実車体速
に近いので、実車体速に近い推定車体速を算出すること
ができる。
When the tendency of the two-wheel drive mode is large,
As shown in FIG. 6, since either of the wheels is close to the actual vehicle speed, the estimated vehicle speed close to the actual vehicle speed can be calculated.

【0020】4輪駆動モードの傾向が大きい場合、特に
路面が滑りやすい低μ路面でアンチスキッド制御が行わ
れると、前輪と後輪が独立してブレーキ制御が行われる
が、前輪軸と後輪軸が多板クラッチ43により差動制限
されているため、前輪と後輪の4輪の車輪速が同期して
しまう。その結果、上記原理が使えず、図7に示されて
いるように、所定の傾きで減速する推定車体速を使うた
め推定車体速と実車体速が離れてしまう。そこで、アン
チスキッド制御中は、2輪駆動モードに近づける制御を
取る。
When the tendency of the four-wheel drive mode is large, especially when the anti-skid control is performed on a low μ road surface where the road surface is slippery, the front wheel and the rear wheel are independently brake-controlled, but the front wheel shaft and the rear wheel shaft are controlled. Is differentially limited by the multi-plate clutch 43, so that the wheel speeds of the four front wheels and the rear wheels are synchronized. As a result, the above principle cannot be used, and as shown in FIG. 7, the estimated vehicle body speed decelerating at a predetermined inclination is used, and therefore the estimated vehicle body speed and the actual vehicle body speed are separated from each other. Therefore, during the anti-skid control, control is performed so as to approach the two-wheel drive mode.

【0021】以下に、アンチスキッド制御中の2輪駆動
モード傾向への移行又は保持の例を示す。
The following is an example of shifting or holding to the two-wheel drive mode tendency during anti-skid control.

【0022】<イ>減圧モードによる2輪駆動モードへ
の移行(図8、図4) 後輪回転数が前輪回転数よりも大きい程、前輪と後輪の
拘束力が弱まり、2輪駆動モード傾向に移行するので、
アンチスキッド制御中において4輪駆動モード傾向から
2輪駆動モード傾向への移行は、後輪の減圧モードを早
めにして後輪回転数を高めることにより行える。そのた
めには、後輪の減圧信号を出し易くすればよい。そこ
で、後輪と前輪のスリップ率の平均を求め、図8のよう
に後輪のスリップ率が前輪のものより小さくなるように
制御する。又は、例えば図4において、スリップしきい
値又は減速度しきい値を低下する。或いは、後輪回転数
に所定値を減じて見掛の後輪回転数を下げる。
<a> Transition to two-wheel drive mode by depressurization mode (FIGS. 8 and 4) As the rear wheel rotation speed is larger than the front wheel rotation speed, the restraining force between the front wheel and the rear wheel becomes weaker, and the two-wheel drive mode is set. As the trend shifts
The transition from the four-wheel drive mode tendency to the two-wheel drive mode tendency during the anti-skid control can be performed by speeding up the rear wheel depressurization mode and increasing the rear wheel rotation speed. For that purpose, the pressure reduction signal of the rear wheels may be easily output. Therefore, the average of the slip ratios of the rear wheels and the front wheels is calculated, and the slip ratio of the rear wheels is controlled to be smaller than that of the front wheels as shown in FIG. Alternatively, for example, in FIG. 4, the slip threshold value or the deceleration threshold value is lowered. Alternatively, the apparent rear wheel rotational speed is reduced by subtracting a predetermined value from the rear wheel rotational speed.

【0023】<ロ>減圧モードによる2輪駆動モードへ
の移行フロー(図9) ブレーキ制御が、アンチスキッド(ABS)制御中か否
かを判定し、もし、ABS制御中の場合、4輪駆動モー
ド傾向が強いか否か判定する。この判定方法は、左右の
前輪の平均車輪速及び左右の後輪の平均車輪速を求め、
これら車輪速の大小関係を調べる。例えば、前輪の平均
車輪速が後輪の平均車輪速にオフセット値αを加算した
値より大きい場合は4輪駆動モード傾向が強いと判断す
る。4輪駆動モード傾向が強くなく、2輪駆動モードに
近ければ、通常のABS制御処理を行う。もし、4輪駆
動モード傾向が強ければ、2輪駆動モード傾向への移行
処理、例えば、車輪速センサ51から求めた後輪車輪速
から所定値βを減算して見掛けの車輪速を作成し、これ
を基にABS制御を行う。
<B> Transition flow to the two-wheel drive mode in the pressure reduction mode (FIG. 9) It is determined whether or not the brake control is in the anti-skid (ABS) control, and if the ABS control is in operation, the four-wheel drive is performed. It is determined whether the mode tendency is strong. This determination method obtains the average wheel speed of the left and right front wheels and the average wheel speed of the left and right rear wheels,
Examine the relationship between these wheel speeds. For example, when the average wheel speed of the front wheels is larger than the value obtained by adding the offset value α to the average wheel speed of the rear wheels, it is determined that the four-wheel drive mode tendency is strong. If the tendency of the four-wheel drive mode is not strong and it is close to the two-wheel drive mode, normal ABS control processing is performed. If the tendency of the four-wheel drive mode is strong, a transition process to the tendency of the two-wheel drive mode, for example, a predetermined value β is subtracted from the rear wheel speed obtained from the wheel speed sensor 51 to create an apparent wheel speed, Based on this, ABS control is performed.

【0024】<ハ>減圧パルスの増大による2輪駆動モ
ードへの移行(図10、図4) 前輪と後輪の拘束力が大きい場合、減圧量を増大するこ
とにより早めに2輪駆動モード傾向に移行させることが
できる。そのために、例えば、図10のフローのよう
に、減圧モードの有無を調べ、減圧モードの場合、減圧
パルス時間の算出処理を行い、次に、前輪の平均車輪速
が後輪の平均車輪速にオフセット値αを加算した値より
大きいか否かを判断する。そして、大きい場合は4輪駆
動モード傾向が強いと判断し、減圧パルス時間の増大処
理を行い、早めに後輪のスリップ傾向を回復させる。後
輪の減圧信号を増大するには、例えば、図4において、
減圧タイミング(t2)にて出力する減圧パルス時間を
大きくして、減圧停止タイミング(t3)を遅らせる。
<C> Transition to two-wheel drive mode by increasing decompression pulse (FIGS. 10 and 4) When the restraining force of the front and rear wheels is large, the two-wheel drive mode tends to be increased earlier by increasing the decompression amount. Can be moved to. Therefore, for example, as in the flow of FIG. 10, the presence or absence of the decompression mode is checked, and in the decompression mode, the decompression pulse time is calculated, and then the average wheel speed of the front wheels becomes the average wheel speed of the rear wheels. It is determined whether the value is larger than the value obtained by adding the offset value α. If it is large, it is determined that the tendency of the four-wheel drive mode is strong, and the pressure reducing pulse time increasing process is performed to recover the slip tendency of the rear wheels earlier. To increase the rear wheel decompression signal, for example, in FIG.
The pressure reduction pulse time output at the pressure reduction timing (t2) is increased to delay the pressure reduction stop timing (t3).

【0025】<ニ>増圧タイミングの遅延による2輪駆
動モード保持(図11、図4) 後輪回転数が大きい程、2輪駆動モード傾向が大きいこ
とから、アンチスキッド制御中は、後輪のブレーキ制動
を抑える傾向に保つと良い。そのために、例えば、図1
1のフローのように、増圧モードの有無を調べ、増圧モ
ードの場合、増圧パルス時間の算出処理を行い、次に、
前輪の平均車輪速が後輪の平均車輪速にオフセット値α
を加算した値より大きいか否かを判断する。そして、大
きい場合は4輪駆動モード傾向が強いと判断し、更に、
遅延時間が終了していないか否かを判断する。終了して
いない場合は、増圧パルスの遅延処理を行い、後輪回転
数の減少を抑え、2輪駆動モード傾向を保持する。増圧
タイミングを遅延するには、例えば、図4において、増
圧タイミング(t5)にて、直ちに増圧パルスを出力す
るのではなく、ある所定時間経過後に増圧パルスを出力
する。
<D> Holding the two-wheel drive mode by delaying the pressure increase timing (FIGS. 11 and 4) The larger the rear wheel rotation speed, the greater the tendency of the two-wheel drive mode. It is good to keep a tendency to suppress the braking of. Therefore, for example, FIG.
As in the flow of No. 1, the presence or absence of the pressure boosting mode is checked, and in the pressure boosting mode, the pressure boosting pulse time calculation process is performed.
The average wheel speed of the front wheels is offset from the average wheel speed of the rear wheels by an offset value α
It is determined whether the value is larger than the value obtained by adding. If it is large, it is determined that the tendency of the four-wheel drive mode is strong, and further,
It is determined whether or not the delay time has expired. If it has not been completed, the pressure-increasing pulse is delayed to suppress the decrease in the rear wheel rotation speed and maintain the two-wheel drive mode tendency. To delay the pressure increase timing, for example, in FIG. 4, the pressure increase pulse is not immediately output at the pressure increase timing (t5), but the pressure increase pulse is output after a predetermined time has elapsed.

【0026】<ホ>増圧パルスの減少による2輪駆動モ
ード保持(図12、図4) アンチスキッド制御中は、後輪のブレーキ制動を抑える
傾向に保つ方法として、例えば、図12のフローのよう
に、増圧モードの有無を調べ、増圧モードの場合、増圧
パルス時間の算出処理を行い、次に、前輪の平均車輪速
が後輪の平均車輪速にオフセット値αを加算した値より
大きいか否かを判断する。そして、大きい場合は4輪駆
動モード傾向が強いと判断し、増圧パルスの減少処理を
行い、後輪回転数の減少を抑え、2輪駆動モード傾向を
保持する。又、増圧パルスの幅を小さくして、2輪駆動
モード傾向を保持することもできる。後輪の増圧信号を
減少するには、例えば、図4において、増圧タイミング
(t5)にて出力する増圧パルスの時間を小さくするこ
とにある。
<E> Holding the two-wheel drive mode by decreasing the pressure boosting pulse (FIGS. 12 and 4) As a method for keeping the brake braking of the rear wheels in a tendency to be suppressed during the anti-skid control, for example, the flow of FIG. As described above, the presence or absence of the pressure increasing mode is checked, and in the case of the pressure increasing mode, the pressure increasing pulse time is calculated, and then the average wheel speed of the front wheels is a value obtained by adding the offset value α to the average wheel speed of the rear wheels. Determine if it is greater than. If it is large, it is determined that the tendency of the four-wheel drive mode is strong, and the pressure-increasing pulse is reduced to suppress the reduction of the rear wheel rotation speed and maintain the tendency of the two-wheel drive mode. Also, the width of the pressure boosting pulse can be reduced to maintain the two-wheel drive mode tendency. In order to reduce the pressure increase signal of the rear wheel, for example, in FIG. 4, the time of the pressure increase pulse output at the pressure increase timing (t5) is shortened.

【0027】[0027]

【本発明の効果】本発明は、つぎの様な効果を有する。 <イ>アンチスキッド制御中は、できる限り2輪駆動モ
ード傾向に保持して、車輪速の測定から求めた推定車体
速を実車体速に合わせ、より正確にアンチスキッド制御
を行うことができるようにする。 <ロ>アンチスキッド制御中は、2輪駆動モード傾向へ
の移行を容易にし、より正確にアンチスキッド制御を行
うことができるようにする。 <ハ>後輪のブレーキ液圧の増圧タイミングを遅らせ
て、後輪回転数の減少を抑え、2輪駆動モード傾向を保
持し、より正確にアンチスキッド制御を行うことができ
るようにする。 <ニ>後輪のブレーキ液圧の増加を抑えて、後輪回転数
の減少を抑え、2輪駆動モード傾向を保持してより正確
にアンチスキッド制御を行うことができるようにする。
The present invention has the following effects. <B> During anti-skid control, the two-wheel drive mode tendency should be maintained as much as possible, and the estimated vehicle speed obtained from wheel speed measurement should be adjusted to the actual vehicle speed so that anti-skid control can be performed more accurately. To <B> During the anti-skid control, the shift to the two-wheel drive mode tendency is facilitated, and the anti-skid control can be performed more accurately. <C> By delaying the timing of increasing the brake fluid pressure of the rear wheels, it is possible to suppress the decrease in the rear wheel rotation speed, maintain the two-wheel drive mode tendency, and perform the antiskid control more accurately. <D> An increase in the brake fluid pressure of the rear wheels is suppressed, a decrease in the rear wheel rotation speed is suppressed, and the tendency of the two-wheel drive mode is maintained to enable more accurate anti-skid control.

【図面の簡単な説明】[Brief description of drawings]

【図1】ABS制御の概略図FIG. 1 is a schematic diagram of ABS control.

【図2】電子制御装置のブロック図FIG. 2 is a block diagram of an electronic control unit.

【図3】ABS液圧ユニットの構成図FIG. 3 is a block diagram of an ABS hydraulic unit.

【図4】ABS制御のタイムチャート図FIG. 4 is a time chart diagram of ABS control.

【図5】4輪駆動の制御の説明図FIG. 5 is an explanatory diagram of control of four-wheel drive.

【図6】2輪駆動モードでの実車体速と車輪速の説明図FIG. 6 is an explanatory diagram of actual vehicle body speed and wheel speed in a two-wheel drive mode.

【図7】4輪駆動モードでの実車体速と車輪速の説明図FIG. 7 is an explanatory diagram of actual vehicle speed and wheel speed in four-wheel drive mode.

【図8】2輪駆動モードに移行させるための説明図FIG. 8 is an explanatory diagram for shifting to a two-wheel drive mode.

【図9】減圧モードによる2輪駆動モードへの移行フロ
ー図
FIG. 9 is a flow chart of transition to the two-wheel drive mode in the pressure reduction mode.

【図10】減圧パルスの増大による2輪駆動モードへの
移行フロー図
FIG. 10 is a flow chart showing a transition to a two-wheel drive mode due to an increase in decompression pulse.

【図11】増圧タイミングの遅延による2輪駆動モード
への移行フロー図
FIG. 11 is a flow chart of transition to a two-wheel drive mode due to a delay in pressure increase timing.

【図12】増圧パルスの減少による2輪駆動モードへの
移行フロー図
FIG. 12 is a flow chart of transition to a two-wheel drive mode due to a decrease in pressure boosting pulse.

【符号の説明】 2・・・ABS液圧ユニット 3・・・電子制御装置 41・・フロントポンプ 42・・リヤポンプ 43・・多板クラッチ[Explanation of symbols] 2 ... ABS hydraulic unit 3 ... Electronic control unit 41 ... Front pump 42 ... Rear pump 43 ... Multi-plate clutch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大城 浩 静岡県浜北市中瀬8000 日清紡績株式会社 浜北精機工場内 (72)発明者 小杉 宏昭 静岡県浜北市中瀬8000 日清紡績株式会社 浜北精機工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Oshiro Nakase 8000, Hamakita City, Shizuoka Prefecture Nisshinbo Co., Ltd. Hamakita Seiki Co., Ltd. (72) Inventor Hiroaki Kosugi 8000 Nakase, Hamakita City, Shizuoka Prefecture Nisshinbo Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】前輪の回転数が後輪の回転数よりも大きい
時の方が、その逆の時よりも前輪と後輪の拘束力が大き
い4輪駆動車輌のアンチスキッド制御方法において、 アンチスキッド制御中は後輪のスリップ率の平均が前輪
のスリップ率の平均よりも小さくなるように制御するこ
とを特徴とする、 4輪駆動車輌のアンチスキッド制御方法。
1. An anti-skid control method for a four-wheel drive vehicle in which the front wheel and rear wheel restraining force is greater when the front wheel rotational speed is greater than the rear wheel rotational speed, and vice versa. An anti-skid control method for a four-wheel drive vehicle, characterized in that the average of the slip ratios of the rear wheels is controlled to be smaller than the average of the slip ratios of the front wheels during skid control.
【請求項2】前輪の回転数が後輪の回転数よりも大きい
時の方が、その逆の時よりも前輪と後輪の拘束力が大き
い4輪駆動車輌のアンチスキッド制御方法において、 アンチスキッド制御中、後輪のブレーキ液圧の減圧信号
を出し易くすることを特徴とする、 4輪駆動車輌のアンチスキッド制御方法。
2. An anti-skid control method for a four-wheel drive vehicle in which the front wheel and rear wheel restraining force is greater when the number of revolutions of the front wheels is greater than that of the rear wheels and vice versa. An anti-skid control method for a four-wheel drive vehicle, characterized in that a signal for reducing the brake fluid pressure of the rear wheels is easily output during skid control.
【請求項3】前輪の回転数が後輪の回転数よりも大きい
時の方が、その逆の時よりも前輪と後輪の拘束力が大き
い4輪駆動車輌のアンチスキッド制御方法において、 アンチスキッド制御中、後輪の減圧パルスを増大させる
ことにより、後輪の回転数の増大を図り、前輪と後輪の
拘束力を弱める方向に制御することを特徴とする、 4輪駆動車輌のアンチスキッド制御方法。
3. An anti-skid control method for a four-wheel drive vehicle in which the front wheel and rear wheel restraining force is greater when the front wheel rotational speed is higher than the rear wheel rotational speed, and vice versa. During skid control, the pressure reduction pulse of the rear wheels is increased to increase the number of rotations of the rear wheels, and the restraining force between the front wheels and the rear wheels is weakened. Skid control method.
【請求項4】前輪の回転数が後輪の回転数よりも大きい
時の方が、その逆の時よりも前輪と後輪の拘束力が大き
い4輪駆動車輌のアンチスキッド制御方法において、 アンチスキッド制御中は、後輪のブレーキ液圧の増圧タ
イミングを遅延することにより、後輪の回転数の減少を
抑えて、前輪と後輪の拘束力を弱める方向に制御するこ
とを特徴とする、 4輪駆動車輌のアンチスキッド制御方法。
4. An anti-skid control method for a four-wheel drive vehicle in which the front wheel and rear wheel restraining force is greater when the front wheel rotational speed is greater than the rear wheel rotational speed, and vice versa. During skid control, by delaying the timing of increasing the brake fluid pressure on the rear wheels, the decrease in the rotational speed of the rear wheels is suppressed, and the control force is controlled to weaken the restraining force between the front wheels and the rear wheels. , 4 wheel drive anti-skid control method.
【請求項5】前輪の回転数が後輪の回転数よりも大きい
時の方が、その逆の時よりも前輪と後輪の拘束力が大き
い4輪駆動車輌のアンチスキッド制御方法において、 アンチスキッド制御中は、後輪のブレーキ液圧の増圧パ
ルスを減少することにより、後輪の回転数の減少を抑え
て、前輪と後輪の拘束力を弱める方向に制御することを
特徴とする、 4輪駆動車輌のアンチスキッド制御方法。
5. An anti-skid control method for a four-wheel drive vehicle, wherein the front wheel and rear wheel restraining force is greater when the front wheel rotational speed is greater than the rear wheel rotational speed, and vice versa. During skid control, the brake fluid pressure increase pulse for the rear wheels is reduced to suppress the reduction in the rotational speed of the rear wheels and control is performed in a direction that weakens the restraining force between the front wheels and the rear wheels. , 4 wheel drive anti-skid control method.
JP6210483A 1994-08-11 1994-08-11 Anti-skid control method for four-wheel drive vehicle Expired - Fee Related JP2736745B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6210483A JP2736745B2 (en) 1994-08-11 1994-08-11 Anti-skid control method for four-wheel drive vehicle
DE1995129491 DE19529491B4 (en) 1994-08-11 1995-08-10 Method for operating anti-lock control for vehicles with four-wheel drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6210483A JP2736745B2 (en) 1994-08-11 1994-08-11 Anti-skid control method for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPH0853058A true JPH0853058A (en) 1996-02-27
JP2736745B2 JP2736745B2 (en) 1998-04-02

Family

ID=16590099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6210483A Expired - Fee Related JP2736745B2 (en) 1994-08-11 1994-08-11 Anti-skid control method for four-wheel drive vehicle

Country Status (2)

Country Link
JP (1) JP2736745B2 (en)
DE (1) DE19529491B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392008B2 (en) 2017-02-20 2019-08-27 Toyota Jidosha Kabushiki Kaisha Control device for four-wheel drive vehicle
US10604010B2 (en) 2016-11-02 2020-03-31 Toyota Jidosha Kabushiki Kaisha Behavior control device for four-wheel drive vehicle
US10807590B2 (en) 2017-03-15 2020-10-20 Toyota Jidosha Kabushiki Kaisha Control device for four-wheel drive vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004043487B4 (en) * 2003-09-09 2010-06-10 Mitsubishi Jidosha Kogyo K.K. Driving force distribution and control device for a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160952A (en) * 1985-10-02 1987-07-16 アルフレツド・テヴエス・ゲ−エムベ−ハ− Slip control brake system for whole wheel drive type automobile
JPS63143466U (en) * 1987-03-13 1988-09-21
JPH02267063A (en) * 1989-04-05 1990-10-31 Honda Motor Co Ltd Brake operating unit
JPH04169335A (en) * 1990-10-31 1992-06-17 Fuji Heavy Ind Ltd Unequal torque distribution control device of 4-wheel driving car

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2184182B (en) * 1985-11-05 1990-02-21 Honda Motor Co Ltd Antilock braking in four-wheel drive vehicles
JP2516095B2 (en) * 1989-11-14 1996-07-10 本田技研工業株式会社 Power transmission device for four-wheel drive vehicle
GB2239922B (en) * 1989-11-14 1993-07-14 Honda Motor Co Ltd Power transmission apparatus for a four-wheel drive vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160952A (en) * 1985-10-02 1987-07-16 アルフレツド・テヴエス・ゲ−エムベ−ハ− Slip control brake system for whole wheel drive type automobile
JPS63143466U (en) * 1987-03-13 1988-09-21
JPH02267063A (en) * 1989-04-05 1990-10-31 Honda Motor Co Ltd Brake operating unit
JPH04169335A (en) * 1990-10-31 1992-06-17 Fuji Heavy Ind Ltd Unequal torque distribution control device of 4-wheel driving car

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10604010B2 (en) 2016-11-02 2020-03-31 Toyota Jidosha Kabushiki Kaisha Behavior control device for four-wheel drive vehicle
US10392008B2 (en) 2017-02-20 2019-08-27 Toyota Jidosha Kabushiki Kaisha Control device for four-wheel drive vehicle
US10807590B2 (en) 2017-03-15 2020-10-20 Toyota Jidosha Kabushiki Kaisha Control device for four-wheel drive vehicle

Also Published As

Publication number Publication date
DE19529491A1 (en) 1996-02-15
DE19529491B4 (en) 2006-02-16
JP2736745B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US11110929B2 (en) Anti-skid control device for vehicle
JPH0348058B2 (en)
JPH03153456A (en) Antilock controller
JPH0853058A (en) Antiskid control of four-wheel drive vehicle
JP3235751B2 (en) Anti-skid brake system for vehicles
JPH0539020A (en) Anti-skid brake device for vehicle
JPH05162630A (en) Slip controller for vehicle
JP2917059B2 (en) Anti-skid brake system for vehicles
JPH04191158A (en) Antiskid brake device of vehicle
JP3157192B2 (en) Vehicle slip control device
JP3157191B2 (en) Vehicle slip control device
JP3001651B2 (en) Anti-skid brake system for vehicles
JPH04293654A (en) Antiskid braking device for vehicle
JPH054574A (en) Antiskid control device
JPH058713A (en) Slip control device for vehicle
JPH1138034A (en) Vibration recognition processing method for vehicle and antiskid control method
JPH05262219A (en) Anti-skid brake device for vehicle
JP3255459B2 (en) Anti-skid brake system for vehicles
JP6780458B2 (en) Vehicle anti-skid control
JP3046619U (en) Anti-lock brake control device
KR100358741B1 (en) Control method of anti-lock brake system
JP4015810B2 (en) Anti-skid control device
JPH04230454A (en) Antiskid brake device for vehicle
JP2506403B2 (en) Anti-skid controller
JPH04230461A (en) Antiskid brake device for vehicle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110116

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20140116

LAPS Cancellation because of no payment of annual fees