JPH0850992A - Manufacture of thin film electroluminescent element - Google Patents

Manufacture of thin film electroluminescent element

Info

Publication number
JPH0850992A
JPH0850992A JP6185706A JP18570694A JPH0850992A JP H0850992 A JPH0850992 A JP H0850992A JP 6185706 A JP6185706 A JP 6185706A JP 18570694 A JP18570694 A JP 18570694A JP H0850992 A JPH0850992 A JP H0850992A
Authority
JP
Japan
Prior art keywords
thin film
gas
electroluminescent device
sulfide
film electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6185706A
Other languages
Japanese (ja)
Inventor
Yukihiro Maruta
幸寛 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6185706A priority Critical patent/JPH0850992A/en
Publication of JPH0850992A publication Critical patent/JPH0850992A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin film electroluminesceut element with an excellent bight-emitting luninance by a new manufacturing method of a luminous layer. CONSTITUTION:The zinc is evaporated from a metal evaporation source 1, and the manganese is evaporated from a metal evaporation source 2. Hydrogen or a hydrogen sulfide, or both of them are bubbled in a sulfur cylinder 3 passing through a heatproof bulb 11. A reaction gas including a sulfur gas is heated to a specific temperature by a nozzle heater 8, and injected parallel to a substrate 4 from the tip of a nozzle 15. The above specific temperature is made 200 to 300 deg.C. The zinc sulfide crystals which have large crystal particles, and a good stoichiometry are grown up on the substrate 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は薄膜電場発光素子の発
光層の製造方法に係り、特に反応性蒸着による発光輝度
の良好な薄膜電場発光素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a light emitting layer of a thin film electroluminescent device, and more particularly to a method for manufacturing a thin film electroluminescent device having good emission brightness by reactive vapor deposition.

【0002】[0002]

【従来の技術】Mnを発光中心とする蛍光体である発光層
の両面を絶縁層を介して透明電極ITOと背面電極で挟ん
だ二重絶縁型の薄膜エレクトロルミネセントディスプレ
イ(以下薄膜電場発光素子と称する)は、高輝度発光,
高解像度,大容量表示化が可能であることから、薄型表
示用のディスプレイパネルとして注目されている。
2. Description of the Related Art A double-insulation type thin film electroluminescent display (hereinafter referred to as a thin film electroluminescent device) in which both surfaces of a light emitting layer which is a phosphor having Mn as an emission center are sandwiched by a transparent electrode ITO and a back electrode with an insulating layer interposed therebetween. Is called high-intensity light emission,
Since it is capable of high resolution and large capacity display, it is attracting attention as a display panel for thin display.

【0003】図8は従来の二重絶縁型の薄膜電場発光素
子を示す断面図である。薄膜電場発光素子はガラス基板
22と、透明電極23と、アルミナAl2O3 ,シリカSiO2
または窒化シリコンSi3N4 等からなる第一の絶縁層24
と、硫化亜鉛または硫化ストロンチウムからなる発光層
21と、第一の絶縁層と同様の材料からなる第二の絶縁
層25と、Alからなり透明電極23と平行且つ直交する
ように配列された背面電極26から薄膜電場発光素子が
構成される。これらの各層の厚さは20ないし1000
nmに設定される。透明電極23、第一の絶縁層24、第
二の絶縁層25は一般にスパッタ法で作製され、硫化亜
鉛または硫化ストロンチウムからなる発光層21は真空
蒸着法,CVD法の1つであるALE法,スパッタリン
グ法あるいは電子ビーム蒸着法で作製される。
FIG. 8 is a sectional view showing a conventional double insulation type thin film electroluminescent device. The thin film electroluminescent device includes a glass substrate 22, a transparent electrode 23, alumina Al 2 O 3 and silica SiO 2.
Alternatively, the first insulating layer 24 made of silicon nitride Si 3 N 4 etc.
A light emitting layer 21 made of zinc sulfide or strontium sulfide, a second insulating layer 25 made of the same material as the first insulating layer, and a back face made of Al arranged in parallel and orthogonal to the transparent electrode 23. The electrode 26 constitutes a thin film electroluminescent device. The thickness of each of these layers is 20 to 1000.
Set to nm. The transparent electrode 23, the first insulating layer 24, and the second insulating layer 25 are generally produced by a sputtering method, and the light emitting layer 21 made of zinc sulfide or strontium sulfide is an ALE method which is one of a vacuum vapor deposition method and a CVD method. It is manufactured by a sputtering method or an electron beam evaporation method.

【0004】この様な薄膜電場発光素子の硫化亜鉛発光
層21は硫化亜鉛ZnS 膜を母材として、その中に発光中
心として少量のMnやTbOFを添加した材料で構成される。
硫化ストロンチウム発光層は硫化ストロンチウム中にセ
リウム Ce がドープされる。各発光層中の発光中心は最
適濃度( 例えば硫化亜鉛ZnS に対してはマンガンMnを0.
4 〜0.6wt % ,硫化ストロンチウムSrS に対してはセリ
ウム Ce を0.3モル%)に維持して成膜され、次いで
所定の温度で熱処理して発光層の結晶性の改善を行うと
ともに発光中心の分散性を高めている。
The zinc sulfide light emitting layer 21 of such a thin film electroluminescent device is composed of a zinc sulfide ZnS film as a base material and a small amount of Mn or TbOF as an emission center added thereto.
In the strontium sulfide light emitting layer, strontium sulfide is doped with cerium Ce. The emission center in each emission layer has the optimum concentration (e.g., manganese Mn is 0 for zinc sulfide ZnS).
4 to 0.6 wt%, cerium Ce for strontium sulfide SrS is maintained at 0.3 mol%) to form a film, and then heat treatment is performed at a specified temperature to improve the crystallinity of the light emitting layer and to improve the emission center. The dispersibility of is improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述のよ
うな従来の方法で薄膜電場発光素子の発光層を作製する
場合には得られた薄膜電場発光素子の発光輝度が低いと
いう問題点があった。例えば真空蒸着法で硫化亜鉛ZnS
発光層を成膜する場合には亜鉛金属を真空装置内で蒸発
し同装置内に硫黄ガスを供給して基板上に硫化亜鉛ZnS
の結晶を生成させる反応性蒸着によるが、成膜初期に小
さな結晶粒からなるデッドレヤーが発生したり、またそ
の後に成長する硫化亜鉛ZnS の結晶には硫黄の空乏によ
る結晶欠陥があり、結晶組成が化学量論組成からずれる
という現象が起こる。結晶粒が小さかったり硫黄の空孔
があると結晶内での電子の加速が十分でなく発光中心の
励起が弱いために発光輝度が低くなる。
However, when the light emitting layer of the thin film electroluminescent device is manufactured by the conventional method as described above, there is a problem that the obtained thin film electroluminescent device has low emission brightness. For example, by the vacuum deposition method, zinc sulfide ZnS
When forming the light-emitting layer, zinc metal is evaporated in a vacuum device and sulfur gas is supplied into the device to deposit zinc sulfide ZnS on the substrate.
However, due to the reactive vapor deposition that produces the crystals, a dead layer consisting of small crystal grains occurs at the initial stage of film formation, and the crystals of zinc sulfide ZnS that grow thereafter have crystal defects due to sulfur depletion, and the crystal composition is The phenomenon of deviation from the stoichiometric composition occurs. If the crystal grains are small or there are sulfur vacancies, the acceleration of electrons in the crystal is not sufficient and the excitation of the luminescence center is weak, resulting in low emission brightness.

【0006】硫化亜鉛ZnS の結晶が生成する際には亜鉛
原子と硫黄原子が一個づつ所定のサイトを占めながら結
晶格子を形づくるが硫黄ガスは八個の硫黄原子がリング
状に繋がったS8 の分子からなり、硫化亜鉛ZnS 結晶の
成長の際にはS8 の分子の解離が必要となる。硫化亜鉛
ZnS の結晶粒が小さかったり硫黄の空孔があるのは解解
離した低分子量の硫黄分子の数が少ないことに起因する
と考えられる。
When a crystal of zinc sulfide ZnS is formed, a zinc atom and a sulfur atom each occupy a predetermined site to form a crystal lattice. Sulfur gas is composed of S 8 in which eight sulfur atoms are connected in a ring shape. It is composed of molecules, and the dissociation of S 8 molecules is required during the growth of zinc sulfide ZnS crystal. Zinc sulfide
The small ZnS crystal grains and the presence of sulfur vacancies are considered to be due to the small number of dissociated low-molecular-weight sulfur molecules.

【0007】この発明は上述の点に鑑みてなされその目
的は反応性蒸着により発光層の金属硫化物結晶を生成す
る際にS8 硫黄分子の解離を促進してデッドレヤーや結
晶欠陥の発生を防止し以て発光輝度に優れる薄膜電場発
光素子の製造方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to promote the dissociation of S 8 sulfur molecules and prevent the occurrence of dead layers and crystal defects when the metal sulfide crystals of the light emitting layer are generated by reactive vapor deposition. Accordingly, it is an object of the present invention to provide a method for manufacturing a thin film electroluminescent device having excellent emission brightness.

【0008】[0008]

【課題を解決するための手段】上述の目的はこの発明に
よれば発光中心となる元素を添加した母材金属硫化物薄
膜を発光層として用いる薄膜電場発光素子の製造方法に
おいて、前記金属硫化物薄膜の成分金属または硫化物
と、発光中心となる元素を含むドーパントとをそれぞれ
蒸発するとともに、担体ガスと硫黄ガスの混合ガスを所
定の温度に加熱して基板上に供給し、反応性蒸着により
基板上に金属硫化物薄膜を成膜するとすることにより達
成される。
According to the present invention, there is provided a method for producing a thin film electroluminescent device using a base metal sulfide thin film to which an element serving as an emission center is added, as a light emitting layer. The component metal or sulfide of the thin film and the dopant containing the element serving as the emission center are evaporated, respectively, and the mixed gas of the carrier gas and the sulfur gas is heated to a predetermined temperature and supplied onto the substrate, and the reactive vapor deposition is performed. This is achieved by forming a metal sulfide thin film on the substrate.

【0009】上述の薄膜電場発光素子の製造方法におい
て金属硫化物薄膜の金属元素はII族元素が用いられる。
また担体ガスは硫化水素ガスと水素ガスのうちの少なく
とも一つであり、溶融硫黄内にバブルされる。さらに硫
黄ガスと硫化水素ガスの混合ガスは300℃以上の温度
に加熱され、硫黄ガスと水素ガスの混合ガスは300℃
以上の温度に加熱され、硫黄ガスと硫化水素ガスと水素
ガスの混合ガスは200℃以上の温度に加熱される。
In the method of manufacturing a thin film electroluminescent device described above, a group II element is used as the metal element of the metal sulfide thin film.
The carrier gas is at least one of hydrogen sulfide gas and hydrogen gas, and is bubbled into the molten sulfur. Further, the mixed gas of sulfur gas and hydrogen sulfide gas is heated to a temperature of 300 ° C or higher, and the mixed gas of sulfur gas and hydrogen gas is 300 ° C.
The mixture gas of sulfur gas, hydrogen sulfide gas, and hydrogen gas is heated to the above temperature, and is heated to a temperature of 200 ° C. or more.

【0010】II族元素としては亜鉛,ストロンチウム,
カルシウム等が用いられ、ドーパントとしては発光中心
となる元素であるマンガンや希土類元素の硫化物,フッ
化物,塩化物等が使用される。
Group II elements include zinc, strontium,
Calcium or the like is used, and as the dopant, manganese, which is an element serving as an emission center, or sulfides, fluorides, chlorides of rare earth elements, and the like are used.

【0011】[0011]

【作用】分子量の小さい硫黄分子は金属硫化物結晶の成
長速度を高め、ストイキオメトリを良好にする。硫黄に
はS8,6,4,2 の分子が存在する。硫黄の融点にお
いてはS8 硫黄分子として蒸発するが温度が高くなるに
つれて分子量の小さいものが支配的になる。 硫化水素
ガスと水素ガスのうちの少なくとも一つを硫黄ガスの担
体ガスとして用いると分子量の小さい硫黄分子ができ易
い。この場合は200ないし300℃の温度で良好な金
属硫化物結晶の成長が起こる。
[Function] Sulfur molecules having a small molecular weight enhance the growth rate of metal sulfide crystals and improve stoichiometry. Sulfur exists molecules S 8, S 6, S 4 , S 2. At the melting point of sulfur, S 8 sulfur molecules evaporate, but as the temperature rises, those having a smaller molecular weight become dominant. When at least one of hydrogen sulfide gas and hydrogen gas is used as a carrier gas for sulfur gas, sulfur molecules having a small molecular weight are likely to be formed. In this case, good metal sulfide crystal growth occurs at a temperature of 200 to 300 ° C.

【0012】[0012]

【実施例】図6はこの発明の実施例に係る薄膜電場発光
素子を示す断面図である。薄膜電場発光素子は厚さ1m
mのガラス基板22Aと、膜厚0.2μmのインジウム
スズ酸化物からなる透明電極23Aと、膜厚0.3μm
の窒化シリコンSi 3N4 からなる第一の絶縁層24Aと、
硫化亜鉛からなる発光層21Aと、第一の絶縁層と同様
の材料からなる第二の絶縁層25Aと、Alからなり膜厚
0.5μmで透明電極23Aと平行且つ直交するように
配列された背面電極26Aから薄膜電場発光素子が構成
される。
EXAMPLE FIG. 6 shows a thin film electroluminescence according to an example of the present invention.
It is sectional drawing which shows an element. Thin film electroluminescent device is 1m thick
m glass substrate 22A and 0.2 μm thick indium
Transparent electrode 23A made of tin oxide and a film thickness of 0.3 μm
Silicon nitride Si 3NFourA first insulating layer 24A composed of
Similar to the light emitting layer 21A made of zinc sulfide and the first insulating layer
The second insulating layer 25A made of the above material and the film thickness made of Al
To be parallel and orthogonal to the transparent electrode 23A at 0.5 μm
A thin film electroluminescent device is constructed from the arrayed back electrodes 26A.
To be done.

【0013】このような薄膜電場発光素子は以下のよう
にして調製される。先ずスパッタリングでインジウムス
ズ酸化物からなる透明電極23Aを成膜する。次いでシ
リコンターゲットを酸素と窒素でスパッタリングして第
一の絶縁層24Aを成膜する。続いて発光層21Aを成
膜する。さらにスパッタリングして第二の絶縁層24A
を成膜し最後に蒸着によりアルミニウムからなる背面電
極26Aを成膜する。発光層は以下にようにして形成さ
れる。
Such a thin film electroluminescent device is prepared as follows. First, the transparent electrode 23A made of indium tin oxide is formed by sputtering. Next, the silicon target is sputtered with oxygen and nitrogen to form the first insulating layer 24A. Subsequently, the light emitting layer 21A is formed. Further, the second insulating layer 24A is formed by sputtering.
Finally, the back electrode 26A made of aluminum is deposited by vapor deposition. The light emitting layer is formed as follows.

【0014】図1はこの発明の実施例に係る薄膜電場発
光素子を作製する反応性蒸着装置を示す配置図である。
ヒータ7により加熱された硫黄シリンダ3内に硫黄が溶
融しており水素ボンベ9内の水素または硫化水素ボンベ
10内の硫化水素あるいはその両方が耐熱バルブ11を
経て硫黄シリンダ3内に導入される。溶融硫黄はバブル
されたガスにより蒸気となって運ばれてノズル加熱ヒー
タ8で所定の温度に加熱されノズル15の先端より基板
4に向かって平行に噴射される。金属蒸発源1には例え
ば亜鉛金属が収納されヒータ7により加熱されて亜鉛金
属が蒸発する。金属蒸発源2の内部にはドーパントが収
納されヒータで加熱されて蒸発する。ドーパントとして
は例えばマンガン硫化物が使用される。金属蒸発源1,
2はその中心に配置されたノズルから導入管14を介し
て担体ガスと硫黄ガスの混合ガスをチャンバ12内に供
給することができる。
FIG. 1 is a layout view showing a reactive vapor deposition apparatus for producing a thin film electroluminescent device according to an embodiment of the present invention.
Sulfur is melted in the sulfur cylinder 3 heated by the heater 7, and hydrogen in the hydrogen cylinder 9 and / or hydrogen sulfide in the hydrogen sulfide cylinder 10 are introduced into the sulfur cylinder 3 through the heat resistant valve 11. The molten sulfur is carried as vapor by the bubbled gas, heated to a predetermined temperature by the nozzle heater 8 and jetted in parallel from the tip of the nozzle 15 toward the substrate 4. For example, zinc metal is housed in the metal evaporation source 1 and heated by the heater 7 to evaporate zinc metal. A dopant is contained in the metal evaporation source 2 and heated by a heater to evaporate. For example, manganese sulfide is used as the dopant. Metal evaporation source 1,
2 can supply the mixed gas of the carrier gas and the sulfur gas into the chamber 12 through the introduction pipe 14 from the nozzle arranged at the center thereof.

【0015】硫黄シリンダ3内に硫化水素ガスと水素ガ
スのうちの少なくとも一つが通流する。チャンバ12内
に供給された硫黄ガスは排出口13より排出されチャン
バ12内は一定のガス圧に維持される。ガスラインの所
定の部所に耐熱バルブ11が設置されガスの流れを制御
する。ガスノズルは赤外ランプまたは紫外ランプで照射
することができる。
At least one of hydrogen sulfide gas and hydrogen gas flows through the sulfur cylinder 3. The sulfur gas supplied into the chamber 12 is discharged from the discharge port 13 and the inside of the chamber 12 is maintained at a constant gas pressure. A heat resistant valve 11 is installed at a predetermined portion of the gas line to control the flow of gas. The gas nozzle can be illuminated with an infrared lamp or an ultraviolet lamp.

【0016】チャンバ12内は圧力を10-6torrに設定
してから基板,ラインの加熱を行いガス出しを行った。
その後に金属蒸発源1,金属蒸発源2,基板ヒータ6,
ノズル加熱ヒータ8の温度や真空圧力を制御して発光層
の化学組成を化学量論組成に調整した。反応ガスの供給
は硫黄ガスのみを搬送する場合、硫黄ガスを硫化水
素ガスによりバブルして搬送する場合、硫黄ガスを水
素ガスによりバブルして搬送する場合、硫黄ガスを硫
化水素ガスと水素ガスによりバブルして搬送する場合、
の四通りの場合について実験した。ノズル加熱ヒータ8
の温度は200℃,300℃,500℃である。成膜に
際しては硫黄供給量と真空圧力を一定にして行った。基
板ヒータ6の温度は200ないし250℃である。この
方法で成膜したマンガンドープ硫化亜鉛結晶につきX線
回折スペクトルを測定した。
After the pressure inside the chamber 12 was set to 10 -6 torr, the substrate and the line were heated to discharge gas.
After that, metal evaporation source 1, metal evaporation source 2, substrate heater 6,
The temperature of the nozzle heater 8 and the vacuum pressure were controlled to adjust the chemical composition of the light emitting layer to a stoichiometric composition. When supplying only the reaction gas with sulfur gas, when transferring the sulfur gas by bubbling with hydrogen sulfide gas, when transferring the sulfur gas with bubbling with hydrogen gas, the sulfur gas is transferred with hydrogen sulfide gas and hydrogen gas. When carrying in a bubble,
Experiments were conducted on four cases. Nozzle heater 8
The temperatures are 200 ° C, 300 ° C and 500 ° C. During the film formation, the amount of sulfur supplied and the vacuum pressure were kept constant. The temperature of the substrate heater 6 is 200 to 250 ° C. The X-ray diffraction spectrum of the manganese-doped zinc sulfide crystal formed by this method was measured.

【0017】図2,図3,図4はこの発明の実施例に係
る薄膜電場発光素子につき発光層のX線回折スペクトル
を示す線図である。図2,図3,図4に示す薄膜電場発
光素子の発光層はノズル加熱ヒータ8の温度をそれぞれ
200℃,300℃,500℃としたものである。硫黄
ガスのみを搬送するの場合は、500℃以上の温度に
おいて化学量論組成で且つ(100)配向のマンガンド
ープ硫化亜鉛結晶が得られた。
2, 3 and 4 are diagrams showing X-ray diffraction spectra of the light emitting layer in the thin film electroluminescent device according to the embodiment of the present invention. The light emitting layers of the thin film electroluminescent device shown in FIGS. 2, 3 and 4 are such that the temperature of the nozzle heater 8 is set to 200 ° C., 300 ° C. and 500 ° C., respectively. When only sulfur gas was transported, a manganese-doped zinc sulfide crystal having a stoichiometric composition and (100) orientation was obtained at a temperature of 500 ° C. or higher.

【0018】硫黄ガスを硫化水素ガスによりバブルして
搬送するの場合は、300℃以上の温度において化学
量論組成で且つ(100)配向のマンガンドープ硫化亜
鉛結晶が得られた。硫黄ガスを水素ガスによりバブルし
て搬送するの場合は、300℃以上の温度において化
学量論組成で且つ(100)配向のマンガンドープ硫化
亜鉛結晶が得られた。
When sulfur gas was bubbled by hydrogen sulfide gas to be transported, manganese-doped zinc sulfide crystals having a stoichiometric composition and (100) orientation were obtained at a temperature of 300 ° C. or higher. When sulfur gas was bubbled by hydrogen gas and conveyed, manganese-doped zinc sulfide crystals having a stoichiometric composition and a (100) orientation were obtained at a temperature of 300 ° C. or higher.

【0019】硫黄ガスを硫化水素ガスと水素ガスにより
バブルして搬送するの場合は、200℃以上の温度に
おいて化学量論組成で且つ(100)配向のマンガンド
ープ硫化亜鉛結晶が得られた。図5はこの発明の異なる
実施例に係る薄膜電場発光素子の発光層につき発光層の
X線回折スペクトルを示す線図である。
When the sulfur gas was bubbled by hydrogen sulfide gas and hydrogen gas and transported, a manganese-doped zinc sulfide crystal having a stoichiometric composition and (100) orientation was obtained at a temperature of 200 ° C. or higher. FIG. 5 is a diagram showing an X-ray diffraction spectrum of a light emitting layer of a thin film electroluminescent device according to another embodiment of the present invention.

【0020】この例では基板の加熱と同時にノズル15
内の反応ガスを赤外ランプまたは256nmの波長を有
する紫外線ランプを用いて照射した。赤外ランプまたは
256nmの波長を有する紫外線ランプを用いて照射す
ると結晶性がやや向上することがわかる。上述の方法で
得られた薄膜電場発光素子は透明電極23Aと背面電極
26Aの間に交流電圧を印加して発光輝度を測定した。
発光輝度はいずれも400cd/m2 以上であり良好な
特性が得られた。
In this example, the nozzle 15 is heated simultaneously with the heating of the substrate.
The reaction gas inside was irradiated with an infrared lamp or an ultraviolet lamp having a wavelength of 256 nm. It can be seen that the crystallinity is slightly improved by irradiation with an infrared lamp or an ultraviolet lamp having a wavelength of 256 nm. In the thin film electroluminescent device obtained by the above-mentioned method, an AC voltage was applied between the transparent electrode 23A and the back electrode 26A to measure the emission brightness.
The emission brightness was 400 cd / m 2 or more, and good characteristics were obtained.

【0021】図7はこの発明の実施例に係る薄膜電場発
光素子断面の元素プロファイルを示す線図である。元素
プロファイルは殆ど一定であることがわかる。通常のE
B法では断面方向の組成比が大きく異なるのに対し、反
応性蒸着による場合は断面方向のストイキオメトリが安
定していることがわかる。反応ガスをノズル15から基
板に水平方向に流すのは基板内に結晶を均一に成長させ
るためで金属蒸発源1,金属蒸発源2から供給しても同
一の効果が得られる。
FIG. 7 is a diagram showing an element profile of a cross section of a thin film electroluminescent device according to an embodiment of the present invention. It can be seen that the elemental profile is almost constant. Normal E
It can be seen that in the method B, the composition ratio in the cross-sectional direction is greatly different, whereas in the case of reactive vapor deposition, the stoichiometry in the cross-sectional direction is stable. The reaction gas is caused to flow horizontally from the nozzle 15 to the substrate in order to uniformly grow crystals in the substrate, and the same effect can be obtained even if the reaction gas is supplied from the metal evaporation source 1 and the metal evaporation source 2.

【0022】さらに発光層は硫化亜鉛に限定されるもの
ではなく硫化ストロンチウムなどの場合でも希土類元素
等のドーパントを選択して上述の方法で成膜することが
できる。なお金属硫化物薄膜は薄膜電場発光素子に限ら
ずCRT等の蛍光体に使用することもできる。
Further, the light emitting layer is not limited to zinc sulfide, and even in the case of strontium sulfide or the like, a dopant such as a rare earth element can be selected and formed by the above method. The metal sulfide thin film can be used not only for a thin film electroluminescent device but also for a phosphor such as a CRT.

【0023】[0023]

【発明の効果】この発明によれば成分元素の蒸発を行う
とともに担体ガスと硫黄ガスの混合ガスを所定の温度に
加熱して基板上に供給し、反応性蒸着により基板上に金
属硫化物薄膜を成膜するので、分子量の小さい硫黄分子
に富む反応ガスが基板表面に供給され、その結果金属硫
化物結晶の成長速度が増大するとともに結晶の化学組成
が化学量論組成に近づき良好な金属硫化物結晶が得られ
て発光輝度に優れる薄膜電場発光素子が得られる。
According to the present invention, the constituent elements are vaporized and the mixed gas of the carrier gas and the sulfur gas is heated to a predetermined temperature and supplied onto the substrate, and the metal sulfide thin film is deposited on the substrate by reactive vapor deposition. As a film is formed, a reaction gas rich in sulfur molecules with a small molecular weight is supplied to the substrate surface, and as a result, the growth rate of the metal sulfide crystal increases and the chemical composition of the crystal approaches the stoichiometric composition, resulting in good metal sulfide. As a result, a thin film electroluminescent device is obtained which is excellent in emission brightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る薄膜電場発光素子を作
製する反応性蒸着装置を示す配置図
FIG. 1 is a layout view showing a reactive vapor deposition apparatus for producing a thin film electroluminescent device according to an embodiment of the present invention.

【図2】この発明の実施例に係る薄膜電場発光素子につ
き発光層のX線回折スペクトルを示す線図
FIG. 2 is a diagram showing an X-ray diffraction spectrum of a light emitting layer in a thin film electroluminescent device according to an example of the present invention.

【図3】この発明の実施例に係る薄膜電場発光素子につ
き発光層のX線回折スペクトルを示す線図
FIG. 3 is a diagram showing an X-ray diffraction spectrum of a light emitting layer in a thin film electroluminescent device according to an example of the present invention.

【図4】この発明の実施例に係る薄膜電場発光素子につ
き発光層のX線回折スペクトルを示す線図
FIG. 4 is a diagram showing an X-ray diffraction spectrum of a light emitting layer in a thin film electroluminescent device according to an example of the present invention.

【図5】この発明の異なる実施例に係る薄膜電場発光素
子につき発光層のX線回折スペクトルを示す線図
FIG. 5 is a diagram showing an X-ray diffraction spectrum of a light emitting layer in a thin film electroluminescent device according to another embodiment of the present invention.

【図6】この発明の実施例に係る薄膜電場発光素子を示
す断面図
FIG. 6 is a sectional view showing a thin film electroluminescent device according to an embodiment of the present invention.

【図7】この発明の実施例に係る薄膜電場発光素子断面
の元素プロファイルを示す線図
FIG. 7 is a diagram showing an element profile of a cross section of a thin film electroluminescent device according to an example of the present invention.

【図8】従来薄膜電場発光素子を示す断面図FIG. 8 is a cross-sectional view showing a conventional thin film electroluminescent device.

【符号の説明】[Explanation of symbols]

1 金属蒸発源 2 金属蒸発源 3 硫黄シリンダ 4 基板 5 基板ホルダ 6 基板ヒータ 7 ヒータ 8 ノズル加熱ヒータ 9 水素ボンベ 10 硫化水素ボンベ 11 耐熱バルブ 12 チャンバ 13 排気口 14 導入管ヒータ 15 ノズル 21 発光層 22 ガラス基板 23 透明電極 24 第一の絶縁層 25 第二の絶縁層 26 背面電極 21A 発光層 22A ガラス基板 23A 透明電極 24A 第一の絶縁層 25A 第二の絶縁層 26A 背面電極 1 Metal Evaporation Source 2 Metal Evaporation Source 3 Sulfur Cylinder 4 Substrate 5 Substrate Holder 6 Substrate Heater 7 Heater 8 Nozzle Heating Heater 9 Hydrogen Cylinder 10 Hydrogen Sulfide Cylinder 11 Heat Resistant Valve 12 Chamber 13 Exhaust Port 14 Inlet Tube Heater 15 Nozzle 21 Light Emitting Layer 22 Glass substrate 23 Transparent electrode 24 First insulating layer 25 Second insulating layer 26 Back electrode 21A Light emitting layer 22A Glass substrate 23A Transparent electrode 24A First insulating layer 25A Second insulating layer 26A Back electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】発光中心となる元素を添加した金属硫化物
薄膜を発光層として用いる薄膜電場発光素子の製造方法
において、前記金属硫化物薄膜の成分金属または硫化物
と、発光中心となる元素を含むドーパントとをそれぞれ
蒸発させるとともに、担体ガスと硫黄ガスの混合ガスを
所定の温度に加熱して基板上に供給し、反応性蒸着によ
り基板上に金属硫化物薄膜を成膜することを特徴とする
薄膜電場発光素子の製造方法。
1. A method for manufacturing a thin film electroluminescent device using a metal sulfide thin film to which an element which becomes an emission center is added as a light emitting layer, wherein a component metal or sulfide of the metal sulfide thin film and an element which becomes an emission center are included. It is characterized by vaporizing each of the dopants containing it, heating a mixed gas of a carrier gas and a sulfur gas to a predetermined temperature and supplying it onto a substrate, and forming a metal sulfide thin film on the substrate by reactive vapor deposition. Method for manufacturing thin film electroluminescent device.
【請求項2】請求項1記載の製造方法において、母材金
属硫化物の金属はII族元素の金属であることを特徴とす
る薄膜電場発光素子の製造方法。
2. The method for manufacturing a thin film electroluminescent device according to claim 1, wherein the metal of the base metal sulfide is a Group II element metal.
【請求項3】請求項1または2に記載の製造方法におい
て、担体ガスは硫化水素ガスと水素ガスのうちの少なく
とも一つであり、溶融硫黄内にバブルされるものである
ことを特徴とする薄膜電場発光素子の製造方法。
3. The manufacturing method according to claim 1 or 2, wherein the carrier gas is at least one of hydrogen sulfide gas and hydrogen gas, and is bubbled in the molten sulfur. Method for manufacturing thin film electroluminescent device.
【請求項4】請求項3記載の製造方法において、硫化水
素ガスを担体ガスとする混合ガスは300℃以上の温度
に加熱されることを特徴とする薄膜電場発光素子の製造
方法。
4. The method for manufacturing a thin film electroluminescent device according to claim 3, wherein the mixed gas containing hydrogen sulfide gas as a carrier gas is heated to a temperature of 300 ° C. or higher.
【請求項5】請求項3記載の製造方法において、水素ガ
スを担体ガスとする混合ガスは300℃以上の温度に加
熱されることを特徴とする薄膜電場発光素子の製造方
法。
5. The method for manufacturing a thin film electroluminescent device according to claim 3, wherein the mixed gas containing hydrogen gas as a carrier gas is heated to a temperature of 300 ° C. or higher.
【請求項6】請求項3記載の製造方法において、硫化水
素ガスと水素ガスを担体ガスとする混合ガスは200℃
以上の温度に加熱されることを特徴とする薄膜電場発光
素子の製造方法。
6. The manufacturing method according to claim 3, wherein the mixed gas containing hydrogen sulfide gas and hydrogen gas as a carrier gas is 200 ° C.
A method for manufacturing a thin film electroluminescent device, which comprises heating to the above temperature.
JP6185706A 1994-08-08 1994-08-08 Manufacture of thin film electroluminescent element Pending JPH0850992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6185706A JPH0850992A (en) 1994-08-08 1994-08-08 Manufacture of thin film electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6185706A JPH0850992A (en) 1994-08-08 1994-08-08 Manufacture of thin film electroluminescent element

Publications (1)

Publication Number Publication Date
JPH0850992A true JPH0850992A (en) 1996-02-20

Family

ID=16175445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6185706A Pending JPH0850992A (en) 1994-08-08 1994-08-08 Manufacture of thin film electroluminescent element

Country Status (1)

Country Link
JP (1) JPH0850992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073223A (en) * 1999-06-23 1999-10-05 천웅기 Thin film deposition system and process for fabrication of organic light-emitting devices
US7459236B2 (en) 2004-10-18 2008-12-02 Sony Corporation Battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990073223A (en) * 1999-06-23 1999-10-05 천웅기 Thin film deposition system and process for fabrication of organic light-emitting devices
US7459236B2 (en) 2004-10-18 2008-12-02 Sony Corporation Battery

Similar Documents

Publication Publication Date Title
JP2000087029A (en) Growing of thin film electroluminescence structure
US5716501A (en) Method of producing electroluminescence emitting film
US5834053A (en) Blue light emitting thiogallate phosphor
JPH0850992A (en) Manufacture of thin film electroluminescent element
KR100296981B1 (en) METHOD FOR MANUFACTURING METAL SULFIDE THIN FILM
JPH01289091A (en) Manufacture of electroluminescent luminous membrane
JP3735949B2 (en) Blue light emitting material, EL device using the same, and method for producing the same
US7811634B2 (en) Controlled sulfur species deposition process
JPH03208298A (en) Manufacture of thin film electroluminescence (el) element
JP2001118677A (en) Manufacturing method of target for inorganic electroluminescent phosphor thin film, phosphor thin film, inorganic electroluminescent element and sulfide phosphor thin film
JPH02148595A (en) Thin film el device and manufacture thereof
JPS6141112B2 (en)
JPH0674416B2 (en) Fluorescent material thin film manufacturing method and manufacturing apparatus
JPH08203672A (en) Manufacture of thin film electroluminescent element, and manufacturing device thereof
JP3543414B2 (en) Electroluminescence device and method of manufacturing the same
US5985358A (en) High-speed method for manufacturing an electroluminescent device using dehydrated transport gas and apparatus therefor
JPH056792A (en) Manufacture of phosphor thin film
JP2001297877A (en) Manufacturing method and apparatus of thin film electroluminescence element
JPH0883684A (en) Manufacture of electroluminescence thin film and manufacturing device therefor
JPH0682618B2 (en) <II>-<VI> Group compound semiconductor thin film manufacturing method
JP2002173307A (en) H2s cracking cell, method of manufacturing sulfide using the same, method of manufacturing inorganic el element and inorganic el element
JPH0265094A (en) Thin film el element and manufacture thereof
JPH0334290A (en) Manufacture of color el element
JPS63915B2 (en)
JPH0322391A (en) Manufacture of color el element