JPH08506886A - Steam conversion valve - Google Patents

Steam conversion valve

Info

Publication number
JPH08506886A
JPH08506886A JP6518621A JP51862194A JPH08506886A JP H08506886 A JPH08506886 A JP H08506886A JP 6518621 A JP6518621 A JP 6518621A JP 51862194 A JP51862194 A JP 51862194A JP H08506886 A JPH08506886 A JP H08506886A
Authority
JP
Japan
Prior art keywords
steam
cooling water
nozzle
piston
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6518621A
Other languages
Japanese (ja)
Inventor
ツルミユーレン,ギユンテル
Original Assignee
ホルテル レーゲルアルマトウーレン ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホルテル レーゲルアルマトウーレン ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト filed Critical ホルテル レーゲルアルマトウーレン ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシヤフト
Publication of JPH08506886A publication Critical patent/JPH08506886A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • F22G5/123Water injection apparatus
    • F22G5/126Water injection apparatus in combination with steam-pressure reducing valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Valves (AREA)
  • Nozzles (AREA)
  • Lift Valve (AREA)
  • Temperature-Responsive Valves (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The steam desuperheating valve has a housing (4) with a steam inlet (1), a cooling water inlet (3) and a steam outlet (2). In the housing (4) there are a perforated basket (11) forming a depressurising chamber and an axially movable control piston (5) controlling the flow of steam and cooling water to the depressurising chamber. The control piston (5) is rigidly coupled to a perforated cylinder (6) axially movable in the perforated basket (11). This perforated cylinder (6) releases or blocks the steam inlet (D) into the perforated basket (11) and the steam outlet into a second depressurising chamber (10) arranged around the perforated basket (11). Into the perforated basket (11) projects a coaxial nozzle pipe (14) which is connected outside the perforated basket (11) to the cooling water inlet (3). Inside the perforated basket (11) the nozzle pipe (14) has injection apertures (15) for the cooling water (W). Outside the perforated basket (11) the nozzle pipe (14) projects into the steam outlet (2) and has an injection nozzle (16) at that point for the cooling water (W). A first piston section (7) movable with the control piston (5) in the nozzle pipe (14) alternately opens and closes the injection apertures (15) in the nozzle pipe (14). A second piston section (8) regulates the cooling water inlet (3) in the size of the through-flow cross-section (X) for the flow of cooling water into the injection apertures (15) in the depressurising chamber and/or into the injection nozzle (16) in the steam outlet (2). The second depressurising chamber (10) surrounding the perforated basket (11) is connected via through-flow apertures (17) to the steam outlet (2) forming a third depressurising chamber.

Description

【発明の詳細な説明】 蒸気変換弁 本発明は、蒸気圧力及び蒸気温度を低減するための蒸気変換弁に関する。この ような弁は、発電所技術において、また工場蒸気を消費する工場(例えば織物仕 上げ業、染色工場等)において使用される。 このような蒸気変換弁は、蒸気入口と冷却水入口と蒸気出口とを備えたケーシ ングを有する。ケーシングのなかに除圧空間と蒸気及び冷却水の流れを調節する 制御ピストンが設けられている。温度を下げるために高温蒸気に冷却水が噴射さ れ、次にこれが直ちに蒸発する。冷却水の噴射量はその都度の蒸気量(部分負荷 又は全負荷)に適合されていなければならない。噴射冷却水は部分負荷運転のと きにも全負荷運転のときにも完全に蒸発しなければならない。さもないと水滴が 発生してかなりの浸食及び熱衝撃の害をもたらす。 公知の蒸気変換弁には、圧力低減と冷却とが分離されたもの、圧力低減と同時 に冷却水が除圧空間内に調節されて噴射されるものがある。圧力低減と冷却とを 分離した蒸気変換弁は、好ましくは運転時に蒸気量に大きな変化が現れるところ で使用される。蒸気量の変化が僅かである場合には、大抵圧力低減と冷却水噴射 とを同時に行う蒸気変換弁が使用される。 本発明の課題は、一層確実かつ完壁な仕方で部分負荷運転のとき除圧空間内へ の調節された冷却水噴射と蒸気圧力低減とを同時に可能とし、また全負荷運転の ときには除圧空間内で蒸気圧力低減と冷却水噴射との間で分離を行うようになつ た蒸気変換弁を提供することである。 この課題が本発明によれば、請求項1に明示された特徴によ つて解決される。これに続く従属請求項は、本発明の有益かつ有利な展開である 造形特徴を含む。 蒸気変換弁は、蒸気入口と冷却水入口と蒸気出口とを備えたケーシングを有す る。ケーシングのなかに除圧空間を形成する多孔篭体と、除圧空間への蒸気及び 冷却水の流れを調節する軸線方向で移動可能な制御ピストンが設けられている。 制御ピストンは多孔篭体のなかを軸線方向で移動可能な管状多孔シリンダに、運 動剛性に結合されている。この多孔シリンダでもつて、多孔篭体内への蒸気流入 と、多孔篭体の周囲に設けられる第2除圧空間内への蒸気流出とが解決され又は 遮断される。多孔篭体のなかに突出する同軸ノズル管が多孔篭体の外側で冷却水 入口に接続されている。ノズル管は除圧空間を形成する多孔篭体の内部に冷却水 用噴射孔を有する。多孔篭体の外側でノズル管が噴射ノズルを有し、このノズル が蒸気出口範囲内に突出する。制御ピストンはノズル管内を移動可能であり、ピ ストン部分でもつて冷却水用ノズル管の噴射孔を解放し又は遮断する。第2ピス トン部分でもつて制御ピストンは噴射孔へと及び/又は噴射ノズルへと冷却水を 流すための貫流断面の大きさで冷却水入口を調節する。 冷却水は部分負荷運転のとき、圧力低減と同時に噴射孔を介して除圧空間内に 噴射され、また蒸気圧力低減後に噴射ノズルを介して蒸気出口範囲に噴射される 。全負荷運転のとき、全冷却水は蒸気圧力低減後に噴射ノズルを介して蒸気出口 範囲に噴射される。 冷却水は部分負荷運転及び全負荷運転のとき完壁に噴射されかつ完全に蒸発す る。これは蒸気変換弁の大きな動作信頼性と寿命の長いことを意味する。 図面に1実施例が図示されており、以下詳しく説明される。 図1は閉位置における蒸気変換弁の断面図である。 図1aは冷却水入口の貫流断面を示す。 図2は部分開状態における蒸気変換弁の断面図である。 蒸気変換弁は蒸気入口1と冷却水入口3と蒸気出口2とを備えたケーシング4 を有する。ケーシング4のなかに除圧空間を形成する多孔篭体11と、除圧空間へ の蒸気及び冷却水の流れを調節する軸線方向で移動可能な制御ピストン5が設け られている。制御ピストン5は多孔篭体11のなかを軸線方向で移動可能な多孔シ リンダ6に運動剛性に結合されている。この多孔シリンダ6は、多孔篭体11内へ の蒸気流入Dと、多孔篭体11の周囲に設けられる第2除圧空間10内への蒸気流出 とを解放し又は遮断する。多孔篭体11のなかに突出する同軸ノズル管14が多孔篭 体11の外側で冷却水入口3に接続されている。多孔篭体11の内部にノズル管14が 冷却水W用噴射孔15を有する。多孔篭体11の外側でノズル管14が蒸気出口2内に 突出して、そこに冷却水W用噴射ノズル16を有する。 制御ピストン5でもつてノズル管14内を移動可能な第1ピストン部分7がノズ ル管14の噴射孔15を順次解放し又は遮断する。第2ピストン部分8は除圧空間の 噴射孔15へと及び/又は蒸気出口2の噴射ノズル16へと冷却水を流すための貫流 断面Xの大きさで冷却水入口3を調節する。 多孔篭体11を取り囲む第2除圧空間10が通過孔17を介して、第3除圧空間を形 成する蒸気出口2に接続されている。 管状多孔シリンダ6は、働きの異なる2つの範囲に分割されている。蒸気入口 1に付属した軸線方向長手範囲に多孔シリンダ6は蒸気を多孔篭体11に流入させ るための除圧孔6aを有す るのに対して、第2除圧空間10に付属した軸線方向長手範囲は多孔篭体11の除圧 孔の解放と遮断を交互に行うための閉じた遮断壁6bとして構成されている。 制御ピストン5は両方のピストン部分7,8と一体に構成されており、両方の ピストン部分7,8の間を延びたピストンロツド20は、それ自身とノズル管14と の間にノズル管14の噴射孔15へと冷却水を流すための環状空間13を形成する。両 方のピストン部分7,8は、好ましくは金属からなるピストンリングシール9に よつて気密かつ液密にノズル管14に通されている。 冷却水入口3の貫流断面Xが水滴状パイロツト制御断面を有し、この断面は大 きな水滴断面がノズル管14の噴射孔15の方向を向いている。水滴状パイロツト制 御断面の代わりに、冷却水入口3の貫流断面は同じ大きさ及び/又は異なる大き さの複数のパイロツト制御孔で構成しておくことができる。 多孔篭体11の周囲に別の除圧段として設けられる第2(外側)多孔篭体12は隔 壁12aでもつて内側多孔篭体11に当接して、外側多孔篭体12を2つの孔部分に分 割する。 制御ピストン5は蒸気入口1の高さで多孔篭体18によつて取り囲まれており、 この多孔篭体の孔を通して制御ピストン5の周囲にできるだけ均一に流すために 蒸気が流入する。 制御ピストン5の両方のピストン部分7,8の間の軸線方向間隔は、ノズル管 14の噴射孔15が第1ピストン部分7によつて遮断される位置(図1参照)にある とき、冷却水入口3の貫流断面X全体が一方の端位置にある第2ピストン部分8 によつて噴射孔15の方向で解放され、また噴射ノズル16の方向で遮断されている ように量定されている。 蒸気変換弁を開くために、多孔シリンダ6は制御ピストン5 でもつて多孔篭体11から部分的に引き出される(図2参照)。こうして蒸気を多 孔篭体11に流入させるために多孔シリンダ6の除圧孔6aが、また蒸気を流出させ るために多孔シリンダ6の遮断壁6bによつて閉じられた多孔篭体11の除圧孔が同 時に解放される。この部分負荷運転位置のとき、ノズル管14の噴射孔15は第1ピ ストン部分7によつて部分的に又は完全に解放される。すると冷却水入口3の貫 流断面Xは第2ピストン部分8によつて噴射孔15の方向でも噴射ノズル16の方向 でも解放されている。 全負荷運転のとき第2ピストン部分8はノズル管14の噴射孔15の方向で移動し た第2端位置にあり、この端位置のとき、貫流断面Xが完全に解放され、ノズル 管14の噴射孔15への冷却水の流れが遮断され、噴射ノズル16への冷却水の流れが 完全に開放されている。つまりこの位置のとき、除圧空間を形成する多孔篭体11 内に冷却水Wは噴射されない。 冷却すべき蒸気量が多ければ多いほど、必要とされる冷却水が多くなる。この 場合多孔篭体11の除圧体積は冷却水Wを完全に蒸発させるのにもはや充分ではな い。有害な水滴の生成を防止するために、蒸気量の増加に伴つてますます多くの 冷却水Wが噴射ノズル16を介して蒸気出口2の範囲に噴射される。全負荷運転の とき全冷却水Wがそこに噴射される。 噴射ノズル16を介して冷却水Wを噴射するために冷却水はそこで付加的に渦化 される。制御ピストン5の上の行程空間は補償通路19を介して、蒸気に接するケ ーシング4の部分に接続されている。Detailed Description of the Invention                           Steam conversion valve   The present invention relates to a steam conversion valve for reducing steam pressure and steam temperature. this Such valves are used in power plant technology and also in factories that consume factory steam (eg textiles). Used in the raising industry, dyeing factory, etc.).   Such a steam conversion valve has a case with a steam inlet, a cooling water inlet and a steam outlet. Have a ring. Control depressurization space and steam and cooling water flow inside the casing A control piston is provided. Cooling water is injected into the hot steam to reduce the temperature. Which then evaporates immediately. The injection amount of cooling water is the steam amount (partial load) Or full load). The injection cooling water is It must completely evaporate both during operation and at full load. Otherwise water drops Occurs and causes considerable erosion and thermal shock harm.   In the known steam conversion valve, pressure reduction and cooling are separated, simultaneous with pressure reduction. There is one in which cooling water is adjusted and injected into the depressurized space. Pressure reduction and cooling The separated steam conversion valve is preferably a place where a large change in steam amount appears during operation. Used in. For small changes in steam flow, pressure reduction and cooling water injection A steam conversion valve that simultaneously performs and is used.   The object of the present invention is to move into the decompression space during partial load operation in a more reliable and complete manner. It enables controlled cooling water injection and steam pressure reduction at the same time. Sometimes it is necessary to separate the steam pressure reduction and the cooling water injection in the depressurization space. It is to provide a steam conversion valve.   According to the invention, this problem is due to the features specified in claim 1. Will be solved. The dependent claims which follow are advantageous and advantageous developments of the invention. Including modeling features.   The steam conversion valve has a casing with a steam inlet, a cooling water inlet and a steam outlet. It A porous cage that forms a depressurization space in the casing, steam to the depressurization space, and An axially movable control piston is provided which regulates the flow of cooling water. The control piston moves inside the perforated cage into a tubular perforated cylinder that is movable in the axial direction. Coupled to dynamic stiffness. This perforated cylinder keeps steam flowing into the perforated cage. And the outflow of steam into the second depressurization space provided around the porous cage, or Be cut off. A coaxial nozzle tube protruding into the porous cage is used for cooling water outside the porous cage. Connected to the entrance. The nozzle tube is a cooling water inside the porous cage that forms the depressurization space. For injection. The nozzle tube has an injection nozzle on the outside of the porous cage. Project into the steam outlet range. The control piston is movable in the nozzle tube and The stone portion also releases or blocks the injection hole of the cooling water nozzle tube. Second piss In the tongue, the control piston also supplies cooling water to the injection holes and / or the injection nozzles. The cooling water inlet is adjusted according to the size of the flow-through section for flowing.   During partial load operation, the cooling water enters the depressurized space through the injection holes simultaneously with the pressure reduction. Injected into the steam outlet area via the injection nozzle after the steam pressure is reduced . During full load operation, all cooling water is steam outlet through the injection nozzle after the steam pressure is reduced. It is injected in the range.   Cooling water is completely injected and completely evaporated during partial load operation and full load operation It This means great operational reliability and long life of the steam conversion valve.   One embodiment is illustrated in the drawings and will be described in detail below.   FIG. 1 is a cross-sectional view of the steam conversion valve in the closed position.   Figure 1a shows a cross section through the cooling water inlet.   FIG. 2 is a cross-sectional view of the steam conversion valve in the partially open state.   The steam conversion valve is a casing 4 having a steam inlet 1, a cooling water inlet 3 and a steam outlet 2. Having. To the decompression space and the porous cage 11 that forms the decompression space in the casing 4. An axially movable control piston 5 for regulating the flow of steam and cooling water of the Have been. The control piston 5 is a porous cage which is movable in the axial direction in the porous cage 11. It is kinematically coupled to the Linda 6. This perforated cylinder 6 moves into the perforated cage 11. Steam inflow D and steam outflow into the second depressurization space 10 provided around the porous cage 11 Release or shut off and. The coaxial nozzle tube 14 protruding into the porous cage 11 is a porous cage. It is connected to the cooling water inlet 3 outside the body 11. The nozzle tube 14 is installed inside the porous cage 11. A cooling water W injection hole 15 is provided. The nozzle tube 14 is placed inside the steam outlet 2 outside the porous cage 11. It projects and has the injection nozzle 16 for cooling water W there.   The first piston part 7 which can be moved in the nozzle tube 14 by the control piston 5 is nose. The injection holes 15 of the tube 14 are sequentially opened or closed. The second piston part 8 is Through-flow for flowing cooling water to the injection holes 15 and / or to the injection nozzle 16 of the steam outlet 2. The cooling water inlet 3 is adjusted by the size of the cross section X.   The second decompression space 10 surrounding the porous cage 11 forms the third decompression space through the passage hole 17. Is connected to the steam outlet 2.   The tubular perforated cylinder 6 is divided into two areas with different functions. Steam inlet The perforated cylinder 6 allows the vapor to flow into the perforated cage 11 in the axial longitudinal range attached to the unit 1. Has depressurization hole 6a for On the other hand, the axial lengthwise range attached to the second depressurization space 10 is the depressurization of the porous cage 11. It is configured as a closed blocking wall 6b for alternately opening and blocking the holes.   The control piston 5 is formed integrally with both piston parts 7, 8 and The piston rod 20 extending between the piston parts 7, 8 is connected to itself and the nozzle tube 14. An annular space (13) for flowing cooling water to the injection hole (15) of the nozzle tube (14) is formed between them. Both One of the piston parts 7, 8 is fitted with a piston ring seal 9, which is preferably made of metal. Therefore, it is passed through the nozzle tube 14 in an airtight and liquid-tight manner.   The flow-through cross section X of the cooling water inlet 3 has a water droplet-shaped pilot control cross section, and this cross section is large. The cross section of the water droplets faces the injection hole 15 of the nozzle tube 14. Water drop pilot system Instead of the cross section, the cross-section of the cooling water inlet 3 has the same size and / or different size. It can be configured with a plurality of pilot control holes.   The second (outer) porous cage 12 provided as another depressurization stage around the porous cage 11 is separated. The wall 12a contacts the inner porous cage 11 and divides the outer porous cage 12 into two hole portions. Divide.   The control piston 5 is surrounded by a porous cage 18 at the height of the steam inlet 1, In order to flow as uniformly as possible around the control piston 5 through the holes of this porous cage Steam flows in.   The axial spacing between both piston parts 7, 8 of the control piston 5 is determined by the nozzle tube The injection holes 15 of 14 are in a position (see FIG. 1) which is blocked by the first piston portion 7. At this time, the entire flow-through cross section X of the cooling water inlet 3 is located at one end position of the second piston portion 8 Is released in the direction of the injection hole 15 and is blocked in the direction of the injection nozzle 16. Is quantified as   In order to open the steam conversion valve, the perforated cylinder 6 is connected to the control piston 5 And partially pulled out from the porous cage 11 (see FIG. 2). In this way a lot of steam The depressurization hole 6a of the perforated cylinder 6 for allowing the steam to flow into the hole cage 11 also causes the steam to flow out. Therefore, the depressurization hole of the porous cage 11 closed by the blocking wall 6b of the porous cylinder 6 is the same. Sometimes released. In this partial load operating position, the injection hole 15 of the nozzle tube 14 is in the first piston. It is partially or completely released by the stone part 7. Then, the penetration of the cooling water inlet 3 Due to the second piston part 8, the flow cross section X is directed in the direction of the injection hole 15 as well as in the direction of the injection nozzle 16. But it has been released.   During full load operation, the second piston part 8 moves in the direction of the injection hole 15 of the nozzle tube 14. The second end position, and at this end position, the flow-through cross section X is completely released and the nozzle The flow of cooling water to the injection hole 15 of the pipe 14 is blocked, and the flow of cooling water to the injection nozzle 16 is blocked. It is completely open. That is, at this position, the porous cage 11 that forms the depressurization space The cooling water W is not sprayed inside.   The more steam to cool, the more cooling water is needed. this In this case, the depressurized volume of the porous cage 11 is no longer sufficient to completely evaporate the cooling water W. Yes. More and more steam is added to prevent the formation of harmful water droplets. The cooling water W is injected into the area of the steam outlet 2 via the injection nozzle 16. Full load operation Then all the cooling water W is injected there.   In order to spray the cooling water W through the spray nozzle 16, the cooling water is additionally swirled there. To be done. The stroke space above the control piston 5 contacts the steam via the compensation passage 19. It is connected to the housing 4 part.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),OA(BF,BJ,CF,CG ,CI,CM,GA,GN,ML,MR,NE,SN, TD,TG),AU,BB,BG,BR,BY,CA, CN,CZ,FI,HU,JP,KP,KR,KZ,L K,LV,MG,MN,MW,NO,NZ,PL,RO ,RU,SD,SK,UA,US,UZ,VN 【要約の続き】 分(8)が除圧空間の噴射孔(15)へと及び/又は蒸気 出口(2)の噴射ノズル(16)へと冷却水を流すための 貫流断面(X)の大きさで冷却水入口(3)を調節する。 多孔篭体(11)を取り囲む第2除圧空間(10)が通過孔 (17)を介して第3除圧空間を形成する蒸気出口(2) に接続されている。─────────────────────────────────────────────────── ─── Continued front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, M C, NL, PT, SE), OA (BF, BJ, CF, CG , CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AU, BB, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KP, KR, KZ, L K, LV, MG, MN, MW, NO, NZ, PL, RO , RU, SD, SK, UA, US, UZ, VN [Continued summary] Minutes (8) to the injection holes (15) in the depressurization space and / or steam For flowing cooling water to the injection nozzle (16) at the outlet (2) Adjust the cooling water inlet (3) according to the size of the cross section (X). The second depressurization space (10) surrounding the porous cage (11) is a passage hole. Steam outlet (2) forming a third depressurization space via (17) It is connected to the.

Claims (1)

【特許請求の範囲】 1 蒸気入口と冷却水入口と蒸気出口とを有するケーシングを備えており、この ケーシングのなかに除圧空間を形成する多孔篭体と、除圧空間への蒸気及び冷却 水の流れを調節する軸線方向で移動可能な制御ピストンが設けられている蒸気変 換弁において、 a)制御ピストン(5)が管状多孔シリンダ(6)に運動剛性に結合されており 、このシリンダが多孔篭体(11)のなかを軸線方向で移動可能であり、かつ多孔 篭体(11)への蒸気流入(D)と、多孔篭体(11)の周囲に設けられる第2除圧 空間(10)への蒸気流出とを解放しまた遮断し、 b)多孔篭体(11)のなかに突出する同軸ノズル管(14)が多孔篭体(11)の 外側で冷却水入口(3)に接続されており、かつ多孔篭体(11)の内部に冷却水 (W)用噴射孔(15)と、多孔篭体(11)の外側に冷却水(W)用噴射ノズル(16 )とを有し、 c)制御ピストン(5)がノズル管(14)のなかを移動可能であり、かつノズル 管(14)の噴射孔(15)を解放し遮断する第1ピストン部分(7)と、噴射孔(1 5)へと及び/又は噴射ノズル(16)へと冷却水を流すための貫流断面(X)の大 きさで冷却水入口(3)を調節する第2ピストン部分(8)とを有し、 d)多孔篭体(11)を取り囲む除圧空間(10)が通過孔(17)を介して第3除 圧空間を形成する蒸気出口(2)に接続されており、この蒸気出口のなかに噴射 ノズル(16)が突出することを特徴とする、蒸気変換弁。 2 多孔シリンダ(6)が蒸気入口(1)に付属した軸線方向長手範囲に蒸気入 口用除圧孔(8a)を有し、また第2除圧空間(10)に付属した軸線方向長手範囲 では多孔篭体(11)の除圧孔の解放 と遮断とを交互に行うための閉じた遮断壁(6b)として構成されていることを特 徴とする、請求項1に記載の蒸気変換弁。 3 制御ピストン(5)が両方のピストン部分(7,8)と一体に構成されており、 両方のピストン部分(7,8)の間を延びたピストンロツド(20)がそれ自身とノ ズル管(14)との間に、ノズル管(14)の噴射孔(15)へと冷却水を流すための 環状空間(13)を形成することを特徴とする、請求項1及び2に記載の蒸気変換 弁。 4 制御ピストン(5)の両方のピストン部分(7,8)がピストンリングシール( 9)によつて気密かつ液密にノズル管(14)に通されていることを特徴とする、 請求項1ないし3の1つに記載の蒸気変換弁。 5 冷却水入口(3)の貫流断面(X)が水滴状パイロツト制御断面を有し、この 断面の大きい水滴断面がノズル管(14)の噴射孔(15)の方向を向いていること を特徴とする、請求項1ないし4の1つに記載の蒸気変換弁。 6 冷却水入口(3)の貫流断面(X)が同じ大きさ及び/又は異なる大きさの複 数のパイロツト制御孔で形成されていることを特徴とする、請求項1ないし4の 1つに記載の蒸気変換弁。 7 ノズル管(14)の噴射孔(15)が第1ピストン部分(7)によつて遮断され る位固のとき、冷却水入口(3)の貫流断面(X)全体が一方の端位潰にある第2 ピストン部分(8)によつて噴射孔(15)の方向で解放され、また噴射ノズル(1 6)の方向で遮断されており、ノズル管(14)の噴射孔(15)を部分的に又は完 全に解放する位置に第1ピストン部分(7)があるとき、冷却水入口(3)の貫流 断面(X)が第2ピストン部分(8)によつて噴射孔(15)の方向及び噴射ノズル (16)の方向で解放されており、 ノズル管(14)の噴射孔(15)の方向で移動した第2端位置に第2ピストン部分 (8)があるとき、冷却水入口(3)の貫流断面(X)が完全に解放され、ノズル 管(14)の噴射孔(15)への水の流れが遮断され、噴射ノズル(16)への冷却水 の流れが完全に開放されているように、制御ピストン(5)の両方のピストン部 分(7,8)の間の軸線方向間隔が量定されていることを特徴とする、請求項1な いし6の1つに記載の蒸気変換弁。 8 多孔篭体(11)の周囲に別の除圧段として設けられる第2(外側)多孔篭体 (12)が隔壁でもつて内側多孔篭体(11)に当接して、外側多孔篭体(12)を2 つの孔部分に分割することを特徴とする、請求項1ないし7の1つに記載の蒸気 変換弁。[Claims] 1 A casing having a steam inlet, a cooling water inlet and a steam outlet is provided. A porous cage that forms a decompression space inside the casing, and steam and cooling to the decompression space A steam transformer equipped with an axially movable control piston that regulates the flow of water. In the valve conversion,   a) The control piston (5) is rigidly connected to the tubular perforated cylinder (6). , This cylinder is movable in the axial direction in the porous cage (11) and Steam inflow (D) into the cage (11) and second depressurization provided around the porous cage (11) Release and shut off steam outflow to space (10),   b) The coaxial nozzle tube (14) protruding into the porous cage (11) is attached to the porous cage (11). The cooling water is connected to the cooling water inlet (3) on the outside and inside the porous cage (11). (W) injection hole (15) and cooling water (W) injection nozzle (16) outside the porous cage (11). ) And   c) The control piston (5) is movable in the nozzle tube (14) and the nozzle The first piston portion (7) for releasing and blocking the injection hole (15) of the pipe (14) and the injection hole (1 5) Large cross section (X) for flowing cooling water to and / or to the injection nozzle (16) And a second piston portion (8) for adjusting the cooling water inlet (3) with a knob,   d) The depressurization space (10) surrounding the porous cage (11) is passed through the through hole (17) to the third depressurization space. It is connected to a steam outlet (2) that forms a pressure space, and injection is performed inside this steam outlet. A vapor conversion valve characterized in that a nozzle (16) projects. 2 The perforated cylinder (6) enters the steam in the axial longitudinal range attached to the steam inlet (1). Along with the pressure relief hole for mouth (8a) and attached to the second pressure relief space (10) Then release the decompression hole of the porous cage (11) It is specially configured as a closed barrier wall (6b) for alternately performing and blocking. The steam conversion valve according to claim 1, which is a characteristic. 3 Control piston (5) is integrated with both piston parts (7,8), A piston rod (20) extending between both piston parts (7, 8) is itself and For flowing cooling water to the injection hole (15) of the nozzle pipe (14) between the sludge pipe (14) Vapor conversion according to claims 1 and 2, characterized in that it forms an annular space (13). valve. 4 Both piston parts (7,8) of the control piston (5) are 9) is passed through the nozzle pipe (14) in an airtight and liquid-tight manner, The steam conversion valve according to claim 1. 5 The flow-through section (X) of the cooling water inlet (3) has a water droplet-like pilot control section, The cross section of the water droplet with a large cross section faces the injection hole (15) of the nozzle tube (14). 5. The steam conversion valve according to claim 1, wherein: 6 The cross section (X) of the cooling water inlet (3) has the same size and / or different size. 5. A plurality of pilot control holes, characterized in that they are formed. The vapor conversion valve according to one. 7 The injection hole (15) of the nozzle pipe (14) is blocked by the first piston part (7) The second cross-section (X) of the cooling water inlet (3) is in one end collapse when It is released in the direction of the injection hole (15) by the piston part (8) and also the injection nozzle (1 It is blocked in the direction of 6) and partially or completely covers the injection hole (15) of the nozzle pipe (14). When the first piston part (7) is in the fully released position, the flow through the cooling water inlet (3) The cross section (X) shows the direction of the injection hole (15) by the second piston portion (8) and the injection nozzle. Has been released in the direction of (16), The second piston portion is located at the second end position moved in the direction of the injection hole (15) of the nozzle pipe (14). When there is (8), the flow-through section (X) of the cooling water inlet (3) is completely released and the nozzle The flow of water to the injection hole (15) of the pipe (14) is blocked, and cooling water to the injection nozzle (16) Both piston parts of the control piston (5) so that the flow of is completely open The axial spacing between the minutes (7,8) is quantified, characterized in that The steam conversion valve according to one of Ishishi 6. 8. Second (outer) porous cage provided around the porous cage (11) as another depressurizing stage The (12) is held by the partition wall and abuts against the inner porous cage (11), so that the outer porous cage (12) is separated by two. Steam according to one of claims 1 to 7, characterized in that it is divided into two hole parts. Conversion valve.
JP6518621A 1993-02-18 1994-02-14 Steam conversion valve Pending JPH08506886A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4304972.9 1993-02-18
DE4304972A DE4304972C2 (en) 1993-02-18 1993-02-18 Steam conversion valve
PCT/EP1994/000411 WO1994019646A1 (en) 1993-02-18 1994-02-14 Steam desuperheating valve

Publications (1)

Publication Number Publication Date
JPH08506886A true JPH08506886A (en) 1996-07-23

Family

ID=6480775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6518621A Pending JPH08506886A (en) 1993-02-18 1994-02-14 Steam conversion valve

Country Status (10)

Country Link
EP (1) EP0685054B1 (en)
JP (1) JPH08506886A (en)
CN (1) CN1118189A (en)
AT (1) ATE147494T1 (en)
AU (1) AU6109294A (en)
DE (2) DE4304972C2 (en)
DK (1) DK0685054T3 (en)
ES (1) ES2098924T3 (en)
RU (1) RU2118749C1 (en)
WO (1) WO1994019646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108708978A (en) * 2018-08-24 2018-10-26 无锡卓尔阀业有限公司 Integral type multi-step pressure reduction attemperator

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385121A (en) * 1993-01-19 1995-01-31 Keystone International Holdings Corp. Steam desuperheater
DE19719120C2 (en) * 1997-05-07 2000-10-12 Schneider Bochumer Maschf A Device for cooling superheated steam
DE19917246C2 (en) * 1999-04-16 2003-10-30 Holter Gmbh & Co Steam-Conditioning
DE19960065B4 (en) * 1999-12-13 2011-04-14 Theo Beurskens Steam forming valve in straight form
EP2230430A1 (en) * 2009-03-16 2010-09-22 Siemens Aktiengesellschaft Combined regulating quick-acting valve for a steam turbine
DE202012003033U1 (en) * 2012-03-23 2013-06-26 Vag-Armaturen Gmbh Needle Valve
DE102014212786A1 (en) 2014-07-02 2016-01-07 Erhard Gmbh & Co. Kg Needle Valve
CN109833985B (en) * 2019-03-14 2020-09-04 重庆川仪调节阀有限公司 Atomizing nozzle structure of temperature reducing valve
SE1930345A1 (en) * 2019-10-24 2021-04-25 Bvt Sweden Ab A Steam Conditioning Valve
CN113654035B (en) * 2021-08-20 2023-08-04 射阳金港能源发展有限公司 Automatic control system and method for temperature and pressure reduction of regional cooling and heating steam

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2713150A1 (en) * 1977-03-25 1978-09-28 Schneider Bochumer Maschf A Steam pressure converter - with perforated moving and stationary closure elements
US4442047A (en) * 1982-10-08 1984-04-10 White Consolidated Industries, Inc. Multi-nozzle spray desuperheater
DE3304523A1 (en) * 1983-02-10 1984-08-16 Holter Regelarmaturen Gmbh & Co Kg, 4815 Schloss Holte-Stukenbrock STEAM FORMING VALVE
DE3323990C2 (en) * 1983-07-02 1986-09-04 Welland & Tuxhorn, 4800 Bielefeld Multi-stage, regulated throttle device
DE3720918C1 (en) * 1987-06-25 1988-11-24 Welland & Tuxhorn Steam reducing valve
DD286635A5 (en) * 1989-07-03 1991-01-31 Veb Gaskombinat "Fritz Selbmann",De SHAKE FOR BUCKET BAGGER
EP0479020B1 (en) * 1990-09-29 1994-11-23 Siemens Aktiengesellschaft Steam conversion valve with spindle drive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108708978A (en) * 2018-08-24 2018-10-26 无锡卓尔阀业有限公司 Integral type multi-step pressure reduction attemperator
CN108708978B (en) * 2018-08-24 2023-10-13 无锡卓尔阀业有限公司 Integrated multi-stage pressure reducing and temperature reducing device

Also Published As

Publication number Publication date
WO1994019646A1 (en) 1994-09-01
CN1118189A (en) 1996-03-06
EP0685054B1 (en) 1997-01-08
AU6109294A (en) 1994-09-14
DK0685054T3 (en) 1997-07-14
RU2118749C1 (en) 1998-09-10
DE59401539D1 (en) 1997-02-20
ATE147494T1 (en) 1997-01-15
EP0685054A1 (en) 1995-12-06
ES2098924T3 (en) 1997-05-01
DE4304972C2 (en) 1996-12-05
DE4304972A1 (en) 1994-08-25

Similar Documents

Publication Publication Date Title
CA2017895C (en) Pressure reducing and conditioning valves
CA2017896C (en) Conditioning valve
JPH08506886A (en) Steam conversion valve
CA1210422A (en) Multi-nozzle spray desuperheater
US4697619A (en) Solenoid valve having a power amplifier
US6746001B1 (en) Desuperheater nozzle
US10288280B2 (en) Dual cone spray nozzle assembly for high temperature attemperators
US4718456A (en) Steam conditioning valve
US3119405A (en) Compressed air or other gas control valves
JP3035344B2 (en) Steam and fuel oil supply and purge valve with cooling steam feature
RU95119996A (en) CONVERSION VALVE
WO2000009923A1 (en) A fluid pressure reduction valve
SU1539334A1 (en) Combination cutoff and control valve
KR102565764B1 (en) Turbine bypass valve
US2166390A (en) Relief valve
DE1800240C3 (en) Pilot operated safety valve
JPH06307577A (en) Steam conversion valve
AU635944C (en) Improved conditioning valve
RU2135872C1 (en) Air safety valve of condenser water chamber
JP2003159347A (en) Open valve
SU1740840A1 (en) Steam turbine valve
WO2008015431A2 (en) Condensate traps
JPS5821154B2 (en) stop and adjustment valve
GB659907A (en) Improvements in or relating to steam traps
JPS63174112A (en) Reducing valve