JPH08506876A - Solenoid operated valve - Google Patents

Solenoid operated valve

Info

Publication number
JPH08506876A
JPH08506876A JP7515871A JP51587195A JPH08506876A JP H08506876 A JPH08506876 A JP H08506876A JP 7515871 A JP7515871 A JP 7515871A JP 51587195 A JP51587195 A JP 51587195A JP H08506876 A JPH08506876 A JP H08506876A
Authority
JP
Japan
Prior art keywords
valve
mover
core
collision
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7515871A
Other languages
Japanese (ja)
Inventor
ライター,フェルディナント
マイエル,マルティン
ハイゼ,イエルク
カイム,ノルベルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4421947A external-priority patent/DE4421947A1/en
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH08506876A publication Critical patent/JPH08506876A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps
    • F02M2200/505Adjusting spring tension by sliding spring seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings

Abstract

(57)【要約】 公知の燃料噴射弁においては、例えば可動子及びコア等の摩耗にさらされる構成部材には、例えばクロム、モリブデン又はニッケルより成る耐摩耗性の層が施される。噴射弁の構成部材のコーティングは、電気的に行われるので、所望の楔状の層厚分布が得られ、これによって1つの小さい衝突領域だけが得られる。このような層厚分布は、物理的にあらかじめ与えられたものであって、殆ど影響を受けることはない。本発明による弁は、少なくとも1つの構成部材例えば可動子(27)を有しており、この可動子(27)は、耐摩耗性の層を施す前に段付けされた表面を有しており、この段付けされた表面は、磁石的及び液圧的な最適性に応じてそれぞれ調節可能に製造可能である。段部によって形成された環状の衝突区分(69)は、全耐用年数にわたって一定に維持される、規定された衝突面幅若しくは接触幅(b)を有している。何故ならば、長時間運転時においては、接触幅の増大は生じないからである。 (57) [Summary] In a known fuel injection valve, components that are exposed to wear, such as a mover and a core, are provided with a wear-resistant layer of, for example, chromium, molybdenum, or nickel. The coating of the components of the injection valve is performed electrically, so that the desired wedge-shaped layer thickness distribution is obtained, which results in only one small impact area. Such a layer thickness distribution is physically given beforehand and is hardly affected. The valve according to the invention comprises at least one component, for example a mover (27), which has a stepped surface before the wear-resistant layer is applied. The stepped surface can be adjusted in accordance with magnetic and hydraulic optimisation. The annular collision section (69) formed by the step has a defined collision surface width or contact width (b) which remains constant over the entire service life. This is because the contact width does not increase during long-time operation.

Description

【発明の詳細な説明】 電磁操作式の弁 技術分野 本発明は、請求項1の上位概念に記載した形式の電磁操作式の弁に関する。 摩耗にさらされる構成部分に耐摩耗性のコーティングを施す、電磁操作式の弁 特に燃料噴射弁は種々異なるものが公知である。 ドイツ連邦共和国特許出願公開第2942928号明細書によれば、可動子及 びノズル体等の摩耗にさらされる部分に耐摩耗性の反磁性の材料コーティングを 施すことが公知である。このようなコーティングは、弁ニードルの行程を制限す るために用いられ、これによって燃料噴射弁の可動な部分に作用する残留磁気の 影響は減少される。 ドイツ連邦共和国特許出願公開第3230844号明細書によれば同様に、燃 料噴射弁の衝突面及び可動子に耐摩耗性の表面を設けることが公知である。この ような表面は、例えばニッケルメめっきで付加的なコーティングを施すか、又は 窒化処理することによってつまり窒素を含浸(impregnation)させることによっ て硬化される。 またドイツ連邦共和国特許出願公開第371607 2号明細書によれば、摩耗及び侵食に特に強くさらされる、噴射弁の部分のため に、薄く構成することができダイヤモンドによって後処理することができるモリ ブデンハードコーティング(molybdenum hard coating)を使用することも公知 である。 ドイツ連邦共和国特許出願公開第3810826号明細書によれば、非常に正 確なエアギャップを得るために、少なくとも1つの衝突面を球欠状若しくは球形 キャップ状(spherical cap)に形成し、この場合に衝突面の中央に、非磁性で 高強度の材料より成る球形挿入体が形成されている燃料噴射弁について記載され ている。 またヨーロッパ特許公開第0536773号明細書によれば同様に、可動子の 円筒形の外周面及び環状の衝突面が、電気めっきによって硬質合金が施されてい る燃料噴射弁が公知である。クロム又はニッケルより成るコーティング層の厚さ は例えば15μm〜25μmである。電気めっきされたコーティングに従って、 やや楔状の層圧分布が形成され、この場合、その外側縁部において最小の層厚が 形成される。電気的に形成された層によって層厚分布は物理的にあらかじめ与え られており、ほとんど影響を受けることはない。所定の運転時間後に、衝突面は 摩耗によって不都合に処理され、これによって可動子の引き込み及び突き出し時 間が変化することにる。 発明の効果 請求項1に記載した特徴を有する、本発明の電磁石操作式の弁によれば、互い に衝突し合う構成部分のうちの少なくともどちらか一方が、耐摩耗性表面の形成 後に衝突面が長い運転時間後においても摩耗によって不都合に拡大されることが ないように構成されているので、可動な構成部分の引き込み及び突きだし時間が ほぼ一定に維持されるという利点を有している。これは、互いに衝突し合う構成 部分のうちの少なくとも一方が、耐摩耗性が得られる前に段突けされた表面を有 していることによって得られる。このような段突けされた表面は、磁気的又は液 圧的な最適性を得るために、それぞれ種々異なる状況に正確に合わせることがで きる。 請求項2以下に記載した手段によって、請求項1に記載した電磁操作式の弁、 特に燃料噴射弁の有利な実施態様及び改良が可能である。 互いに衝突し合う構成部分のうちの少なくとも一方の表面を、座ぐり研削工具 (ground counterbore)によって非常に正確に正確に形成すれば特に有利である 。これによって正確な寸法が得られる。このような非常に正確な研削工具を使用 することによって、従来のものよりも狭い公差を維持することができるので、噴 射弁の作動時に、可動子の引き込み時間及び特に突き出し時間の変動は非常にわ ずかである。 少なくとも1つの構成部分、例えば可動子の表面を段突けして構成したことに よって、非常に小さい衝突領域を得るという要求を満たしつつ、非電気式で磁性 の耐摩耗コーティングを施すこともできる。 互いに衝突し合う構成部分のうちの少なくともどちらか一方の衝突領域の表面 を、公知の方法例えばプラズマ窒化処理又はガス窒化処理等によって硬化させる ことによって耐摩耗性にすれば特に有利である。 有利な形式で、ストッパとして使用される、少なくとも1つの構成部材表面に 段部が形成されていれば、環状でその大きさが正確に規定された小さい衝突領域 が得られる。接触幅に相当するところの規定された衝突幅を有する環状の衝突領 域は、全耐用年数にわたって一定に維持される。何故ならば、長時間運転におけ る衝突面が摩耗しても、段部が設けられていので接触面は拡大しないからである 。確実にぶつかり合う(衝突する)ことが完全に保証される。衝突面が小さいこ とによって、液圧式の固着は避けられる。全耐用年数にわたって一定の接触幅が 保証されるので、衝突し合う部分、例えばコアと可動子との間のギャップの液圧 的な比は一定に維持されるという重要な利点も得られる。 図面 図面には本発明の実施例が概略的に示されていて、以下に詳しく説明されてい る。図1は燃料噴射弁であ って、図2は、噴射弁の、コア及び可動子の領域における衝突箇所の断面した部 分的な拡大図であって、図3は、本発明による段付けされた可動子の第1実施例 であって、図4は、本発明の第2実施例による、段付けされた可動子であって、 図5は、本発明による段付けされた可動子の第3実施例である。 実施例の説明 コア2の下側のコア端部9には、弁縦軸線10に対して同心的に、しかも気密 に、管状金属製の中間部材12が例えば溶接によって接続されていて、この中間 部材12はコア端部9を部分的に軸方向で取り囲んでいる。段付けされた巻芯3 は、コア2を部分的に覆っていて、直径の大きい段部15によって中間部材12 を少なくとも部分的に軸方向で覆っている。巻芯3及び中間部材12の下流には 、管状の弁座支持体16が延びている。この弁座支持体16は、例えば中間部材 12に堅固に結合されている。弁座支持体16内には、弁縦軸線10に対して同 心的に構成された縦孔17が延びている。縦孔17内には例えば管状の弁ニード ル19が配置されており、該弁ニードル19は、その下流側の端部20が、円錐 形の弁閉鎖体21に例えば溶接によって結合されている。この弁閉鎖体21の外 周部には、燃料を通過させるための例えば5つの偏平部22が設けられている。 噴射弁の操作は公知の形式で電磁石によって行われ る。弁ニードル19を軸方向で移動させて、戻しばね25のばね力に抗して噴射 弁を開若しくは閉鎖させるために、磁石コイル1、コア2及び可動子27による 電磁石的な回路が使用される。可動子27は、弁閉鎖体21とは反対側における 弁ニードル19の端部と、第1の溶接シーム28によって結合されていて、コア 2に整列されている。弁座支持体16の、下流側に存在する、コア2とは反対側 の端部内における縦孔17内には、定置の弁座を有する円筒形の弁座体29が溶 接によって気密に取り付けられている。 可動子27と共に弁ニードル19が弁縦軸線10に沿って軸方向で移動する間 、弁閉鎖体21をガイドするために、弁座体29のガイド孔32が使用される。 球状の弁閉鎖体21は、流れ方向で円錐台形に先細りする、弁座体29の弁座と 協働する。弁座体29は、弁閉鎖体21とは反対側の端部で、例えば鉢状に構成 された噴射孔付き円板34と同心的に堅固に結合されている。噴射孔付き円板3 4の底部には、侵食又は打ち抜きによって成形された少なくとも1つ、例えば4 つの噴射孔39が延びている。 噴射孔付き円板34を備えた弁座体29の押し込み深さは、弁ニードル19の 行程の前調節を規定する。この場合、磁石コイル1が励磁されていない状態での 弁ニードル19の一方の終端位置は、弁座体29の弁座に弁閉鎖体21が当接す ることによって規定され、 これに対して磁石コイル1が励磁された状態での弁ニードル19の他方の終端位 置は、可動子27がコイル端部9に当接することによって得られる。つまり、本 発明によって構成された、破線の円によって示された領域内において正確に得ら れる。 弁縦軸線10に対して同心的に延びる、コア2の流過孔46内に挿入された調 節スリーブ48(例えば転造されたばね鋼薄板より製造された)は、この調節ス リーブ48に当接する戻しばね25のプレロード(予荷重)を調節するために使 用される。この戻しばね25は、調節スリーブ48と反対側では弁ニードル19 に支えられている。 この噴射弁はプラスチック射出成形部50によって十分に取り囲まれており、 このプラスチック射出成形部50は、コア2から軸方向で磁石コイル1を越えて 弁座支持体16まで延びている。このプラスチック射出成形部50には、例えば 射出成形によって一緒に埋め込まれた電気式のプラグ52が属している。 燃料フィルタ61は、コア2の流入側の端部55でコア2の流過孔46内に突 入していて、燃料噴射弁を詰まらせたり損傷させたりする原因となる大きい燃料 成分を濾過するようになっている。 図2には、図1の破線の円で示した、弁ニードル19の一方の終端位置の領域 の拡大図が示されており、この終端位置において、可動子27がコア2のコア端 部9に当接する。公知のように、コア2のコア端部9及び可動子27には、例え ばクロムコーティング又はニッケルコーティングが電気めっきによって施される 。この場合、金属のコーティング65は、弁縦軸線10に対して垂直に延びる端 面67にも、また可動子27の外周面66にも少なくとも部分的に施される。こ のコーティング65は、特に耐摩耗性であって、また表面が小さいことによって 、突き当たる面が液圧式に固着することを減少させるが、これを確実に避けるも のではない。このコーティング65の層の厚さは一般に10μmと25μmとの 間である。 噴射弁を作動させるためには、コア2と可動子27とが、相対的に小さい範囲 内だけで、例えば可動子27の上端面の、弁縦軸線10とは反対側に向けられた 外側の範囲内だけで衝突するようにしなければならない。この要求は、電気的な コーティングによって得られる。電気的なコーティングにおいては、コーティン グしようとする部分、この実施例ではコア2及び可動子27の縁部に磁界ライン の集中が生じ、この磁界ラインの集中によって、図2に示したような楔状のコー ティング分布が得られる。塗布された楔状のコーティング65は、噴射弁の運転 時には小さい範囲内でのみ負荷を受けることになる。もちろん長時間運転時にお いて、衝突面が規定されることはない。何故ならば数百万回の衝突によってコー ティング65の部分は削り 取られ、衝突面はさらに拡大され、それによって楔状性は次第に減少されるから である。 これに対して図3には、本発明による可動子27の、上側の端面67領域にあ る部分が図示されている。この部分は、コーティング前に又は表面の耐摩耗性を 形成する前に既に段部区分70を有している。 電気式に形成されたコーティング65において生ぜしめらたコーティング部分 の分布が物理的に与えられ、ほとんど影響を与えることができないのに対して、 可動子27の段部は、コーティング前に若しくは耐摩耗性を形成する前に、相応 に要求された値に応じて、使用時にそれぞれ磁石式及び液圧式な最適さが得られ るように、あらかじめ規定されて製造される。非常に正確な座ぐり研削工具を使 用することによって、段部のための狭い公差が維持されるので、噴射弁の運転時 における、可動子27の引き込み及び突き出し時間の変動は非常にわずかである 。しかも端面67の段部区分70は、非常に小さい衝突領域に基づく要求を満た しながら、非電気式に設けられる耐摩耗性のコーティング(磁気的であってもよ い)を施すことを可能にする。 しかも、端面67は、少なくともその衝突区分69の領域内で、硬化法で表面 処理をほどこして耐摩耗性にすることができる。この場合、硬化法としては、例 えばプラズマ窒化法又はガス窒化法等の公知の窒化法 が適している。 図3に示されているように、可動子27の上側の端面67内で凹部を形成する 段部区分70によって、噴射弁の全耐用年数に亘って一定な衝突面幅及びひいて は接触幅が確実に維持される。段部区分70が設けられていることによって、端 面67において正確に規定された衝突区分69が形成される。 噴射弁の連続運転においては、コア2における可動子27の数百万回の衝突が 行なわれる。これはつまり、最小のストッパ面摩耗は避けられないということで ある。段部区分70によって、可動子27の上側の端面67の、ストッパとして 用いられる衝突区分69が段部底部71から明確に突き出している。これによっ てストッパとして、20μm〜500μmの間の幅bを有する環状に突き出る衝 突区分69が用いられる。この衝突区分69は、図3に示した実施例では、外周 面66と、内側にずらして形成された段部区分70との間に位置している。この 衝突区分69は、全耐用年数に亘って一定な幅bを有している。前述のような摩 耗が、衝突面幅若しくは接触幅に影響を与えることはもはやない。液圧式の固着 は、衝突面が小さいことに基づいて避けられる。全耐用年数に亘って一定な接触 幅が保証されるので、衝突する部分間のギャップ、この実施例ではコア2と可動 子27との間のギャップにおける液圧的な比は一定に維持され、非常に有利であ る。衝突区分69の偏平に延びる衝突面に対して、段部底部71から軸方向で5 μmの間隔を保っていれば本発明の利点が得られる。液圧的及び磁気的な最適性 は、段部底部71の深さを例えば5μmと15μmとの間で最適に選択すること によって得られる。 コーティングする前に若しくは耐摩耗性の表面を形成する前に、可動子27と コア2とに相応の段部区分70を設けて、これによって両方の衝突する側におい て非常に正確に規定された衝突区分69を形成することも考えられる(図3に示 されているように)。さらに、コア2にだけこのような段部区分70を設け、こ れに対して可動子27は例えば偏平な端面を有するようにすることも可能である 。このような図示していない実施例は、それほどしばしば使用されるものではな いが、段部の幾何学的な形状は、図3に示した実施例の可動子27におけるもの と同じである。 図4及び図5には、本発明による可動子27の別の構成が示されている。従っ て、衝突区分69は、端面67において弁縦軸線10の延びる方向に形成されて いて、それに対して段部区分70は、軸方向で引っ込めて、外周面66に向かっ て外側に延びて設けられている(図4参照)。図5には、衝突区分69が内側及 び外側で、つまり外周面66及び弁縦軸線10に対して段部区分70によって取 り囲まれている、可動子27の実施例が示されている。 可動子27の端面67及び又はコア2の端面の少なくとも一方に段部区分70 が存在するので、前述のようなクロムコーティング又はニッケルコーティングを 施す方法とは異なる、端面67の耐摩耗性を改良することによる品質向上を得る ための方法を使用することも可能である。可動子27及び又はコア2の表面構造 を変える、硬化法、例えばプラズマ窒化法、ガス窒化法又は気化法(carburetin g)を使用することによって、直接的なコーティングを行う方法を完全にやめる ことも可能である。Detailed Description of the Invention                              Solenoid operated valve   Technical field   The invention relates to a solenoid operated valve of the type described in the preamble of claim 1.   Electromagnetically actuated valve with wear-resistant coating on the components exposed to wear In particular, various types of fuel injection valves are known.   According to DE-A-2942928 of the Federal Republic of Germany, a movable element and And wear-resistant diamagnetic material coating on the parts exposed to wear It is known to apply. Such a coating limits the travel of the valve needle. Of the residual magnetism acting on the moving parts of the fuel injector. The impact is reduced.   According to the German patent application DE 32 30 844 A1, the It is known to provide wear resistant surfaces on the impingement surface of the material injection valve and the mover. this Such surfaces may be provided with an additional coating, for example by nickel plating, or By nitriding, that is, by impregnation with nitrogen. Is cured.   In addition, German Patent Application Publication No. 371607 No. 2, because of the part of the injection valve that is particularly exposed to wear and erosion It can be made thin and can be post-treated with diamond Also known to use molybdenum hard coating Is.   According to DE 3810826 A1, the German Federal Republic of Germany At least one impingement surface is spherical or spherical in order to obtain a precise air gap It is formed into a cap shape (spherical cap), and in this case, it is non-magnetic in the center of the collision surface. A fuel injection valve in which a spherical insert of high strength material is formed is described. ing.   In addition, according to European Patent Publication No. 0536773, similarly, The cylindrical outer peripheral surface and the annular collision surface are coated with hard alloy by electroplating. Fuel injection valves are known. Thickness of coating layer made of chromium or nickel Is, for example, 15 μm to 25 μm. According to the electroplated coating, A slightly wedge-shaped layer pressure distribution is formed, in which case the minimum layer thickness at the outer edge is It is formed. The layer thickness distribution is physically pregiven by the electrically formed layer. It has not been affected. After a certain operating time, the collision surface It is treated unfavorably due to wear, which causes the mover to retract and stick out. The time will change.   The invention's effect   According to the electromagnet-operated valve of the invention, which has the features of claim 1, At least one of the components that collide with the other surface forms a wear-resistant surface. Later, the impact surface can be undesirably enlarged by wear even after a long operating time. Since it is configured so that there is no It has the advantage that it remains almost constant. This is a configuration that collides with each other At least one of the parts has a stepped surface before wear resistance is obtained. It is obtained by doing. Such bumped surfaces may be magnetic or liquid. In order to obtain pressure optimality, it is possible to precisely adjust to different situations. Wear.   Claim 2 The electromagnetically actuated valve according to claim 1 by means described below, Particularly advantageous embodiments and improvements of the fuel injection valve are possible.   At least one of the surfaces of the components that collide with each other is provided with a spot facing grinding tool. It is especially advantageous if it is formed very accurately and accurately by (ground counterbore) . This gives accurate dimensions. Use such a highly accurate grinding tool By doing so, it is possible to maintain a narrower tolerance than conventional ones. When the firing valve is activated, the variation of the retracting time of the mover and especially the ejecting time is very small. It's quiet.   At least one component, for example, a structure in which the surface of the mover is stepped Therefore, while satisfying the requirement of obtaining a very small collision area, it is non-electric and magnetic. It is also possible to apply a wear-resistant coating.   The surface of the collision area of at least one of the mutually colliding components Is cured by a known method such as plasma nitriding treatment or gas nitriding treatment. It is thus particularly advantageous if it is made wear resistant.   Advantageously, on at least one component surface used as a stop If a step is formed, it is an annular small collision area whose size is precisely defined. Is obtained. An annular collision area with a defined collision width corresponding to the contact width The area remains constant for the entire useful life. Because you should drive for a long time Even if the collision surface wears, the contact surface does not expand because the step is provided. . There is complete assurance that the bumps (collisions) will definitely occur. The collision surface is small With, hydraulic sticking is avoided. Constant contact width over the entire service life As it is guaranteed, the hydraulic pressure in the parts that collide, for example in the gap between the core and the mover The important advantage is that the relative ratio remains constant.   Drawing   An embodiment of the invention is shown schematically in the drawings and is explained in more detail below. It 1 is a fuel injection valve 2 is a cross-sectional view of the collision point of the injection valve in the region of the core and the mover. FIG. 3 is a partial enlarged view showing a first embodiment of a stepped mover according to the present invention. 4 is a stepped mover according to a second embodiment of the present invention, FIG. 5 is a third embodiment of the stepped mover according to the present invention.   Example description   The core end 9 on the lower side of the core 2 is concentric with the valve longitudinal axis 10 and is airtight. Is connected to the intermediate member 12 made of tubular metal by welding, for example. The member 12 partially surrounds the core end 9 in the axial direction. Stepped core 3 Partially covers the core 2 and has a step 15 with a large diameter that allows the intermediate member 12 to Covering at least partially in the axial direction. Downstream of the winding core 3 and the intermediate member 12 A tubular valve seat support 16 extends. The valve seat support 16 is, for example, an intermediate member. Tightly coupled to 12. The valve seat support 16 has the same structure with respect to the valve longitudinal axis 10. A longitudinal hole 17 is formed which is constructed in a mental manner. In the vertical hole 17, for example, a tubular valve needle The valve needle 19 has a downstream end 20 that is conical. It is connected to the valve closing body 21 in the form of, for example, by welding. Outside this valve closing body 21 For example, five flat portions 22 for passing fuel are provided on the peripheral portion.   The injection valve is operated by an electromagnet in a known manner. It The valve needle 19 is moved in the axial direction, and the injection is performed against the spring force of the return spring 25. By the magnet coil 1, the core 2 and the mover 27 to open or close the valve An electromagnetic circuit is used. The mover 27 is provided on the side opposite to the valve closing body 21. The end of the valve needle 19 is connected by a first weld seam 28 to the core Aligned to 2. The side opposite to the core 2 that is present on the downstream side of the valve seat support 16 A cylindrical valve seat body 29 having a stationary valve seat is melted in the vertical hole 17 in the end portion of the It is attached airtight by contact.   While the mover 27 and the valve needle 19 move axially along the valve longitudinal axis 10. In order to guide the valve closing body 21, the guide hole 32 of the valve seat body 29 is used. The spherical valve closing body 21 is tapered with a frusto-conical shape in the flow direction to the valve seat of the valve seat body 29. Collaborate. The valve seat body 29 is formed, for example, in a bowl shape at the end portion on the side opposite to the valve closing body 21. It is concentrically and firmly connected to the disc 34 with the injection holes. Disc with injection hole 3 At the bottom of 4 is at least one formed by erosion or stamping, eg 4 One injection hole 39 extends.   The pushing depth of the valve seat body 29 having the disc 34 with the injection holes is equal to that of the valve needle 19. Pre-regulation of travel is specified. In this case, when the magnet coil 1 is not excited At one end position of the valve needle 19, the valve closing body 21 contacts the valve seat of the valve seat body 29. Stipulated by On the other hand, the other end position of the valve needle 19 when the magnet coil 1 is excited. The position is obtained by bringing the mover 27 into contact with the coil end 9. That is, the book Exactly obtained within the area constituted by the invention, indicated by the dashed circle Be done.   A control inserted in the through hole 46 of the core 2 extending concentrically with respect to the valve longitudinal axis 10. The knot sleeve 48 (e.g., manufactured from rolled spring steel sheet) is used to adjust this adjustment sleeve. Used to adjust the preload of the return spring 25 that abuts the leaves 48. Used. This return spring 25 is provided on the side opposite to the adjusting sleeve 48 on the valve needle 19 Supported by.   This injection valve is fully surrounded by the plastic injection molding part 50, This plastic injection molding part 50 extends from the core 2 over the magnet coil 1 in the axial direction. It extends to the valve seat support 16. In this plastic injection molding part 50, for example, An electrical plug 52 is included which is embedded together by injection molding.   The fuel filter 61 projects into the flow hole 46 of the core 2 at the end 55 on the inflow side of the core 2. Large fuel that is present and can cause the fuel injector to clog or damage It is designed to filter the ingredients.   In FIG. 2, a region of one end position of the valve needle 19 shown by a broken circle in FIG. In this end position, the mover 27 has the core end of the core 2 shown in FIG. Abut the part 9. As is well known, for example, the core end 9 of the core 2 and the mover 27 are If chromium or nickel coating is applied by electroplating . In this case, the metallic coating 65 has ends that extend perpendicular to the valve longitudinal axis 10. It is at least partially applied to the surface 67 and also to the outer peripheral surface 66 of the mover 27. This Coating 65 is particularly wear resistant and has a small surface , It reduces the hydraulic sticking of the abutting surface, but this should be avoided. Not of. The layer thickness of this coating 65 is generally between 10 μm and 25 μm. In between.   In order to operate the injection valve, the core 2 and the mover 27 are in a relatively small range. Inwardly, for example, the upper end surface of the mover 27 was directed to the side opposite to the valve longitudinal axis 10. You must try to collide only within the outer limits. This requirement is electrical Obtained by coating. For electrical coating, coating Magnetic field lines on the edges of the core 2 and the mover 27 in this embodiment. Concentration occurs, and due to the concentration of this magnetic field line, a wedge-shaped cord as shown in FIG. Ting distribution is obtained. The applied wedge-shaped coating 65 operates the injection valve. Sometimes it will be loaded only within a small range. Of course, when driving for a long time However, the collision surface is not defined. Because millions of collisions caused Cut the part of the tongue 65 Taken, the impact surface is further enlarged, which reduces the wedge-likeness gradually. Is.   On the other hand, in FIG. 3, the mover 27 according to the present invention is shown in the upper end face 67 region. Parts are shown. This part should have abrasion resistance before coating or on the surface. Prior to forming it already has a step section 70.   The coating portion produced in the electrically formed coating 65 Whereas the distribution of is given physically and has little effect, The step of the mover 27 should be adjusted before coating or before forming wear resistance. Depending on the value required for the Is pre-specified and manufactured. Use a very accurate spot facing grinding tool The narrow tolerances for the steps are maintained by using the The fluctuations in the retracting and ejecting times of the mover 27 are extremely small. . Moreover, the stepped section 70 of the end face 67 fulfills the requirements based on a very small collision area. However, a non-electrically applied wear-resistant coating (may be magnetic I) can be applied.   Moreover, the end face 67 is hardened by a hardening method at least in the region of the collision section 69. It can be treated to make it wear resistant. In this case, the curing method is Known nitriding methods such as plasma nitriding method or gas nitriding method Is suitable.   As shown in FIG. 3, a recess is formed in the upper end surface 67 of the mover 27. The step section 70 ensures a constant impingement surface width and thus a constant lifetime over the life of the injection valve. Ensures that the contact width is maintained. Due to the provision of the step section 70, the end A precisely defined collision section 69 is formed at the face 67.   In the continuous operation of the injection valve, collision of the mover 27 on the core 2 millions of times occurs. Done. This means that minimal stopper surface wear is unavoidable. is there. The step section 70 serves as a stopper for the upper end surface 67 of the mover 27. The collision section 69 used clearly projects from the step bottom 71. By this And as a stopper, an impact projecting in an annular shape having a width b between 20 μm and 500 μm The protrusion section 69 is used. In the embodiment shown in FIG. 3, the collision section 69 is the outer circumference. It is located between the surface 66 and an inwardly offset step section 70. this The collision section 69 has a constant width b over its entire useful life. As mentioned above Abrasion no longer affects the impact face width or contact width. Hydraulic sticking Is avoided due to the small impact surface. Constant contact over the entire service life The width is guaranteed so that the gap between the impacting parts, movable in this example with the core 2 The hydraulic ratio in the gap with the child 27 is kept constant, which is very advantageous. It In the axial direction from the step bottom portion 71 to the flatly extending collision surface of the collision section 69. The advantage of the present invention can be obtained if the μm spacing is maintained. Hydraulically and magnetically optimal Is to optimally select the depth of the step bottom portion 71 between, for example, 5 μm and 15 μm. Obtained by   Before coating or forming a wear resistant surface, the mover 27 and Corresponding step sections 70 are provided on the core 2 so that both impacting sides are It is also conceivable to form a very accurately defined collision section 69 (see FIG. 3). As has been done). Furthermore, only the core 2 is provided with such a step section 70, On the other hand, the mover 27 may have a flat end face, for example. . Such an unillustrated embodiment is not so often used. However, the geometrical shape of the stepped portion is that of the mover 27 of the embodiment shown in FIG. Is the same as.   4 and 5 show another structure of the mover 27 according to the present invention. Follow The collision section 69 is formed at the end face 67 in the direction in which the valve longitudinal axis 10 extends. The step section 70, on the other hand, is axially retracted towards the outer peripheral surface 66. Is provided so as to extend outward (see FIG. 4). In FIG. 5, the collision section 69 extends inward. And outside, that is, with respect to the outer peripheral surface 66 and the valve longitudinal axis 10 by means of a step section 70. An embodiment of the mover 27 is shown enclosed.   At least one of the end surface 67 of the mover 27 and / or the end surface of the core 2 has a step section 70. Is present, the chrome or nickel coating as described above Obtain quality improvement by improving the wear resistance of the end surface 67, which is different from the application method It is also possible to use the method for Surface structure of mover 27 and / or core 2 Curing methods such as plasma nitriding, gas nitriding or vaporization (carburetin) g) completely eliminates the method of direct coating It is also possible.

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,DE, DK,ES,FR,GB,GR,IE,IT,LU,M C,NL,PT,SE),BR,CN,CZ,JP,K R,RU,US (72)発明者 ハイゼ,イエルク ドイツ連邦共和国 71706 マルクグレー ニンゲン アイヒェンヴェーク 15 (72)発明者 カイム,ノルベルト ドイツ連邦共和国 74321 ビーティヒハ イム―ビッシンゲン メルゲンターラーシ ュトラーセ 21─────────────────────────────────────────────────── ─── Continued front page    (81) Designated countries EP (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, M C, NL, PT, SE), BR, CN, CZ, JP, K R, RU, US (72) Inventors Heise and Jerk             Germany 71706 Mark Gray             Ningen Eichenweg 15 (72) Inventor Kaim Norbert             Germany 74321 Beatty Ha             Im-Bissingen             Utrase 21

Claims (1)

【特許請求の範囲】 1. 電磁操作式の弁、特に内燃機関の燃料噴射装置のための燃料噴射弁であっ て、弁縦軸線と、強磁性材料より成るコアと、磁石コイルと、可動子とを備えて おり、該可動子が、定置の弁座と協働する弁閉鎖体を操作し、磁石コイルの励磁 された状態でコアの衝突面に向かって引き寄せられるようになっている形式のも のにおいて、 それぞれ互いに向き合っている、可動子(27)の端面(67)及びコア (2)の端面の少なくともどちらか一方の端面が、衝突区分(69)と、この衝 突区分(69)よりも低い位置にある段部区分(70)とに分割されていて、こ れらの区分のうちの少なくとも1つの衝突区分(69)が所定の幅(b)を有し ていることを特徴とする、電磁操作式の弁。 2. 可動子(27)に設けられた衝突区分(69)及び又はコア(2)に設け られた衝突区分のうちの少なくとも一方の衝突区分(69)が、端面(67)の 直径の一部だけを成す幅(b)を有している、請求項1記載の弁。 3. 可動子(27)に設けられた衝突区分(69)及び又はコア(2)に設け られた衝突区分のうちの少なくとも1つの衝突区分(69)が、20μm〜5 00μmの間の幅(b)を有している、請求項1記載の弁。 4. 可動子(27)に設けられた段部区分(70)及び又はコア(2)に設け られた段部区分のうちの少なくとも一方の段部区分(70)が、衝突区分(69 )から始まって弁縦軸線(10)に向かって延びている、請求項1記載の弁。 5. 可動子(27)に設けられた段部区分(70)及び又はコア(2)に設け られた段部区分のうちの少なくとも一方の段部区分(70)が、衝突区分(69 )から始まって弁縦軸線(10)とは反対方向に延びている、請求項1記載の弁 。 6. コア(2)及び又は可動子(27)が端面(67)の領域でコーティング されている、請求項1記載の弁。 7. コーティング(65)によって施された層が磁気層である、請求項6記載 の弁。 8. コア(2)及び又は可動子(27)が端面(67)の領域で硬化法によっ て処理されている、請求項1記載の弁。[Claims] 1. An electromagnetically operated valve, especially a fuel injector for an internal combustion engine fuel injector. And includes a valve longitudinal axis, a core made of a ferromagnetic material, a magnet coil, and a mover. The mover operates a valve closure that cooperates with a stationary valve seat to energize the magnet coil. In the form that is pulled toward the collision surface of the core in the state of being In       The end face (67) and the core of the mover (27) facing each other. At least one of the end faces of (2) and the collision section (69) and this collision It is divided into a step section (70) located at a lower position than the projecting section (69). At least one collision section (69) of these sections has a predetermined width (b) An electromagnetically operated valve, which is characterized in that 2. Provided on the collision section (69) provided on the mover (27) and / or on the core (2) At least one of the collision sections (69) of the end surfaces (67) 2. The valve according to claim 1, having a width (b) forming only part of the diameter. 3. Provided on the collision section (69) provided on the mover (27) and / or on the core (2) At least one of the impacted collision sections (69) is between 20 μm and 5 μm. A valve according to claim 1, having a width (b) of between 00 μm. 4. Provided on the step section (70) provided on the mover (27) and / or on the core (2) At least one step section (70) of the provided step sections has a collision section (69). 2.) A valve according to claim 1, which starts from 1) and extends toward the valve longitudinal axis (10). 5. Provided on the step section (70) provided on the mover (27) and / or on the core (2) At least one step section (70) of the provided step sections has a collision section (69). 3.) A valve as claimed in claim 1, which starts from 1) and extends in a direction opposite to the valve longitudinal axis (10). . 6. The core (2) and / or the mover (27) are coated in the area of the end face (67). The valve of claim 1, wherein the valve is: 7. 7. The layer provided by the coating (65) is a magnetic layer. Valve. 8. The core (2) and / or the mover (27) are cured by the curing method in the region of the end face (67). The valve according to claim 1, wherein the valve has been treated.
JP7515871A 1993-12-09 1994-11-24 Solenoid operated valve Pending JPH08506876A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4341961 1993-12-09
DE4341961.5 1993-12-09
DE4421947.4 1994-06-23
DE4421947A DE4421947A1 (en) 1993-12-09 1994-06-23 Electromagnetically actuated valve
PCT/DE1994/001389 WO1995016125A1 (en) 1993-12-09 1994-11-24 Electromagnetic valve

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007065577A Division JP4755619B2 (en) 1993-12-09 2007-03-14 Solenoid operated valve

Publications (1)

Publication Number Publication Date
JPH08506876A true JPH08506876A (en) 1996-07-23

Family

ID=25931898

Family Applications (2)

Application Number Title Priority Date Filing Date
JP7515871A Pending JPH08506876A (en) 1993-12-09 1994-11-24 Solenoid operated valve
JP2007065577A Expired - Lifetime JP4755619B2 (en) 1993-12-09 2007-03-14 Solenoid operated valve

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007065577A Expired - Lifetime JP4755619B2 (en) 1993-12-09 2007-03-14 Solenoid operated valve

Country Status (8)

Country Link
EP (1) EP0683861B1 (en)
JP (2) JPH08506876A (en)
CN (1) CN1055524C (en)
BR (1) BR9406081A (en)
CZ (1) CZ284430B6 (en)
ES (1) ES2113722T3 (en)
RU (1) RU2131992C1 (en)
WO (1) WO1995016125A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896195B2 (en) 2002-04-09 2005-05-24 Aisan Kogyo Kabushiki Kaisha Electromagnetic fuel injection valve and method for manufacturing same
JP2007205234A (en) * 2006-02-01 2007-08-16 Denso Corp Fuel injection valve
US8020789B2 (en) 2002-03-04 2011-09-20 Robert Bosch Gmbh Fuel injection valve
JP2014169707A (en) * 2014-06-27 2014-09-18 Denso Corp Fuel injection valve
WO2015159622A1 (en) * 2014-04-14 2015-10-22 日立オートモティブシステムズ株式会社 Fluid control device
JP2016040470A (en) * 2015-12-22 2016-03-24 株式会社デンソー Fuel injection valve
JPWO2015136974A1 (en) * 2014-03-14 2017-04-06 日立オートモティブシステムズ株式会社 Solenoid valve

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3819907B2 (en) * 2004-02-27 2006-09-13 株式会社ケーヒン Electromagnetic fuel injection valve and manufacturing method thereof
JP3819906B2 (en) * 2004-02-27 2006-09-13 株式会社ケーヒン Electromagnetic fuel injection valve and manufacturing method thereof
DE102010064097A1 (en) 2010-12-23 2012-06-28 Robert Bosch Gmbh Electromagnetically actuatable valve e.g. fuel injection valve of internal combustion engine, has movable valve needle with lower stopper comprising top stop face with elevations and depressions on which armature rests
JP2012246789A (en) * 2011-05-25 2012-12-13 Denso Corp Fuel injection valve
JP2013072298A (en) * 2011-09-27 2013-04-22 Hitachi Automotive Systems Ltd Fuel injection valve
JP6087210B2 (en) 2013-05-24 2017-03-01 日立オートモティブシステムズ株式会社 Fuel injection valve
DE102014200574A1 (en) * 2014-01-15 2015-07-16 Robert Bosch Gmbh Non-tacky nip for valves with solenoid solenoid actuation
DE102015205430A1 (en) * 2015-03-25 2016-09-29 Robert Bosch Gmbh Electromagnetically actuated quantity control valve, in particular for controlling the delivery rate of a high-pressure fuel pump
DE102016203083A1 (en) * 2016-02-26 2017-08-31 Robert Bosch Gmbh magnetic valve
DE102021212790A1 (en) 2021-11-15 2023-05-17 Robert Bosch Gesellschaft mit beschränkter Haftung Electromagnetically actuable valve and method of manufacture
DE102021212791A1 (en) 2021-11-15 2023-05-17 Robert Bosch Gesellschaft mit beschränkter Haftung Electromagnetically actuable valve and method of manufacture
DE102021213142A1 (en) 2021-11-23 2023-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Electromagnetically operable device and method of manufacturing a magnetic circuit component of an electromagnetically operable device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3230844A1 (en) * 1982-08-19 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart ELECTROMAGNETICALLY ACTUABLE VALVE
IT1175561B (en) * 1984-07-12 1987-07-01 Spica Spa IMPROVED ELECTROINJECTOR FOR FOOD FUEL TO A C.I. ENGINE
JPH0735763B2 (en) * 1987-05-27 1995-04-19 株式会社日立製作所 Electromagnetic fuel injection valve with excellent impact resistance and wear resistance
IT1222137B (en) * 1987-07-27 1990-09-05 Weber Srl IMPROVED ELECTROINJECTOR FOR FOOD FUEL WITH INTERNAL COMBUSTION ENGINES
DE3834447A1 (en) * 1988-10-10 1990-04-12 Mesenich Gerhard ELECTROMAGNETIC INJECTION VALVE AND METHOD FOR THE PRODUCTION THEREOF
DE3834444A1 (en) * 1988-10-10 1990-04-12 Mesenich Gerhard ELECTROMAGNETIC INJECTION VALVE WITH DIAPHRAGM SPRING
IT1250845B (en) * 1991-10-11 1995-04-21 Weber Srl ELECTROMAGNETICALLY OPERATED FUEL DOSING AND PULVERIZING VALVE FOR AN ENDOTHERMAL MOTOR FEEDING DEVICE

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020789B2 (en) 2002-03-04 2011-09-20 Robert Bosch Gmbh Fuel injection valve
US6896195B2 (en) 2002-04-09 2005-05-24 Aisan Kogyo Kabushiki Kaisha Electromagnetic fuel injection valve and method for manufacturing same
US8656591B2 (en) 2002-12-04 2014-02-25 Robert Bosch Gmbh Fuel injector
JP2007205234A (en) * 2006-02-01 2007-08-16 Denso Corp Fuel injection valve
DE102007000062A1 (en) 2006-02-01 2008-08-14 Denso Corp., Kariya Fuel injection valve of internal combustion engine, has movable core and stationary core with annular protrusions at axial end towards end of stationary core and movable core
JPWO2015136974A1 (en) * 2014-03-14 2017-04-06 日立オートモティブシステムズ株式会社 Solenoid valve
US10190555B2 (en) 2014-03-14 2019-01-29 Hitachi Automotive Systems, Ltd. Electromagnetic valve
WO2015159622A1 (en) * 2014-04-14 2015-10-22 日立オートモティブシステムズ株式会社 Fluid control device
JP2015204345A (en) * 2014-04-14 2015-11-16 日立オートモティブシステムズ株式会社 fluid control solenoid
JP2014169707A (en) * 2014-06-27 2014-09-18 Denso Corp Fuel injection valve
JP2016040470A (en) * 2015-12-22 2016-03-24 株式会社デンソー Fuel injection valve

Also Published As

Publication number Publication date
EP0683861A1 (en) 1995-11-29
JP4755619B2 (en) 2011-08-24
CN1116870A (en) 1996-02-14
CZ284430B6 (en) 1998-11-11
CZ198095A3 (en) 1996-05-15
EP0683861B1 (en) 1998-03-04
JP2007187167A (en) 2007-07-26
WO1995016125A1 (en) 1995-06-15
RU2131992C1 (en) 1999-06-20
BR9406081A (en) 1996-02-06
CN1055524C (en) 2000-08-16
ES2113722T3 (en) 1998-05-01

Similar Documents

Publication Publication Date Title
JPH08506877A (en) Solenoid operated valve
JP4755619B2 (en) Solenoid operated valve
US5996911A (en) Electromagnetically actuated valve
JP2002521614A (en) Solenoid operated valve
JPH0152584B2 (en)
EP0345771B1 (en) Electromagnetic type fuel injection valve
KR100365608B1 (en) Electromagentically operable valve
US4655396A (en) Electromagnetic fuel injector
EP0816671A1 (en) An electro-magnetically operated valve
US6679435B1 (en) Fuel injector
EP1001863A1 (en) Method for producing a valve seat body for a fuel injection valve, and corresponding fuel injection valve
US4660770A (en) Electromagnetic fuel injector
EP1617071B1 (en) Electromagnetic type fuel injection valve
US20070007366A1 (en) Method for producing and fixing a perforated disk
EP1353062A2 (en) Fuel injector having an orifice plate with offset coining angled orifices
JPH0777127A (en) Electromagnetic fuel injection valve and adjustment of fuel injection rate in electromagnetic fuel injection valve
JPH06159185A (en) Air gap forming method of electromagnetic valve
WO2009153078A1 (en) Method for setting the stroke of a valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050209

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060309

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061222