JPH0851226A - Integrated photovoltaic device - Google Patents

Integrated photovoltaic device

Info

Publication number
JPH0851226A
JPH0851226A JP6185662A JP18566294A JPH0851226A JP H0851226 A JPH0851226 A JP H0851226A JP 6185662 A JP6185662 A JP 6185662A JP 18566294 A JP18566294 A JP 18566294A JP H0851226 A JPH0851226 A JP H0851226A
Authority
JP
Japan
Prior art keywords
photovoltaic device
integrated photovoltaic
dividing lines
electrode
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6185662A
Other languages
Japanese (ja)
Other versions
JP3172369B2 (en
Inventor
Yasuki Harada
康樹 原田
Norihiro Terada
典裕 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18566294A priority Critical patent/JP3172369B2/en
Publication of JPH0851226A publication Critical patent/JPH0851226A/en
Application granted granted Critical
Publication of JP3172369B2 publication Critical patent/JP3172369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To provide an integrated photovoltaic device which can reduce the resistance loss of a transparent electrode. CONSTITUTION:In an integrated photovoltaic device 1, where a plurality of photovoltaic elements divided in a stripe shape with parting lines 3 are connected in series on a glass substrate, the parting lines 3 are made alternately or all in wave form, and the interval between the adjacent parting lines 3 is expanded or contracted repeatedly. By consisting it this way, the resistance value of the transparent electrode at the section where the interval between the adjacent parting lines becomes shortest becomes small, and currents flow in large quantity, concentrating there, so the resistance loss as a whole becomes small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光起電力装置に係り、
特に、透明電極の抵抗ロスを減少させて特性を高められ
るようにした光起電力装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device,
In particular, the present invention relates to a photovoltaic device in which the resistance loss of the transparent electrode is reduced to improve the characteristics.

【0002】[0002]

【従来の技術】合金型アモルファスシリコン半導体を含
むアモルファスシリコン半導体を発電層に用いる光起電
力装置は、半導体層がガス反応で形成されること、結晶
のようにグレイダウンバウンダリングがないことなどか
ら大面積化が比較的容易である。しかし、面積が大きく
なるにつれて入射側電極、すなわち、透明電極の抵抗に
よる電力損失が主な原因となって変換効率は減少する傾
向にある。
2. Description of the Related Art A photovoltaic device using an amorphous silicon semiconductor including an alloy type amorphous silicon semiconductor for a power generation layer has a problem that a semiconductor layer is formed by gas reaction and there is no gray down boundary like a crystal. It is relatively easy to increase the area. However, as the area becomes larger, the conversion efficiency tends to decrease mainly due to the power loss due to the resistance of the incident side electrode, that is, the transparent electrode.

【0003】一方、所定の電圧をとるため、1枚の基板
上に複数の分割線で縞状に分割された多数の光起電力素
子を形成し、相隣接する光起電力間を順次直列接続(カ
スケード接続)した集積型光起電力装置が実用化されて
いる。
On the other hand, in order to obtain a predetermined voltage, a large number of photovoltaic elements, which are divided into stripes by a plurality of dividing lines, are formed on a single substrate, and the photovoltaic elements adjacent to each other are sequentially connected in series. (Cascade connection) integrated photovoltaic devices have been put to practical use.

【0004】図6及び図7は従来の集積型光起電力装置
を示し、図6は断面図、図7は平面図である。図6に示
すように、この集積型光起電力装置101は、酸化錫
(SnO2 )などからなる透明電極層をガラス基板10
2に積層し、所定の分割線103aに沿ってレーザ等で
除去して複数の縞状の透明電極104を形成した後、p
in接合の非晶質シリコンからなる発電層105を形成
し、分割線103bに沿ってレーザ等でこの発電層10
5の一部分を除去し、更にこの後、加熱蒸着法により銀
からなる裏面電極層を形成してから、分割線3cに沿っ
てレーザ等で裏面電極106を形成するという手順で作
られる。尚、図中103は、加工部であり、分割線3
a,3b,3cを含めて、ここでは分割線という。
6 and 7 show a conventional integrated photovoltaic device, FIG. 6 is a sectional view, and FIG. 7 is a plan view. As shown in FIG. 6, the integrated photovoltaic device 101 includes a glass substrate 10 and a transparent electrode layer made of tin oxide (SnO 2 ).
2 and laminated with a predetermined dividing line 103a by a laser or the like to form a plurality of striped transparent electrodes 104, and then p
A power generation layer 105 made of in-junction amorphous silicon is formed, and the power generation layer 10 is formed along the dividing line 103b with a laser or the like.
A part of 5 is removed, and after that, a back electrode layer made of silver is formed by a heating vapor deposition method, and then the back electrode 106 is formed by a laser or the like along the dividing line 3c. Reference numeral 103 in the drawing denotes a processing portion, which is the dividing line 3
Here, a, 3b, and 3c are referred to as dividing lines.

【0005】図7に示すように、この分割線103は光
起電力装置101の面に直角な方向から見て互いに平行
に配置される直線状に形成される。尚、108は、この
集積型光起電力の端縁部であって、最左端の光起電力素
子の透明電極104に連なる電極106に相当する部分
であり、このためプラス側電極となる。
As shown in FIG. 7, the dividing lines 103 are formed in straight lines arranged in parallel to each other when viewed from a direction perpendicular to the surface of the photovoltaic device 101. Reference numeral 108 denotes an edge portion of this integrated photovoltaic, which is a portion corresponding to the electrode 106 connected to the transparent electrode 104 of the leftmost photovoltaic element, and is therefore a positive electrode.

【0006】又、例えば図8に示すように、透明電極1
04に接するように形成された、この透明電極104よ
りも低抵抗材料からなるくし型の集電電極107を設け
た集積型光起電力装置111がある。この集電電極10
7に依り光起電力装置としての抵抗損失を低減すること
が可能となる。
Also, as shown in FIG. 8, for example, the transparent electrode 1
There is an integrated photovoltaic device 111 provided with a comb-shaped collector electrode 107 made of a material having a resistance lower than that of the transparent electrode 104 and formed so as to contact with 04. This collector electrode 10
7 makes it possible to reduce resistance loss as a photovoltaic device.

【0007】[0007]

【発明が解決しようとする課題】上記透明電極104は
導電性が低いSnO2 、ITO、ZnOなどで構成され
ているが、光起電力装置の大面積化における抵抗損失増
大の主な原因になっており、集積型構造をする際の大き
な制限となっている。
The transparent electrode 104 [0005] The low conductivity SnO 2, ITO, has been configured by a ZnO, become a major cause of resistive losses increase in a large area of the photovoltaic device Therefore, it is a big limitation in forming an integrated structure.

【0008】又、集電電極107を設けた場合には、透
明電極に基づく抵抗損失は低減できるが、この集電電極
107が発電層への入射光を遮光することとなり、光起
電力装置の受光面積を狭くするという問題がある。
Further, when the current collecting electrode 107 is provided, the resistance loss due to the transparent electrode can be reduced, but the current collecting electrode 107 shields the incident light to the power generation layer, so that the photovoltaic device There is a problem of narrowing the light receiving area.

【0009】本発明の第1の集積型光起電力装置は、上
記の事情を鑑みて、透明電極の抵抗損失を減少させて特
性を高められるようにした集積型光起電力装置を提供す
ることを目的とするものである。
In view of the above circumstances, the first integrated photovoltaic device of the present invention provides an integrated photovoltaic device in which the resistance loss of the transparent electrode is reduced to improve the characteristics. The purpose is.

【0010】又、本発明の第2の集積型光起電力装置
は、上記の目的に加えて、集電電極による受光面積の減
少を少なくさせて更に特性を高められるようにした集積
型光起電力装置を提供することを目的とするものであ
る。
The second integrated photovoltaic device according to the present invention is, in addition to the above object, an integrated photovoltaic device in which the reduction of the light receiving area due to the collector electrode is reduced to further improve the characteristics. It is intended to provide a power device.

【0011】[0011]

【課題を解決するための手段】本発明の第1の集積型光
起電力装置は、絶縁基板上に分割線で縞状に分割されて
なる複数の光起電力素子を、直列接続した集積型光起電
力装置において、上記の目的を達成するため、上記分割
線が1本置きに、又は全て波形状に形成され、隣接する
分割線の間隔が繰り返し拡縮されることを特徴とするも
のである。
A first integrated photovoltaic device according to the present invention is an integrated photovoltaic device in which a plurality of photovoltaic elements, which are divided into stripes by dividing lines on an insulating substrate, are connected in series. In order to achieve the above object, the photovoltaic device is characterized in that the dividing lines are formed every other line or all in a wavy shape, and intervals between adjacent dividing lines are repeatedly expanded and contracted. .

【0012】又、本発明の第2の集積型光起電力装置
は、上記目的を達成するために、上記の構成に加えて、
隣接する分割線の間隔が最短間隔となる部分またはその
近傍にくし歯が位置するように光入射側電極に接して集
電電極が設けられたことを特徴とする。
Further, in order to achieve the above-mentioned object, the second integrated photovoltaic device of the present invention has, in addition to the above structure,
A current collecting electrode is provided in contact with the light incident side electrode so that the comb teeth are located at or near the portion where the distance between the adjacent dividing lines is the shortest.

【0013】[0013]

【作用】1本置きの分割線、又は全ての分割線を波形状
に形成し、隣接する分割線の間隔が繰り返し拡縮される
ようにすれば、分割線の間隔が縮小された部分では透明
電極の距離が短くなり、その抵抗値が分割線の間隔が拡
大された部分よりも小さくなる。これにより、電流は抵
抗値が小さい分割線の間隔が縮小された部分により多く
流れ、収集するキャリアの量が大きくなり全体的な抵抗
損失が減少することになる。
If every other dividing line is formed in a corrugated shape and the intervals between the adjacent dividing lines are repeatedly expanded and contracted, the transparent electrode is provided in the portion where the intervals between the dividing lines are reduced. Becomes shorter, and the resistance value becomes smaller than that in the portion where the interval between the dividing lines is enlarged. As a result, a larger amount of current flows in the portion where the distance between the dividing lines having a small resistance value is reduced, the amount of carriers to be collected increases, and the overall resistance loss decreases.

【0014】又、集電電極を設ける場合には、この電流
が集中する分割線の間隔が縮小された部分に集電電極を
配置することにより、集電電極が占める面積を小さくす
ることができ、光起電力装置の有効面積の減少、即ち、
受光面積の減少を小さくできる。
Further, when the current collecting electrode is provided, the area occupied by the current collecting electrode can be reduced by arranging the current collecting electrode in a portion where the interval between the dividing lines on which the current is concentrated is reduced. , The reduction of the effective area of the photovoltaic device, ie
The reduction of the light receiving area can be reduced.

【0015】[0015]

【実施例】本発明の実施例を図面に基づいて具体的に説
明すれば、以下の通りである。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】図1に示すように、本発明の一実施例に係
る集積型光起電力装置1は、1枚のガラス基板2上に分
割線3で縞状に分割された多数の光起電力素子Cからな
り、この光起電力素子C自体は、図2に示すように、ガ
ラス基板2上透明電極4、発電層5及び裏面電極6を順
次積層形成した点では従来の集積型光起電力装置と同様
である。
As shown in FIG. 1, an integrated photovoltaic device 1 according to an embodiment of the present invention comprises a large number of photovoltaics divided into stripes on a glass substrate 2 by a dividing line 3. As shown in FIG. 2, the photovoltaic element C itself is composed of an element C. The photovoltaic element C itself has a structure in which a transparent electrode 4, a power generation layer 5 and a back surface electrode 6 on a glass substrate 2 are sequentially laminated to form a conventional integrated photovoltaic element. It is similar to the device.

【0017】この集積型光起電力装置1の製造方法とし
ては、酸化錫(SnO2 )からなる透明電極層をガラス
基板2に積層し、この透明電極層を所定の分割線3aに
沿ってQスイッチ付Nd:YAGレーザ(5J/cm2
のエネルギー密度)を照射することにより、その部分の
透明電極層を除去する。これにより、複数の縞状の透明
電極4を形成できる。次に、表1に示す条件で通常のプ
ラズマCVD法により、基板2上に分割された透明電極
4を覆うようにp/i間にカーボン量をグレーデッドさ
せたp−SiCバッファ層を備えたpin接合の非晶質
シリコンからなる発電層5を形成する。続いて、分割線
3bに沿ってQスイッチ付Nd:YAGレーザ(0.2
J/cm2 のエネルギー密度)をこの発電層5に照射す
ることにより、その照射された領域を除去し、光起電力
素子ごとにこの発電層5を分割する。更にこの後、加熱
蒸着法により銀からなる裏面電極層を形成してから、分
割線3cに沿ってQスイッチ付Nd:YAGレーザ(3
J/cm2 のエネルギー密度)を照射し、その照射され
た領域の裏面電極層と発電層5を除去して裏面電極6を
形成するという手順で作ったものである。尚、この実施
例では、上記分割線3a,3b,3cを含めた部分を加
工部とし、分割線3として示している。
As a method of manufacturing the integrated photovoltaic device 1, a transparent electrode layer made of tin oxide (SnO 2 ) is laminated on a glass substrate 2, and the transparent electrode layer is formed along a predetermined dividing line 3a with Q. Nd: YAG laser with switch (5 J / cm 2
Energy density) to remove the transparent electrode layer at that portion. Thereby, a plurality of striped transparent electrodes 4 can be formed. Next, a p-SiC buffer layer having a carbon amount graded between p / i was provided so as to cover the transparent electrode 4 divided on the substrate 2 by the usual plasma CVD method under the conditions shown in Table 1. A power generation layer 5 made of amorphous silicon having a pin junction is formed. Then, an Nd: YAG laser with a Q switch (0.2
By irradiating this power generation layer 5 with an energy density (J / cm 2 ), the irradiated region is removed, and this power generation layer 5 is divided for each photovoltaic element. Further, after this, a back electrode layer made of silver is formed by a heating vapor deposition method, and then a Nd: YAG laser (3
(J / cm 2 energy density), the back electrode layer and the power generation layer 5 in the irradiated region are removed, and the back electrode 6 is formed. In this embodiment, the part including the dividing lines 3a, 3b and 3c is used as the processing portion and is shown as the dividing line 3.

【0018】[0018]

【表1】 [Table 1]

【0019】さて、この発明は、図1に示すように、こ
の集積型光起電力装置1の分割線3は全て三角波形状に
屈曲して形成され、かつ、隣接する分割線3を半波長ず
つずらすことにより隣接する分割線3の間隔が互いに繰
り返し拡縮されるようにしていることが従来の集積型光
起電力装置101・111と異なる。
According to the present invention, as shown in FIG. 1, all the division lines 3 of the integrated photovoltaic device 1 are formed by bending in a triangular wave shape, and the adjacent division lines 3 are divided by half wavelength. This is different from the conventional integrated photovoltaic devices 101 and 111 in that the spacing between the adjacent dividing lines 3 is repeatedly expanded and contracted by shifting.

【0020】各分割線3の平均間隔は特に限定されない
が、従来例との比較を容易にするため、この実施例では
隣接する分割線3の平均間隔Wave.を図1に破線で示す
従来例の一例としての分割線105の間隔と同じ間隔の
9.9mmとしている。又、分割線3の最大間隔Wmax.
と最小間隔Wmin.との差は12mmとし、光起電力素子
Cの集積数は10段としている。
The average interval between the dividing lines 3 is not particularly limited, but in order to facilitate comparison with the conventional example, in this embodiment, the average interval W ave. Between the adjacent dividing lines 3 is shown by a broken line in FIG . The interval is 9.9 mm, which is the same as the interval between the dividing lines 105 as an example. In addition, the maximum spacing W max.
And the minimum distance W min. Is 12 mm, and the number of integrated photovoltaic elements C is 10.

【0021】この集積型光起電力装置1のAM1.5、
100mW/cm2 照射光下での出力電力を測定する
と、図3に示すように、約1185mWであった。比較
のため、同様にして作られ、平行な直線状の分割線10
3が9.9mm間隔で設けられ、セルCの集積数が10
である従来例のAM1.5、100mW/cm2 照射光
下での出力電力を測定すると約1092mWであり、分
割線3の間隔が繰り返し拡縮されるようにしたこの実施
例は、従来例を基準にすれば約8.9%出力が高められ
ていることが分かる。
AM1.5 of this integrated photovoltaic device 1,
When the output power under the irradiation light of 100 mW / cm 2 was measured, it was about 1185 mW as shown in FIG. For comparison, parallel linear dividing lines 10 made in the same manner
3 are provided at intervals of 9.9 mm, and the number of cells C integrated is 10
The output power under irradiation light of AM 1.5 and 100 mW / cm 2 of the conventional example is about 1092 mW, and this embodiment in which the interval of the dividing line 3 is repeatedly expanded and contracted is a standard example. It can be seen that the output is increased by about 8.9%.

【0022】この実施例において、分割線3の最大間隔
max.と最小間隔Wmin.との差を5mm、8mm、18
mmと異ならせた各変形例につきAM1.5、100m
W/cm2 照射光下での出力電力を測定したところ、図
3に示すようにそれぞれ約1139mW、約1179m
W、約1174mWであり、前記従来例に比べて出力電
力が高められていることと、上記一実施例のように分割
線3の最大間隔Wmax.と最小間隔Wmin.との差を12m
mとした時が最適であることとが分かる。
In this embodiment, the difference between the maximum distance W max. And the minimum distance W min. Of the dividing line 3 is 5 mm, 8 mm, 18
AM 1.5, 100m for each modified example different from mm
Output power under W / cm 2 irradiation light was measured, and as shown in FIG. 3, about 1139 mW and about 1179 mW, respectively.
W, about 1174 mW, which is higher in output power than the conventional example, and the difference between the maximum interval W max. And the minimum interval W min.
It can be seen that the optimum value is m.

【0023】更に、比較のために、分割線3の最大間隔
max.と最小間隔Wmin.との差を2mmとした場合につ
いて出力電力を測定したところ従来例とほとんど変わり
がないことが分かった。
Further, for comparison, the output power was measured when the difference between the maximum distance W max. And the minimum distance W min. Of the dividing line 3 was 2 mm, and it was found that there was almost no difference from the conventional example. It was

【0024】分割線3の平均間隔Wave.を9.9mmと
する場合には、分割線3の最大間隔Wmax.と最小間隔W
min.との差を19.8mm以上にすることはできないの
で、結局、分割線3の最大間隔Wmax.と最小間隔Wmin.
との差が2mm以上、19.8mm未満の範囲で出力電
力が増加する効果が得られることになり、図3によれば
特に4mmから18mmの範囲で顕著な効果が得られ、
12mmで最も顕著な効果が得られることが分かる。
When the average spacing W ave. Between the dividing lines 3 is 9.9 mm, the maximum spacing W max.
Since the difference from the min. cannot be 19.8 mm or more, the maximum distance W max. and the minimum distance W min.
The effect that the output power is increased is obtained in the range of 2 mm or more and less than 19.8 mm, and according to FIG. 3, a remarkable effect is obtained particularly in the range of 4 mm to 18 mm.
It can be seen that the most remarkable effect is obtained at 12 mm.

【0025】この出力電力の増大の主な原因は、分割線
3の間隔が平均間隔よりも縮小された部分では透明電極
4の距離が短くなり、透明電極4の抵抗値が分割線3の
間隔が拡大された部分よりも小さくなる結果、電流が抵
抗値が小さい分割線3の間隔が縮小された部分を通って
多く流れ、全体的な抵抗損失が減少するためであると思
われる。
The main cause of the increase in the output power is that the distance between the transparent electrodes 4 becomes shorter in the portion where the distance between the dividing lines 3 is smaller than the average distance, and the resistance value of the transparent electrode 4 becomes the distance between the dividing lines 3. It is considered that as a result of being smaller than the enlarged portion, a large amount of current flows through the portion of the dividing line 3 having a small resistance value where the distance between the dividing lines 3 is reduced, and the overall resistance loss is reduced.

【0026】また、分割線3の最大間隔Wmax.と最小間
隔Wmin.との差が12mmの場合に比べて18mmの場
合の方が出力が低下しているのは加工精度が低下したた
めであると思われる。
Further, the output is lower when the difference between the maximum distance W max. And the minimum distance W min. Of the dividing line 3 is 18 mm than when it is 12 mm, because the machining accuracy is lowered. It appears to be.

【0027】本発明の又他の実施例では、例えば図4に
示すように、上記分割線3が正弦波状に形成され、隣接
する分割線3が半波長ずつずらして配置される。この分
割線3の最大間隔Wmax.と最小間隔Wmin.との差は12
mmとしてあり、この実施例についてAM1.5、10
0mW/cm2 照射光下での出力電力を測定したとこ
ろ、表2に示すように、1179mWであった。このこ
とから、分割線3の波形は最小間隔Wmin.の近傍で変化
率が急である場合の方が有利であることが分かった。
In another embodiment of the present invention, for example, as shown in FIG. 4, the dividing lines 3 are formed in a sinusoidal shape, and the adjacent dividing lines 3 are arranged so as to be shifted by a half wavelength. The difference between the maximum distance W max. And the minimum distance W min. Of the dividing line 3 is 12
mm, and AM 1.5, 10 for this example.
When the output power under irradiation with 0 mW / cm 2 was measured, it was 1179 mW as shown in Table 2. From this, it was found that the waveform of the dividing line 3 is more advantageous when the rate of change is steep in the vicinity of the minimum interval W min .

【0028】[0028]

【表2】 [Table 2]

【0029】本発明の更に他の実施例では、SiO2
絶縁コートしたステンレス基板の上に銀からなる裏面電
極6が形成され、その上に表1と同じ条件で上記各実施
例とは逆にn型a−Si層、i型a−Si層、p型a−
SiC層の順に発電層5が形成され、更にその上に公知
のスパッタ法によってITOからなる透明電極4が形成
される。図5に示すように、この実施例の分割線3の形
状は上記の一実施例と同じであり、その分割線3の間隔
が最小間隔Wmin.となる位置にくしの歯が位置するくし
状の集電電極7が透明電極4に接して形成される。
In still another embodiment of the present invention, a back electrode 6 made of silver is formed on a stainless steel substrate which is insulation-coated with SiO 2 , and under the same conditions as in Table 1 the reverse of the above-mentioned embodiments. N-type a-Si layer, i-type a-Si layer, p-type a-
The power generation layer 5 is formed in the order of the SiC layer, and the transparent electrode 4 made of ITO is further formed thereon by a known sputtering method. As shown in FIG. 5, the shape of the dividing line 3 of this embodiment is the same as that of the above-described embodiment, and the comb teeth are located at the position where the distance between the dividing lines 3 becomes the minimum distance W min. The current collecting electrode 7 is formed in contact with the transparent electrode 4.

【0030】なお、この集電電極7のくしの間隔、すな
わち、分割線3の波形の波長は3〜15mmとしてい
る。
The distance between the combs of the collector electrodes 7, that is, the wavelength of the waveform of the dividing line 3 is 3 to 15 mm.

【0031】この実施例のAM1.5、100mW/c
2 照射光下での出力電力を測定したところ、表3に示
すように1145mWであった。
AM1.5 of this embodiment, 100 mW / c
When the output power under irradiation with m 2 was measured, it was 1145 mW as shown in Table 3.

【0032】比較のために、同じような手順にしたがっ
て形成され、図8に示すように、9.9mm間隔で平行
な直線状に分割線103を配置し、透明電極104に接
するように、くし型の集電電極107を設けたセル数1
0段の他の従来例についてAM1.5、100mW/c
2 照射光下での出力電力を測定したところ、表3に示
すように1022mWであった。
For comparison, as shown in FIG. 8, the dividing lines 103 are formed in parallel with each other at intervals of 9.9 mm, and are formed so as to be in contact with the transparent electrode 104. Number of cells provided with a collector electrode 107 of a mold
AM1.5, 100mW / c for another conventional example of 0 stage
When the output power under m 2 irradiation light was measured, it was 1022 mW as shown in Table 3.

【0033】[0033]

【表3】 [Table 3]

【0034】他の従来例に出力電力が集電電極107を
設けない従来例に比べて出力電力が小さくなっているの
は集電電極107によって光起電力装置の有効面積が狭
められたためと思われる。又、この実施例の出力電圧が
上記一実施例にくらべて小さくなっているのも同じ理由
によるものと思われる。
The output power of the other conventional example is smaller than that of the conventional example in which the collector electrode 107 is not provided, which is probably because the effective area of the photovoltaic device is narrowed by the collector electrode 107. Be done. Further, it is considered that the output voltage of this embodiment is smaller than that of the above embodiment for the same reason.

【0035】しかし、集電電極107を設けない従来例
に比べて上記一実施例の出力増加が約8.9%であるの
に対して、この実施例によれば上記他の従来例に比べ
て、他の従来例を基準にすれば約12%の出力増加が見
られる。
However, compared with the conventional example in which the collector electrode 107 is not provided, the output increase of the above-mentioned one example is about 8.9%, whereas this example shows the increase of the output in comparison with the other conventional examples. Then, based on the other conventional examples, an output increase of about 12% is seen.

【0036】したがって、この出力増加は、分割線3の
間隔が縮小された部分を通ってより多くの電流が流れ、
全体的な抵抗損失が減少することと、集電電極7が分割
線3の間隔が最小間隔Wmin.となる位置にくしの歯が位
置するように形成されているため、上記他の従来例に比
べて集電電極7の面積が小さくなり、光起電力装置の有
効面積が狭められたこととの相乗作用の結果であると思
われる。
Therefore, this increase in output causes a larger amount of current to flow through the portion of the dividing line 3 in which the interval is reduced,
Since the overall resistance loss is reduced, and the current collecting electrode 7 is formed such that the comb teeth are located at the position where the distance between the dividing lines 3 is the minimum distance W min. It is considered that this is a result of a synergistic effect that the area of the collecting electrode 7 is smaller than that of the above and the effective area of the photovoltaic device is narrowed.

【0037】上記の各実施例では、全ての分割線3が波
形状に形成されているが、分割線3を1本置きに波形状
に形成しても分割線3の間隔が繰り返し拡縮されるので
同様の効果が得られる。
In each of the above embodiments, all the dividing lines 3 are formed in a corrugated shape, but even if every other dividing line 3 is formed in a corrugated shape, the intervals between the dividing lines 3 are repeatedly expanded and contracted. Therefore, the same effect can be obtained.

【0038】[0038]

【発明の効果】以上に説明したように、本発明は集積型
光起電力装置の分割線が波形状に形成され、隣接する分
割線の間隔が互いに繰り返し拡縮されるので、分割線の
間隔が平均間隔よりも縮小された部分の抵抗値が減少
し、その部分に電流が集中して全体的な抵抗損失が減少
し、特性を高めることができるという効果が得られる。
As described above, according to the present invention, the dividing lines of the integrated photovoltaic device are formed in a corrugated shape, and the intervals between the adjacent dividing lines are repeatedly expanded and reduced. The resistance value of the portion that is smaller than the average interval is reduced, current concentrates on the portion, the overall resistance loss is reduced, and the effect that the characteristics can be improved is obtained.

【0039】また、本発明において、特に隣接する分割
線の間隔が最短間隔となる部分またはその近傍にくし歯
が位置するように光入射側電極に接して集電電極が設け
られる場合には、集電電極のくし歯が透明電極を覆う面
積が小さくなるので、集電電極による光起電力装置の有
効面積の減少、即ち、受光面積の減少を減少させること
ができ、これにより、更に特性を高めることができる。
Further, in the present invention, in particular, when the current collecting electrode is provided in contact with the light incident side electrode so that the comb teeth are located at or near the portion where the distance between the adjacent dividing lines is the shortest distance, Since the area where the comb teeth of the collecting electrode cover the transparent electrode becomes small, the reduction of the effective area of the photovoltaic device by the collecting electrode, that is, the reduction of the light receiving area can be reduced, which further improves the characteristics. Can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の平面図である。FIG. 1 is a plan view of an embodiment of the present invention.

【図2】本発明の一実施例の要部の断面模式図である。FIG. 2 is a schematic sectional view of an essential part of an embodiment of the present invention.

【図3】本発明の一実施例及びその変形例並びに従来例
の特性図である。
FIG. 3 is a characteristic diagram of an embodiment of the present invention, a modification thereof, and a conventional example.

【図4】本発明の又他の実施例の平面図である。FIG. 4 is a plan view of another embodiment of the present invention.

【図5】本発明の更に他の実施例の平面図である。FIG. 5 is a plan view of still another embodiment of the present invention.

【図6】従来例の要部の断面模式図である。FIG. 6 is a schematic sectional view of a main part of a conventional example.

【図7】従来例の平面図である。FIG. 7 is a plan view of a conventional example.

【図8】他の従来例の平面図である。FIG. 8 is a plan view of another conventional example.

【符号の説明】[Explanation of symbols]

2 ガラス基板 3 分割線 4 透明電極 5 発電層 6 裏面電極 7 集電電極 2 glass substrate 3 dividing line 4 transparent electrode 5 power generation layer 6 back electrode 7 current collecting electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に分割線で縞状に分割された
光起電力素子を、直列接続した集積型光起電力装置にお
いて、 上記分割線が1本置きに、又は全て波形状に形成され、
隣接する分割線の間隔が互いに繰り返し拡縮されること
を特徴とする集積型光起電力装置。
1. An integrated photovoltaic device in which photovoltaic elements divided into stripes on an insulating substrate by stripes are connected in series to each other, and the split lines are formed every other wave or all in a wavy shape. Is
An integrated photovoltaic device, wherein the spacing between adjacent dividing lines is repeatedly expanded and reduced.
【請求項2】 隣接する分割線の間隔が最短間隔となる
部分またはその近傍にくし歯が位置するように光入射側
電極に接して集電電極が設けられたことを特徴とする請
求項1に記載の集積型光起電力装置。
2. The current collecting electrode is provided in contact with the light incident side electrode so that the comb teeth are located at or near a portion where the distance between adjacent dividing lines is the shortest. The integrated photovoltaic device according to.
JP18566294A 1994-08-08 1994-08-08 Integrated photovoltaic device Expired - Fee Related JP3172369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18566294A JP3172369B2 (en) 1994-08-08 1994-08-08 Integrated photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18566294A JP3172369B2 (en) 1994-08-08 1994-08-08 Integrated photovoltaic device

Publications (2)

Publication Number Publication Date
JPH0851226A true JPH0851226A (en) 1996-02-20
JP3172369B2 JP3172369B2 (en) 2001-06-04

Family

ID=16174681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18566294A Expired - Fee Related JP3172369B2 (en) 1994-08-08 1994-08-08 Integrated photovoltaic device

Country Status (1)

Country Link
JP (1) JP3172369B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243850A (en) * 2010-05-20 2011-12-01 Sharp Corp Light transmission type solar cell module
WO2012035780A1 (en) * 2010-09-16 2012-03-22 三洋電機株式会社 Photoelectric converter
JP2013110249A (en) * 2011-11-21 2013-06-06 Kyocera Corp Photoelectric conversion device, and photoelectric conversion device manufacturing method
JP2014507075A (en) * 2011-03-01 2014-03-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method of monolithic series connection of solar cells of solar cell module and solar cell module implementing this method
JP2014078767A (en) * 2014-02-06 2014-05-01 Sharp Corp Light transmission type solar cell module
JP2014530498A (en) * 2011-09-19 2014-11-17 サン−ゴバングラス フランスSaint−Gobain Glass France THIN FILM SOLAR MODULE INCLUDING SERIAL CONNECTION AND METHOD FOR SERIALLY CONNECTING A plurality of thin film solar cells
US20180033902A1 (en) * 2016-07-29 2018-02-01 Sunpower Corporation Shingled solar cells overlapping along non-linear edges
CN108713255A (en) * 2016-02-26 2018-10-26 京瓷株式会社 Solar cell device
DE102017122530A1 (en) * 2017-09-28 2019-03-28 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Photovoltaic module with interlocking contacts on the back and method of making the same
CN109673172A (en) * 2016-07-29 2019-04-23 太阳能公司 Along the stacking formula solar battery of non-straight edges overlapping
WO2019114880A1 (en) * 2017-12-15 2019-06-20 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Thin-film photovoltaic module having two output powers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712561B2 (en) 1999-03-30 2005-11-02 Hoya株式会社 Optical member having cured coating
US20120234375A1 (en) * 2009-11-17 2012-09-20 Mitsubishi Electric Corporation Thin film solar cell and method of manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243850A (en) * 2010-05-20 2011-12-01 Sharp Corp Light transmission type solar cell module
WO2012035780A1 (en) * 2010-09-16 2012-03-22 三洋電機株式会社 Photoelectric converter
JP2014507075A (en) * 2011-03-01 2014-03-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method of monolithic series connection of solar cells of solar cell module and solar cell module implementing this method
KR20140056150A (en) * 2011-03-01 2014-05-09 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 Process for monolithic series connection of the photovoltaic cells of a solar module and a photovoltaic module implementing this process
JP2014530498A (en) * 2011-09-19 2014-11-17 サン−ゴバングラス フランスSaint−Gobain Glass France THIN FILM SOLAR MODULE INCLUDING SERIAL CONNECTION AND METHOD FOR SERIALLY CONNECTING A plurality of thin film solar cells
JP2013110249A (en) * 2011-11-21 2013-06-06 Kyocera Corp Photoelectric conversion device, and photoelectric conversion device manufacturing method
JP2014078767A (en) * 2014-02-06 2014-05-01 Sharp Corp Light transmission type solar cell module
CN108713255A (en) * 2016-02-26 2018-10-26 京瓷株式会社 Solar cell device
CN108713255B (en) * 2016-02-26 2021-12-21 京瓷株式会社 Solar cell element
US20180033902A1 (en) * 2016-07-29 2018-02-01 Sunpower Corporation Shingled solar cells overlapping along non-linear edges
CN109673172A (en) * 2016-07-29 2019-04-23 太阳能公司 Along the stacking formula solar battery of non-straight edges overlapping
US10741703B2 (en) * 2016-07-29 2020-08-11 Sunpower Corporation Shingled solar cells overlapping along non-linear edges
US11316057B2 (en) 2016-07-29 2022-04-26 Sunpower Corporation Shingled solar cells overlapping along non-linear edges
US11695086B2 (en) 2016-07-29 2023-07-04 Maxeon Solar Pte. Ltd. Shingled solar cells overlapping along non-linear edges
DE102017122530A1 (en) * 2017-09-28 2019-03-28 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Photovoltaic module with interlocking contacts on the back and method of making the same
DE102017122530B4 (en) 2017-09-28 2023-02-23 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Photovoltaic module with interlocking contacts on the back
WO2019114880A1 (en) * 2017-12-15 2019-06-20 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Thin-film photovoltaic module having two output powers

Also Published As

Publication number Publication date
JP3172369B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JPH04276665A (en) Integrated solar battery
US20170194516A1 (en) Advanced design of metallic grid in photovoltaic structures
JP3172369B2 (en) Integrated photovoltaic device
JP2011035092A (en) Back-junction type solar cell and solar cell module using the same
JP2008543067A (en) Method for manufacturing single-sided contact solar cell and single-sided contact solar cell
JPWO2011061950A1 (en) Thin film solar cell and manufacturing method thereof
JP5675476B2 (en) Crystalline silicon solar cell
WO2011074280A1 (en) Photovoltaic device and method for preparation thereof
JP2002319686A (en) Method of manufacturing integrated thin film solar battery
US20110079270A1 (en) Concentrator photovoltaic cell
JPH06283736A (en) Solar cell
CN112289874A (en) Solar cell electrode and preparation method thereof
JPWO2013099039A1 (en) Solar cell and manufacturing method thereof
JP6706779B2 (en) Solar cells and solar cell modules
TW201442266A (en) Photo-voltaic cell and method of manufacturing such a cell
JP4222910B2 (en) Photovoltaic device manufacturing method
KR20100132323A (en) Pattern of the electrode of solar cell and sollar cell comprising the said electrode pattern
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
JPH09116179A (en) Photovolatic element
JP5820987B2 (en) Solar cell
JPH07142753A (en) Heterojunction photovoltaic apparatus
JP2009295943A (en) Thin-film photoelectric converter, and manufacturing method thereof
JP6380822B2 (en) Solar cells
WO2006049003A1 (en) Process for producing thin-film photoelectric converter
JP2000252490A (en) Integrated thin-film solar cell and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees