WO2015159622A1 - Fluid control device - Google Patents
Fluid control device Download PDFInfo
- Publication number
- WO2015159622A1 WO2015159622A1 PCT/JP2015/057613 JP2015057613W WO2015159622A1 WO 2015159622 A1 WO2015159622 A1 WO 2015159622A1 JP 2015057613 W JP2015057613 W JP 2015057613W WO 2015159622 A1 WO2015159622 A1 WO 2015159622A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid control
- control device
- magnetic core
- convex
- fixed magnetic
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/20—Varying fuel delivery in quantity or timing
- F02M59/36—Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
Definitions
- the present invention relates to a fluid control device, and more particularly to a shape of a collision portion in a solenoid valve related to a high-pressure fuel supply pump that supplies fuel to an internal combustion engine at a high pressure.
- Patent Document 1 discloses a shape in which a convex portion is provided in a part in the circumferential direction with respect to a collision portion of a fuel injection valve provided with an electromagnetic drive portion.
- Patent Document 2 discloses a shape in which a collision shape of the fuel injection valve is provided with a tapered shape extending in the inner diameter direction on the magnetic attraction surface, and as a result, the collision portion has a predetermined width. .
- An example of a collision surface shape of an electromagnetic drive unit is a fuel injection valve as shown in Patent Document 1.
- the shape of the collision portion in order to prevent sticking of the collision portion in the fuel and a decrease in responsiveness caused by the sticking, the shape of the collision portion is provided with a convex portion in a part in the circumferential direction.
- the solenoid valve of the high-pressure fuel supply pump needs to be designed to allow the movable part to incline and collide from the viewpoints of downsizing and cost reduction as described above.
- the collision location is not specified and is often formed randomly in the circumferential direction. For this reason, in the case of the collision part shape as shown in Patent Document 1, there is a high possibility of collision at a part where there is no convex part, and it is difficult to reduce stress.
- Patent Document 2 discloses a collision portion shape of a fuel injection valve that prevents a decrease in responsiveness.
- this structure does not assume the inclination of the movable portion, and when the vehicle collides with an inclination, the collision portion causes a corner hit and it is difficult to have a predetermined width. As a result, as in Patent Document 1, it is difficult to reduce stress.
- FIG. 1 shows an enlarged view of a solenoid valve collision portion in a conventional high-pressure fuel supply pump.
- a solenoid valve collision portion Inside the solenoid valve, there is a fixed magnetic core and a movable part that is attracted to it and reciprocates at high speed in the fuel.
- the valve opening and closing valve The timing is changed.
- the movable part since the flow rate passing through the valve portion is large, the stroke of the movable portion is large, and from the viewpoint of miniaturization and cost reduction, only a minimum guide portion can be provided. It is necessary to design in such a way that it can tilt and collide. For this reason, the movable part causes one-side contact as shown in FIG.
- the collision portion may cause a piece of contact as before the treatment, and an excessive stress may be generated.
- an electromagnetic valve structure having higher reliability can be obtained by adopting a collision part shape that prevents excessive stress from being generated when the movable part collides while tilting without reducing the magnetic attractive force.
- An object is to provide a high-pressure fuel supply pump equipped with the same.
- a fixed magnetic core and a movable part that is attracted to and driven by the fixed magnetic core, and a convex part formed of a curved surface having a curvature radius in the convex direction is provided on the fixed magnetic core side end surface part of the movable part.
- the convex part becomes a collision part, and the curvature radius of the convex part is an angle R connecting the outermost peripheral part and the end face part of the movable part.
- the shape is larger than the curvature radius of the part.
- the curvature radius of the portion that continues from the convex portion to the flat portion on the inner diameter side and the corner R portion on the outer diameter side continuously changes in the radial direction. Furthermore, a convex part is formed by the surface treatment layer produced
- a magnetic material is often used for the movable part, and since the surface hardness is relatively low, it is common to perform a surface treatment to improve wear resistance. For this reason, if a convex part shape can be formed by surface treatment, the effect of this invention can be acquired, without adding a new process process.
- FIG. 1 show sectional drawing of the electromagnetic valve collision part periphery which concerns on Example 1 of this invention.
- Example 2 show sectional drawing of the solenoid valve collision part periphery which concerns on Example 2 of this invention.
- Example 3 show sectional drawing of the electromagnetic valve collision part periphery which concerns on Example 3 of this invention.
- Example 4 show sectional drawing of the electromagnetic valve collision part periphery which concerns on Example 4 of this invention.
- FIG. 2 shows the overall configuration of a system that implements the first to fourth embodiments of the present invention.
- the high-pressure fuel supply pump incorporates a plurality of parts and mechanisms in the body 1 and is attached to a cylinder head 20 of the internal combustion engine.
- a suction passage 9, a pressurizing chamber 11, and a discharge passage 12 are formed in the body 1.
- the suction passage 9 and the discharge passage 12 are provided with an electromagnetic valve 5 and a discharge valve 8, and the discharge valve 8 is a check valve that restricts the flow direction of fuel.
- the plunger 2 is slidably inserted into the cylinder 120, and the retainer 3 is attached to the lower end.
- the urging force of the return spring 4 acts on the retainer 3 in the downward direction in FIG.
- the tappet 6 reciprocates in the vertical direction in FIG. 2 by the rotation of the cam 7 of the internal combustion engine. Since the plunger 2 is displaced following the tappet 6, this changes the volume of the pressurizing chamber 11 and enables the pump operation.
- the electromagnetic valve 5 is held by the body 1, and an electromagnetic coil 500, a mover 503, an anchor spring 502, and a valve body spring 504 are arranged.
- the description will be made on the assumption that the movable portion 503 is formed of one member.
- the movable portion 503 is formed of two members, an anchor 503a that forms a magnetic attraction surface and a rod 503b that forms a sliding portion. In the same manner, it is possible to carry out the first to fourth embodiments.
- An electromagnetic valve system in which the electromagnetic coil 500 is opened when the electromagnetic coil 500 is OFF and closed when the electromagnetic coil 500 is ON is referred to as a normal open system.
- the urging force of the anchor spring 502 acts on the valve body 501 in the valve opening direction via the movable portion 503, and similarly, the urging force of the valve body spring 504 acts on the valve body 501 in the valve closing direction.
- the valve body 501 is in the valve open state when the electromagnetic coil 500 is OFF (non-energized).
- the high-pressure fuel supply pump is connected to the common rail 53, and the pressurized fuel is pumped. Thereafter, the high-pressure fuel is injected from the injector 54 into the cylinder of the internal combustion engine. The pressure in the common rail 53 is measured by a pressure sensor 56, and the signal is sent to an engine control unit (ECU).
- ECU engine control unit
- the injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject fuel with a signal from an engine control unit (ECU) 40.
- ECU engine control unit
- a state in which the plunger 2 is displaced downward in FIG. 2 due to rotation of the cam 7 of the internal combustion engine is referred to as a suction process
- a state in which the plunger 2 is displaced upward is referred to as a compression process.
- the suction process the volume of the pressurizing chamber 11 increases and the fuel pressure therein decreases.
- the valve body 501 is opened and fuel is sucked into the pressurizing chamber 11.
- the valve body 501 is still opened even when the plunger 2 shifts from the suction process to the compression process. To maintain. Accordingly, even during the compression process, the pressure in the pressurizing chamber 11 is maintained at a low pressure almost equal to that of the suction passage 9, so that the discharge valve 8 cannot be opened, and the fuel corresponding to the volume reduction in the pressurizing chamber 11 is achieved. Passes through the electromagnetic valve 5 and is returned to the damper chamber 51 side. This process is called a return process.
- FIG. 3 is a cross-sectional view around the collision portion of the solenoid valve 5 according to the first embodiment of the present invention.
- reference numeral 503 denotes a movable portion
- 505 denotes a fixed magnetic core
- 506 denotes a fixed magnetic core side end surface
- 507 denotes a convex portion
- 508 denotes an outermost peripheral portion
- 509 denotes a corner R portion.
- the movable portion 503 collides with the fixed magnetic core 505 at an inclination, if the core side end surface 506 is flat, the outermost peripheral portion 508 becomes a collision portion, and the contact area is very small, so-called one-side contact occurs. Excessive stress may occur.
- the convex part 507 formed with a curved surface having a curvature radius in the convex direction is provided on the end surface 506 of the movable part 503 on the fixed magnetic core side, the movable part 503 is inclined and collided. At this time, the convex portion 507 becomes a collision portion.
- the curvature radius R2 of the convex portion 507 is set to be larger than the curvature radius R1 of the corner R portion 509 connecting the outermost peripheral portion 508 and the end surface portion 506 of the movable portion 503.
- the curvature of the collision portion can be made larger than before, and the stress can be reduced by increasing the contact area.
- the corner R portion 509 is simply enlarged, the gap between the fixed magnetic core 505 and the core side end surface 506 is increased in the outer peripheral portion of the movable portion 503 as R is enlarged, and the effective magnetic attraction surface diameter is reduced. Go.
- the radius of curvature is locally increased by giving a degree of freedom to the starting point of the collision part R shape, or by making the center point of the R shape to the angle R side from the center line of the mover 503,
- the degree of freedom increases, and the radius of curvature of the collision portion can be made larger than before without reducing the effective magnetic attraction surface diameter.
- the radius of curvature R1 is provided for the purpose of chamfering during processing, and is generally about R0.1 to 0.3 mm.
- the curvature radius R2 is preferably R70 mm or more.
- the stress generated in the collision part can be lower than the surface pressure allowed for a general magnetic material with respect to the maximum size, mass, and inclination of a general mover, and sufficient reliability is achieved. Sex can be secured.
- it is possible to set a sufficient radius of curvature in the collision portion without reducing the magnetic attraction area, and even when the movable portion 503 is inclined and collides with the fixed magnetic core 505. It is possible to prevent an excessive stress from being generated in the collision part.
- the convex part 507 was provided in the movable part 503 side was demonstrated above, you may provide the convex part 507 in the fixed magnetic core 505 side.
- FIG. 4 is a cross-sectional view around the collision portion of the solenoid valve 5 according to the second embodiment of the present invention.
- 503 is a movable part
- 505 is a fixed magnetic core
- 506 is a fixed magnetic core side end face
- 507 is a convex part
- 508 is an outermost peripheral part
- 509 is a corner R part
- 510 and 511 are connection parts, respectively.
- the radius of curvature of the connecting portion 510 that connects the convex portion 507 and the flat portion of the core-side end surface 506 and the connecting portion 511 that connects the convex portion 507 and the corner R portion 509 on the outer diameter side are in the radial direction.
- the shape changes continuously.
- the curvature radius R2 of the convex portion 507 is larger than the curvature radius R1 of the corner R portion 509 connecting the outermost peripheral portion 508 and the end surface portion 506 of the movable portion 503.
- the radius of curvature R2 is preferably R70 mm or more.
- the present embodiment it is possible to prevent an excessive stress from being generated in the collision portion even when the movable portion 503 is inclined and collides with the fixed magnetic core 505 without reducing the magnetic attraction area.
- FIG. 5 shows a cross-sectional view around the collision portion of the electromagnetic valve 5 according to the third embodiment of the present invention.
- reference numeral 503 denotes a movable portion
- 505 denotes a fixed magnetic core
- 506 denotes a fixed magnetic core side end surface
- 507 denotes a convex portion
- 508 denotes an outermost peripheral portion
- 509 denotes a corner R portion.
- the present embodiment relates to a case where the convex portion 507 is formed over the entire area of the core side end surface 506. Also in this case, similarly to the first embodiment, the curvature radius R2 of the convex portion 507 is larger than the curvature radius R1 of the corner R portion 509.
- the radius of curvature R2 is preferably R70 mm or more.
- the shape of the convex portion 507 is formed by surface treatment and mass-produced, it is difficult to stabilize the shape. It becomes. In this case, it is not preferable to measure the curvature of each produced part one by one because it leads to a decrease in production efficiency. On the other hand, it is relatively easy to measure the height difference ⁇ H between the corner R portion 509 and the convex portion 507.
- the width of the movable portion 503 is X
- ⁇ H ⁇ 70 ⁇ ⁇ 70 ⁇ 2 ⁇ (X / 2) ⁇ 2 ⁇ ⁇ 0.5
- the curvature radius R2 of the convex portion 507 becomes R70 mm or more. This is preferable for the same reason as in Example 1.
- X is defined as the width obtained by removing the flat portion from the width of the movable portion 503.
- the shape is defined by the height of the convex portion 507 instead of the curvature radius R2 of the convex portion 507, and an overstress prevention effect equivalent to that of the first embodiment can be maintained. Further, as an incidental effect, it is possible to improve sorting efficiency by dimensional inspection during mass production.
- FIG. 6 is a cross-sectional view around the collision portion of the solenoid valve 5 according to the fourth embodiment of the present invention.
- 503 is a movable part
- 505 is a fixed magnetic core
- 506 is a fixed magnetic core side end surface
- 507 is a convex part
- 508 is an outermost peripheral part
- 509 is a corner R part
- 512 is a surface formed as a result of surface treatment.
- Each processing layer is shown.
- the present embodiment relates to a case where the surface treatment is performed on the core side end surface 506 of the movable portion 503.
- a surface treatment layer 512 having a certain thickness is formed on the surface of the core side end surface 506.
- the surface treatment examples include plating treatment and nitriding treatment, and in the conventional case, the main purpose is wear prevention.
- the core-side end surface 506 may be subjected to surface treatment with a uniform thickness after forming the convex portion 507 with the shape as in the first to third embodiments, but the core-side end surface 506 is easily processed.
- the convex portion 507 may be formed by changing the shape of the surface treatment layer 512 to a flat shape that can be formed by the above method.
- the curvature radius R2 of the convex portion 507 is larger than the curvature radius R1 of the corner R portion 509 connecting the outermost peripheral portion 508 and the end surface portion 506 of the movable portion 503.
- the radius of curvature R2 is preferably R70 mm or more.
- a magnetic material is often used for the movable portion 507.
- the magnetic material has a relatively low surface hardness compared to general structural steel, and as described above, it is often designed on the premise of the surface treatment of the collision portion from the viewpoint of preventing wear. For this reason, if the convex part 507 can be formed by changing the shape of the surface treatment layer 512, generation
- the processing is performed such that the thickness t2 of the surface treatment layer 512 in the outer diameter side convex portion 507 is thicker than the thickness t1 of the surface treatment layer 512 on the inner diameter side of the core side end surface 506, It is also preferable from the viewpoint of wear resistance, which is the purpose of the original surface treatment.
- the convex portion may be provided on the fixed magnetic core side.
- the fixed magnetic core itself may be provided with a convex portion, but only the convex portion is provided as a separate part, and the fixed core side or the movable portion is movable. It can also be configured to be arranged on the child side.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Fuel-Injection Apparatus (AREA)
- Magnetically Actuated Valves (AREA)
- Electromagnets (AREA)
Abstract
The purpose of the present invention is to provide: a solenoid valve structure having increased reliability obtained by forming, without reducing magnetic attraction force, the striking section of a movable section into a shape which prevents the occurrence of excessive stress when the movable section strikes while being tilted; and a high-pressure fuel supply pump having the solenoid valve structure mounted therein.
A fluid control device is configured in such a manner that: the fluid control device is provided with a stationary magnetic core and a movable section which is attracted and driven by the stationary magnetic core; a protrusion comprising a curved surface having a curvature radius in the protrusion direction is provided along the entire circumferential periphery of an end surface of the movable section, the end surface facing the stationary magnetic core, the protrusion serving as a striking section when the movable section strikes against the stationary magnetic core while being tilted; and the protrusion is shaped so that the curvature radius thereof is greater than the curvature radius of a rounded corner which connects the outermost peripheral section and end surface of the movable section.
Alternatively, the protrusion is shaped so that the curvature radius of the portion thereof which extends from the protrusion to a flat section on the inner diameter side and the curvature radius of the portion thereof which extends from the protrusion to the rounded corner on the outer diameter side continuously change in the radial direction. Also alternatively, the protrusion is formed by a surface treatment layer formed as the result of a surface treatment applied to the striking section.
Description
本発明は、流体制御装置に関し、特に内燃機関に燃料を高圧で供給する高圧燃料供給ポンプに係る電磁弁内の衝突部形状に関する。
The present invention relates to a fluid control device, and more particularly to a shape of a collision portion in a solenoid valve related to a high-pressure fuel supply pump that supplies fuel to an internal combustion engine at a high pressure.
従来、電磁弁内の衝突部形状に関して各種提案がなされている。その中で、例えば特許文献1には、電磁駆動部を備えた、燃料噴射弁の衝突部に関して、周方向の一部に凸部を設ける形状が開示されている。同様に特許文献2にも、燃料噴射弁の衝突部に関して、磁気吸引面に、内径方向に傾斜して延びるテーパー形状を設け、その結果、衝突部が所定の幅を有する形状が開示されている。
Conventionally, various proposals have been made regarding the shape of a collision portion in a solenoid valve. Among them, for example, Patent Document 1 discloses a shape in which a convex portion is provided in a part in the circumferential direction with respect to a collision portion of a fuel injection valve provided with an electromagnetic drive portion. Similarly, Patent Document 2 discloses a shape in which a collision shape of the fuel injection valve is provided with a tapered shape extending in the inner diameter direction on the magnetic attraction surface, and as a result, the collision portion has a predetermined width. .
昨今、内燃機関の小型・高出力・高効率化が精力的に進められている。これを受け、高圧燃料供給ポンプには内燃機関への搭載性を向上させるボディの小型化、および高出力・高効率化に対応する吐出燃料の高圧化や可動部の信頼性向上が強く求められている。特に、可動部の信頼性向上は、年々厳しくなる使用環境に対応するため必須の課題となっている。可動部の信頼性向上には、衝突部の応力低減が課題であり、可動部が傾いて衝突した際にも過大な応力が発生しないよう、衝突部形状を設計する必要がある。
Recently, efforts have been made to reduce the size, output, and efficiency of internal combustion engines. In response, high-pressure fuel supply pumps are strongly required to reduce the size of the body for improved mounting on internal combustion engines, and to increase the pressure of discharged fuel and to improve the reliability of moving parts in response to higher output and higher efficiency. ing. In particular, improving the reliability of the movable part is an indispensable problem in order to cope with a use environment that is becoming severer year by year. In order to improve the reliability of the movable part, the stress reduction of the collision part is an issue, and it is necessary to design the shape of the collision part so that excessive stress is not generated even when the movable part is inclined and collides.
電磁駆動部の衝突面形状に関する例として、特許文献1に示したような燃料噴射弁が挙げられる。この例では、燃料中における衝突部の貼り付きと、それによる応答性の低下を防ぐため、周方向の一部に凸部を設ける衝突部形状としている。高圧燃料供給ポンプの電磁弁は、先に述べた小型化やコスト低減の観点から、可動部が傾いて衝突することを許容し設計する必要がある。また、衝突箇所は特定されず、周方向にランダムに形成される場合が多い。このため、特許文献1に示されているような衝突部形状の場合、凸部がない部分で衝突する可能性が高く、応力の低減が困難である。
An example of a collision surface shape of an electromagnetic drive unit is a fuel injection valve as shown in Patent Document 1. In this example, in order to prevent sticking of the collision portion in the fuel and a decrease in responsiveness caused by the sticking, the shape of the collision portion is provided with a convex portion in a part in the circumferential direction. The solenoid valve of the high-pressure fuel supply pump needs to be designed to allow the movable part to incline and collide from the viewpoints of downsizing and cost reduction as described above. Moreover, the collision location is not specified and is often formed randomly in the circumferential direction. For this reason, in the case of the collision part shape as shown in Patent Document 1, there is a high possibility of collision at a part where there is no convex part, and it is difficult to reduce stress.
特許文献2でも同様に、応答性の低下を防止する燃料噴射弁の衝突部形状が開示されている。しなしながら、この構造では可動部の傾斜を前提としておらず、傾いて衝突した際、衝突部は角当たりを起こし、所定の幅を有すことが困難である。この結果、特許文献1と同様に応力の低減は困難である。
Similarly, Patent Document 2 discloses a collision portion shape of a fuel injection valve that prevents a decrease in responsiveness. However, this structure does not assume the inclination of the movable portion, and when the vehicle collides with an inclination, the collision portion causes a corner hit and it is difficult to have a predetermined width. As a result, as in Patent Document 1, it is difficult to reduce stress.
また、図1に従来の高圧燃料供給ポンプにおける電磁弁衝突部の拡大図を示す。電磁弁内部には、固定磁気コアと、それに吸引されて燃料中を高速に往復動する可動部が存在し、ポンプの動作周期に合わせて可動部の動作を制御することで、弁の開閉弁タイミングを変化させている。また、高圧燃料供給ポンプでは特に、弁部を通過する流量が大きいために可動部のストロークが大きく、また、小型化やコスト低減の観点から最小限のガイド部しか設けることができないため、可動部が傾いて衝突することを許容して設計する必要がある。このため、可動部は図1のように片当たりを起こし、衝突部には過大な応力が発生する可能性がある。これに対し、可動部の角部を破線で示すようなR形状にすることで、片当たりした際にも過大応力の発生を防止する方法が考えられる。しかしながらこの方法では、R形状を設けた分、可動部の磁気吸引面積が減少してしまうため、十分に大きなR形状を確保することが困難である。また、磁気吸引力特性を向上させるため、可動部には磁性材が使用されることが多い。磁性材は一般的な構造用鋼に比べて表面硬度が低いため、耐摩耗の観点から衝突部表面にめっき処理等を施して使用する場合が多いが、可動部の傾きを考慮することなく、均一に処理をした場合、処理前と同様に衝突部は片当たりを起こし、過大な応力が発生する可能性がある。
Also, FIG. 1 shows an enlarged view of a solenoid valve collision portion in a conventional high-pressure fuel supply pump. Inside the solenoid valve, there is a fixed magnetic core and a movable part that is attracted to it and reciprocates at high speed in the fuel. By controlling the operation of the movable part according to the operation cycle of the pump, the valve opening and closing valve The timing is changed. In particular, in the high-pressure fuel supply pump, since the flow rate passing through the valve portion is large, the stroke of the movable portion is large, and from the viewpoint of miniaturization and cost reduction, only a minimum guide portion can be provided. It is necessary to design in such a way that it can tilt and collide. For this reason, the movable part causes one-side contact as shown in FIG. 1, and an excessive stress may be generated in the collision part. On the other hand, it is conceivable to prevent the occurrence of excessive stress even when the movable part is made to have an R shape as indicated by a broken line. However, in this method, since the magnetic attraction area of the movable portion is reduced by the provision of the R shape, it is difficult to ensure a sufficiently large R shape. Further, in order to improve the magnetic attractive force characteristic, a magnetic material is often used for the movable part. Since magnetic materials have a lower surface hardness than general structural steel, they are often used with plating applied to the impact surface from the viewpoint of wear resistance, but without considering the inclination of the moving parts, When the treatment is performed uniformly, the collision portion may cause a piece of contact as before the treatment, and an excessive stress may be generated.
本発明では、磁気吸引力を低下させることなく、可動部が傾いて衝突した際に過大な応力が発生することを防止する衝突部形状とすることで、より高い信頼性を有する電磁弁構造と、それを搭載した高圧燃料供給ポンプを提供することを目的とする。
In the present invention, an electromagnetic valve structure having higher reliability can be obtained by adopting a collision part shape that prevents excessive stress from being generated when the movable part collides while tilting without reducing the magnetic attractive force. An object is to provide a high-pressure fuel supply pump equipped with the same.
固定磁気コアと、固定磁気コアに吸引されて駆動される可動部とを備え、可動部の固定磁気コア側端面部に、凸方向の曲率半径を有する曲面で形成された凸部が、周方向全周に設けられ、可動部が傾斜して固定磁気コアに衝突した際、凸部が衝突部となる構造とし、凸部の曲率半径が、可動部の最外周部と端面部をつなぐ角R部の曲率半径よりも大きくなる形状とする。
A fixed magnetic core and a movable part that is attracted to and driven by the fixed magnetic core, and a convex part formed of a curved surface having a curvature radius in the convex direction is provided on the fixed magnetic core side end surface part of the movable part. Provided around the entire circumference, when the movable part tilts and collides with the fixed magnetic core, the convex part becomes a collision part, and the curvature radius of the convex part is an angle R connecting the outermost peripheral part and the end face part of the movable part. The shape is larger than the curvature radius of the part.
また、凸部から、内径側の平坦部および外径側の角R部に続く部分の曲率半径が、径方向に連続的に変化する形状とする。さらに、凸部を、衝突部に施された表面処理の結果生成される、表面処理層によって形成する。
In addition, the curvature radius of the portion that continues from the convex portion to the flat portion on the inner diameter side and the corner R portion on the outer diameter side continuously changes in the radial direction. Furthermore, a convex part is formed by the surface treatment layer produced | generated as a result of the surface treatment given to the collision part.
以上のように構成した本発明によれば、以下の効果を奏する。
According to the present invention configured as described above, the following effects can be obtained.
磁気吸引面に凸部を形成し、局所的に所定の曲率半径を持たせることで、可動部が傾いて衝突した際にも凸部で衝突する構成とし、吸引面積を低下させることなく、応力低減の観点から、十分なR形状を設定することができる。
By forming a convex part on the magnetic attraction surface and locally giving a predetermined radius of curvature, even when the movable part collides with an inclination, it will collide with the convex part, and stress can be reduced without reducing the attraction area. From the viewpoint of reduction, a sufficient R shape can be set.
また、凸部とその周囲を繋ぐ形状の曲率半径が、連続的に変化する形状とすることで、衝突時の不要な応力集中を回避することができる。
Moreover, unnecessary stress concentration at the time of collision can be avoided by making the curvature radius of the shape connecting the convex portion and its periphery continuously change.
先に述べたように、可動部には磁性材を使用することが多く、表面硬度が比較的低いことから、耐摩耗性の向上のために表面処理を施すことが一般的である。このため、表面処理により凸部形状を形成することができれば、新たな加工工程を追加することなく、本発明の効果を得ることができる。
As described above, a magnetic material is often used for the movable part, and since the surface hardness is relatively low, it is common to perform a surface treatment to improve wear resistance. For this reason, if a convex part shape can be formed by surface treatment, the effect of this invention can be acquired, without adding a new process process.
総じて、本発明の構成を用いれば、磁気吸引力を低下させることなく、より高い信頼性を有する電磁弁構造と、それを搭載した高圧燃料供給ポンプを、小型かつ簡便な構造で実現することができる。
In general, by using the configuration of the present invention, it is possible to realize a highly reliable electromagnetic valve structure and a high-pressure fuel supply pump equipped with the same with a small and simple structure without reducing the magnetic attractive force. it can.
以下、図を参照して、本発明の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図2は、本発明の実施例1から実施例4を実施するシステムの全体構成を示す。高圧燃料供給ポンプはボディ1内に複数の部品や機構を一体に組み込んでおり、内燃機関のシリンダヘッド20に取り付けられている。ボディ1には、吸入通路9、加圧室11、吐出通路12が形成されている。吸入通路9及び吐出通路12には、電磁弁5、吐出弁8が設けられており、吐出弁8は燃料の流通方向を制限する逆止弁となっている。
プランジャ2は、シリンダ120に摺動可能に挿入されており、下端にはリテーナ3が取り付けられている。リテーナ3には戻しばね4の付勢力が図2の下方向に作用している。タペット6は、内燃機関のカム7の回転により、図2の上下方向に往復する。プランジャ2はタペット6に追従して変位するため、これにより加圧室11の容積が変化してポンプ動作が可能となる。
また、電磁弁5はボディ1に保持されており、電磁コイル500、可動子503、アンカーばね502、弁体ばね504が配されている。以降では、可動部503が1部材で形成される場合を前提に説明を進めるが、可動部503が磁気吸引面を形成するアンカー503aと、摺動部を形成するロッド503bの2部材から形成された場合にも同様に実施例1から4を実施することが可能である。
以降では、ノーマルオープン方式電磁弁を用いたシステムを前提に説明を進める。電磁コイル500がOFFの状態で開弁状態、ONの状態で閉弁状態となる電磁弁方式をノーマルオープン方式と称する。弁体501には、アンカーばね502の付勢力が可動部503を介して開弁方向に作用し、同様に弁体ばね504による付勢力が閉弁方向に作用している。ここで、アンカーばね502の付勢力は弁体ばね504の付勢力より大きいため、電磁コイル500がOFF(無通電)時、弁体501は開弁状態となっている。一方で、これとは動作が逆転する、すなわち電磁コイル500がOFF(無通電)時、弁体501が閉弁状態となるノーマルクローズ方式と称する電磁弁方式を用いたシステムを前提にしても、同様に実施例1から実施例4を実施することが可能である。
また、高圧燃料供給ポンプは、コモンレール53に接続されており、昇圧された燃料が圧送される。その後、高圧の燃料はインジェクタ54から内燃機関の筒内へと噴射される。コモンレール53内の圧力は、圧力センサ56により計測され、その信号はエンジンコントロールユニット(ECU)へ送られる。インジェクタ54は、エンジンの気筒数にあわせて装着されており、エンジンコントロールユニット(ECU)40の信号にて燃料を噴射する。
以上の構成において、動作を説明する。
内燃機関のカム7の回転により、プランジャ2が図2の下方向に変位している状態を吸入工程、上方向に変位している状態を圧縮工程と称する。吸入工程では、加圧室11の容積は増加し、その中の燃料圧力は低下する。この工程において、加圧室11内の燃料圧力が吸入通路9の燃料圧力よりも低くなると、弁体501は開弁し、燃料が加圧室11内に吸入される。 FIG. 2 shows the overall configuration of a system that implements the first to fourth embodiments of the present invention. The high-pressure fuel supply pump incorporates a plurality of parts and mechanisms in the body 1 and is attached to acylinder head 20 of the internal combustion engine. In the body 1, a suction passage 9, a pressurizing chamber 11, and a discharge passage 12 are formed. The suction passage 9 and the discharge passage 12 are provided with an electromagnetic valve 5 and a discharge valve 8, and the discharge valve 8 is a check valve that restricts the flow direction of fuel.
Theplunger 2 is slidably inserted into the cylinder 120, and the retainer 3 is attached to the lower end. The urging force of the return spring 4 acts on the retainer 3 in the downward direction in FIG. The tappet 6 reciprocates in the vertical direction in FIG. 2 by the rotation of the cam 7 of the internal combustion engine. Since the plunger 2 is displaced following the tappet 6, this changes the volume of the pressurizing chamber 11 and enables the pump operation.
Theelectromagnetic valve 5 is held by the body 1, and an electromagnetic coil 500, a mover 503, an anchor spring 502, and a valve body spring 504 are arranged. Hereinafter, the description will be made on the assumption that the movable portion 503 is formed of one member. However, the movable portion 503 is formed of two members, an anchor 503a that forms a magnetic attraction surface and a rod 503b that forms a sliding portion. In the same manner, it is possible to carry out the first to fourth embodiments.
In the following, the description will proceed on the premise of a system using a normally open solenoid valve. An electromagnetic valve system in which theelectromagnetic coil 500 is opened when the electromagnetic coil 500 is OFF and closed when the electromagnetic coil 500 is ON is referred to as a normal open system. The urging force of the anchor spring 502 acts on the valve body 501 in the valve opening direction via the movable portion 503, and similarly, the urging force of the valve body spring 504 acts on the valve body 501 in the valve closing direction. Here, since the urging force of the anchor spring 502 is larger than the urging force of the valve body spring 504, the valve body 501 is in the valve open state when the electromagnetic coil 500 is OFF (non-energized). On the other hand, on the premise of a system using an electromagnetic valve system called a normally closed system in which the operation is reversed, that is, when the electromagnetic coil 500 is OFF (non-energized), the valve body 501 is closed. Similarly, it is possible to carry out the first to fourth embodiments.
The high-pressure fuel supply pump is connected to thecommon rail 53, and the pressurized fuel is pumped. Thereafter, the high-pressure fuel is injected from the injector 54 into the cylinder of the internal combustion engine. The pressure in the common rail 53 is measured by a pressure sensor 56, and the signal is sent to an engine control unit (ECU). The injectors 54 are mounted in accordance with the number of cylinders of the engine, and inject fuel with a signal from an engine control unit (ECU) 40.
The operation of the above configuration will be described.
A state in which theplunger 2 is displaced downward in FIG. 2 due to rotation of the cam 7 of the internal combustion engine is referred to as a suction process, and a state in which the plunger 2 is displaced upward is referred to as a compression process. In the suction process, the volume of the pressurizing chamber 11 increases and the fuel pressure therein decreases. In this step, when the fuel pressure in the pressurizing chamber 11 becomes lower than the fuel pressure in the suction passage 9, the valve body 501 is opened and fuel is sucked into the pressurizing chamber 11.
プランジャ2は、シリンダ120に摺動可能に挿入されており、下端にはリテーナ3が取り付けられている。リテーナ3には戻しばね4の付勢力が図2の下方向に作用している。タペット6は、内燃機関のカム7の回転により、図2の上下方向に往復する。プランジャ2はタペット6に追従して変位するため、これにより加圧室11の容積が変化してポンプ動作が可能となる。
また、電磁弁5はボディ1に保持されており、電磁コイル500、可動子503、アンカーばね502、弁体ばね504が配されている。以降では、可動部503が1部材で形成される場合を前提に説明を進めるが、可動部503が磁気吸引面を形成するアンカー503aと、摺動部を形成するロッド503bの2部材から形成された場合にも同様に実施例1から4を実施することが可能である。
以降では、ノーマルオープン方式電磁弁を用いたシステムを前提に説明を進める。電磁コイル500がOFFの状態で開弁状態、ONの状態で閉弁状態となる電磁弁方式をノーマルオープン方式と称する。弁体501には、アンカーばね502の付勢力が可動部503を介して開弁方向に作用し、同様に弁体ばね504による付勢力が閉弁方向に作用している。ここで、アンカーばね502の付勢力は弁体ばね504の付勢力より大きいため、電磁コイル500がOFF(無通電)時、弁体501は開弁状態となっている。一方で、これとは動作が逆転する、すなわち電磁コイル500がOFF(無通電)時、弁体501が閉弁状態となるノーマルクローズ方式と称する電磁弁方式を用いたシステムを前提にしても、同様に実施例1から実施例4を実施することが可能である。
また、高圧燃料供給ポンプは、コモンレール53に接続されており、昇圧された燃料が圧送される。その後、高圧の燃料はインジェクタ54から内燃機関の筒内へと噴射される。コモンレール53内の圧力は、圧力センサ56により計測され、その信号はエンジンコントロールユニット(ECU)へ送られる。インジェクタ54は、エンジンの気筒数にあわせて装着されており、エンジンコントロールユニット(ECU)40の信号にて燃料を噴射する。
以上の構成において、動作を説明する。
内燃機関のカム7の回転により、プランジャ2が図2の下方向に変位している状態を吸入工程、上方向に変位している状態を圧縮工程と称する。吸入工程では、加圧室11の容積は増加し、その中の燃料圧力は低下する。この工程において、加圧室11内の燃料圧力が吸入通路9の燃料圧力よりも低くなると、弁体501は開弁し、燃料が加圧室11内に吸入される。 FIG. 2 shows the overall configuration of a system that implements the first to fourth embodiments of the present invention. The high-pressure fuel supply pump incorporates a plurality of parts and mechanisms in the body 1 and is attached to a
The
The
In the following, the description will proceed on the premise of a system using a normally open solenoid valve. An electromagnetic valve system in which the
The high-pressure fuel supply pump is connected to the
The operation of the above configuration will be described.
A state in which the
この際、アンカーばね502の付勢力は可動部503を介して弁体501に作用しているため、プランジャ2が吸入工程から圧縮工程へと移行しても、弁体501は依然として開弁した状態を維持する。従って、圧縮工程時においても、加圧室11の圧力は吸入通路9とほぼ同等の低圧状態を保つため、吐出弁8を開弁することができず、加圧室11の容積減少分の燃料は、電磁弁5を通り、ダンパー室51側に戻される。なお、この工程を戻し工程と呼ぶ。
戻し工程において電磁コイル500へ通電すると、可動子503に磁気吸引力が作用し、アンカーばね502の付勢力に打ち勝って、可動部503は閉弁方向に移動する。そして、弁体ばね504の付勢力および戻り燃料の流体差圧力により、弁体501は閉弁する。すると、この直後から加圧室11内の燃料圧力は、プランジャ2の上昇と共に上昇する。これにより吐出弁8が自動的に開弁し、燃料をコモンレール53に圧送する。 At this time, since the urging force of theanchor spring 502 acts on the valve body 501 via the movable portion 503, the valve body 501 is still opened even when the plunger 2 shifts from the suction process to the compression process. To maintain. Accordingly, even during the compression process, the pressure in the pressurizing chamber 11 is maintained at a low pressure almost equal to that of the suction passage 9, so that the discharge valve 8 cannot be opened, and the fuel corresponding to the volume reduction in the pressurizing chamber 11 is achieved. Passes through the electromagnetic valve 5 and is returned to the damper chamber 51 side. This process is called a return process.
When theelectromagnetic coil 500 is energized in the return step, a magnetic attractive force acts on the mover 503, overcomes the urging force of the anchor spring 502, and the movable portion 503 moves in the valve closing direction. Then, the valve body 501 is closed by the biasing force of the valve body spring 504 and the fluid differential pressure of the return fuel. Then, immediately after this, the fuel pressure in the pressurizing chamber 11 rises as the plunger 2 rises. As a result, the discharge valve 8 is automatically opened, and the fuel is pumped to the common rail 53.
戻し工程において電磁コイル500へ通電すると、可動子503に磁気吸引力が作用し、アンカーばね502の付勢力に打ち勝って、可動部503は閉弁方向に移動する。そして、弁体ばね504の付勢力および戻り燃料の流体差圧力により、弁体501は閉弁する。すると、この直後から加圧室11内の燃料圧力は、プランジャ2の上昇と共に上昇する。これにより吐出弁8が自動的に開弁し、燃料をコモンレール53に圧送する。 At this time, since the urging force of the
When the
上記のような動作をする電磁弁5を用いれば、電磁コイル500をON状態にするタイミングを調節することで、ポンプが吐出する流量を制御することができる。
図3は、本発明の実施例1に係る電磁弁5の衝突部周りの断面図を示す。図3において、503は可動部、505は固定磁気コア、506は固定磁気コア側端面、507は凸部、508は最外周部、509は角R部を、それぞれ表している。
可動部503が、固定磁気コア505に対し傾斜して衝突した際、コア側端面506が平坦であると、最外周部508が衝突部となり、接触面積が微小なために、いわゆる片当たりを起こして過大な応力が発生してしまう可能性がある。これに対し、可動部503の固定磁気コア側端面506に、凸方向の曲率半径を有する曲面で形成された凸部507を、周方向全周に設けると、可動部503が傾斜して衝突した際、凸部507が衝突部となる。ここで、凸部507の曲率半径R2を、可動部503の、最外周部508と端面部506をつなぐ角R部509の曲率半径R1よりも大きくなるように設定する。このように、局所的に曲率半径を大きくすることで、衝突部の曲率を従来よりも大きくとることができ、接触面積を拡大することで応力を低減することができる。また、角R部509を単に拡大した場合、Rの拡大にともない、可動部503の外周部において固定磁気コア505とコア側端面506の隙間が大きくなり、有効な磁気吸引面直径が減少していく。ここで、衝突部R形状の開始点に自由度を持たせたり、R形状の中心点を可動子503の中心線より角R側にすることで局所的に曲率半径を大きくすれば、形状の自由度が増し、有効な磁気吸引面直径を減少させることなく、衝突部の曲率半径を従来よりも大きくとることができる。これにより磁気吸引面積を減らすことなく、衝突部に過大な応力が発生することを防止することができる。
ここで、曲率半径R1は、加工時に面取りの目的で設けられるもので、一般にR0.1~0.3mm程度である。これに対し、曲率半径R2はR70mm以上が好ましい。R70mm以上では、衝突部に発生する応力を、一般的な可動子の大きさや質量、および傾きの最大値に対して、一般的な磁性材に許容される面圧よりも低くでき、十分な信頼性を確保することができる。
以上をまとめると、本実施例により、磁気吸引面積を減らすことなく、衝突部に十分な曲率半径を設定することが可能であり、可動部503が傾いて固定磁気コア505に衝突した際にも、衝突部に過大な応力が発生することを防止することができる。
なお、以上では、可動部503側に凸部507を設ける場合について説明したが、固定磁気コア505側に凸部507を設けてもよい。固定磁気コア505側に凸部507を設けても、同様に可動部503の角R部509が衝突することはなく、凸部507とコア側端面506の平坦部が衝突するため、過大な応力が発生することを防止することができる。 If theelectromagnetic valve 5 that operates as described above is used, the flow rate that the pump discharges can be controlled by adjusting the timing at which the electromagnetic coil 500 is turned on.
FIG. 3 is a cross-sectional view around the collision portion of thesolenoid valve 5 according to the first embodiment of the present invention. In FIG. 3, reference numeral 503 denotes a movable portion, 505 denotes a fixed magnetic core, 506 denotes a fixed magnetic core side end surface, 507 denotes a convex portion, 508 denotes an outermost peripheral portion, and 509 denotes a corner R portion.
When themovable portion 503 collides with the fixed magnetic core 505 at an inclination, if the core side end surface 506 is flat, the outermost peripheral portion 508 becomes a collision portion, and the contact area is very small, so-called one-side contact occurs. Excessive stress may occur. On the other hand, when the convex part 507 formed with a curved surface having a curvature radius in the convex direction is provided on the end surface 506 of the movable part 503 on the fixed magnetic core side, the movable part 503 is inclined and collided. At this time, the convex portion 507 becomes a collision portion. Here, the curvature radius R2 of the convex portion 507 is set to be larger than the curvature radius R1 of the corner R portion 509 connecting the outermost peripheral portion 508 and the end surface portion 506 of the movable portion 503. Thus, by locally increasing the radius of curvature, the curvature of the collision portion can be made larger than before, and the stress can be reduced by increasing the contact area. Further, when the corner R portion 509 is simply enlarged, the gap between the fixed magnetic core 505 and the core side end surface 506 is increased in the outer peripheral portion of the movable portion 503 as R is enlarged, and the effective magnetic attraction surface diameter is reduced. Go. Here, if the radius of curvature is locally increased by giving a degree of freedom to the starting point of the collision part R shape, or by making the center point of the R shape to the angle R side from the center line of the mover 503, The degree of freedom increases, and the radius of curvature of the collision portion can be made larger than before without reducing the effective magnetic attraction surface diameter. Thereby, it is possible to prevent an excessive stress from being generated in the collision portion without reducing the magnetic attraction area.
Here, the radius of curvature R1 is provided for the purpose of chamfering during processing, and is generally about R0.1 to 0.3 mm. On the other hand, the curvature radius R2 is preferably R70 mm or more. With R70 mm or more, the stress generated in the collision part can be lower than the surface pressure allowed for a general magnetic material with respect to the maximum size, mass, and inclination of a general mover, and sufficient reliability is achieved. Sex can be secured.
In summary, according to the present embodiment, it is possible to set a sufficient radius of curvature in the collision portion without reducing the magnetic attraction area, and even when themovable portion 503 is inclined and collides with the fixed magnetic core 505. It is possible to prevent an excessive stress from being generated in the collision part.
In addition, although the case where theconvex part 507 was provided in the movable part 503 side was demonstrated above, you may provide the convex part 507 in the fixed magnetic core 505 side. Even if the convex portion 507 is provided on the fixed magnetic core 505 side, the corner R portion 509 of the movable portion 503 does not collide in the same manner, and the convex portion 507 and the flat portion of the core side end surface 506 collide with each other. Can be prevented.
図3は、本発明の実施例1に係る電磁弁5の衝突部周りの断面図を示す。図3において、503は可動部、505は固定磁気コア、506は固定磁気コア側端面、507は凸部、508は最外周部、509は角R部を、それぞれ表している。
可動部503が、固定磁気コア505に対し傾斜して衝突した際、コア側端面506が平坦であると、最外周部508が衝突部となり、接触面積が微小なために、いわゆる片当たりを起こして過大な応力が発生してしまう可能性がある。これに対し、可動部503の固定磁気コア側端面506に、凸方向の曲率半径を有する曲面で形成された凸部507を、周方向全周に設けると、可動部503が傾斜して衝突した際、凸部507が衝突部となる。ここで、凸部507の曲率半径R2を、可動部503の、最外周部508と端面部506をつなぐ角R部509の曲率半径R1よりも大きくなるように設定する。このように、局所的に曲率半径を大きくすることで、衝突部の曲率を従来よりも大きくとることができ、接触面積を拡大することで応力を低減することができる。また、角R部509を単に拡大した場合、Rの拡大にともない、可動部503の外周部において固定磁気コア505とコア側端面506の隙間が大きくなり、有効な磁気吸引面直径が減少していく。ここで、衝突部R形状の開始点に自由度を持たせたり、R形状の中心点を可動子503の中心線より角R側にすることで局所的に曲率半径を大きくすれば、形状の自由度が増し、有効な磁気吸引面直径を減少させることなく、衝突部の曲率半径を従来よりも大きくとることができる。これにより磁気吸引面積を減らすことなく、衝突部に過大な応力が発生することを防止することができる。
ここで、曲率半径R1は、加工時に面取りの目的で設けられるもので、一般にR0.1~0.3mm程度である。これに対し、曲率半径R2はR70mm以上が好ましい。R70mm以上では、衝突部に発生する応力を、一般的な可動子の大きさや質量、および傾きの最大値に対して、一般的な磁性材に許容される面圧よりも低くでき、十分な信頼性を確保することができる。
以上をまとめると、本実施例により、磁気吸引面積を減らすことなく、衝突部に十分な曲率半径を設定することが可能であり、可動部503が傾いて固定磁気コア505に衝突した際にも、衝突部に過大な応力が発生することを防止することができる。
なお、以上では、可動部503側に凸部507を設ける場合について説明したが、固定磁気コア505側に凸部507を設けてもよい。固定磁気コア505側に凸部507を設けても、同様に可動部503の角R部509が衝突することはなく、凸部507とコア側端面506の平坦部が衝突するため、過大な応力が発生することを防止することができる。 If the
FIG. 3 is a cross-sectional view around the collision portion of the
When the
Here, the radius of curvature R1 is provided for the purpose of chamfering during processing, and is generally about R0.1 to 0.3 mm. On the other hand, the curvature radius R2 is preferably R70 mm or more. With R70 mm or more, the stress generated in the collision part can be lower than the surface pressure allowed for a general magnetic material with respect to the maximum size, mass, and inclination of a general mover, and sufficient reliability is achieved. Sex can be secured.
In summary, according to the present embodiment, it is possible to set a sufficient radius of curvature in the collision portion without reducing the magnetic attraction area, and even when the
In addition, although the case where the
図4は、本発明の実施例2に係る電磁弁5の衝突部周りの断面図を示す。図4において、503は可動部、505は固定磁気コア、506は固定磁気コア側端面、507は凸部、508は最外周部、509は角R部、510および511は接続部を、それぞれ表している。
本実施例では、凸部507とコア側端面506の平坦部を接続する接続部510、および凸部507と外径側の角R部509を接続する接続部511の曲率半径が、径方向に連続的に変化する形状となっている。この場合にも、実施例1と同様に、凸部507の曲率半径R2が、可動部503の、最外周部508と端面部506をつなぐ角R部509の曲率半径R1よりも大きい。さらに、実施例1と同様の理由で、曲率半径R2はR70mm以上が好ましい。
このような形状とすることで、衝突部に荷重が作用した際に、曲率半径が不連続に変化している部分で不要な応力集中が発生することを回避することができる。また、可動部503の周りは燃料で満たされているため、その動きにともない、周囲に高速流が発生する。固定磁気コア505と可動部503の間にも、動作にともなう径方向の高速流が頻繁に発生するため、可動部503の表面形状が不連続に変化していると、渦が発生して流れが乱れる可能性がある。この結果、可動部503に不要な外力が作用して動作が不安定になるだけでなく、局所的に低圧領域が生じることでキャビテーションが発生し、可動部503および固定磁気コア505の表面で崩壊することで過大な応力が作用してしまう可能性がある。ここで、接続部510および接続部511の曲率半径が径方向に連続的に変化する形状とすれば、先に述べた流れの乱れを防止することができる。
以上をまとめると、本実施例により、磁気吸引面積を減らすことなく、可動部503が傾いて固定磁気コア505に衝突した際にも、衝突部に過大な応力が発生することを防止することができるだけでなく、衝突時の不要な応力集中を緩和し、さらには動作により発生する周囲の燃料流れを整流して、キャビテーション崩壊により部材表面に過大な応力が発生することも防止することができる。 FIG. 4 is a cross-sectional view around the collision portion of thesolenoid valve 5 according to the second embodiment of the present invention. In FIG. 4, 503 is a movable part, 505 is a fixed magnetic core, 506 is a fixed magnetic core side end face, 507 is a convex part, 508 is an outermost peripheral part, 509 is a corner R part, and 510 and 511 are connection parts, respectively. ing.
In the present embodiment, the radius of curvature of the connectingportion 510 that connects the convex portion 507 and the flat portion of the core-side end surface 506 and the connecting portion 511 that connects the convex portion 507 and the corner R portion 509 on the outer diameter side are in the radial direction. The shape changes continuously. Also in this case, similarly to the first embodiment, the curvature radius R2 of the convex portion 507 is larger than the curvature radius R1 of the corner R portion 509 connecting the outermost peripheral portion 508 and the end surface portion 506 of the movable portion 503. Furthermore, for the same reason as in Example 1, the radius of curvature R2 is preferably R70 mm or more.
By adopting such a shape, it is possible to avoid the occurrence of unnecessary stress concentration at a portion where the radius of curvature changes discontinuously when a load is applied to the collision portion. Moreover, since the periphery of themovable part 503 is filled with fuel, a high-speed flow is generated around the movable part 503 along with the movement. Since a high-speed flow in the radial direction is frequently generated between the fixed magnetic core 505 and the movable portion 503, a vortex is generated and flows when the surface shape of the movable portion 503 changes discontinuously. May be disturbed. As a result, an unnecessary external force acts on the movable portion 503 to make the operation unstable, and cavitation occurs due to a local low-pressure region, and collapses on the surfaces of the movable portion 503 and the fixed magnetic core 505. Doing so may cause excessive stress to act. Here, if the radii of curvature of the connecting portion 510 and the connecting portion 511 are continuously changed in the radial direction, the above-described flow disturbance can be prevented.
In summary, according to the present embodiment, it is possible to prevent an excessive stress from being generated in the collision portion even when themovable portion 503 is inclined and collides with the fixed magnetic core 505 without reducing the magnetic attraction area. In addition, it is possible to alleviate unnecessary stress concentration at the time of collision, and also to rectify the surrounding fuel flow generated by the operation to prevent excessive stress from being generated on the member surface due to cavitation collapse.
本実施例では、凸部507とコア側端面506の平坦部を接続する接続部510、および凸部507と外径側の角R部509を接続する接続部511の曲率半径が、径方向に連続的に変化する形状となっている。この場合にも、実施例1と同様に、凸部507の曲率半径R2が、可動部503の、最外周部508と端面部506をつなぐ角R部509の曲率半径R1よりも大きい。さらに、実施例1と同様の理由で、曲率半径R2はR70mm以上が好ましい。
このような形状とすることで、衝突部に荷重が作用した際に、曲率半径が不連続に変化している部分で不要な応力集中が発生することを回避することができる。また、可動部503の周りは燃料で満たされているため、その動きにともない、周囲に高速流が発生する。固定磁気コア505と可動部503の間にも、動作にともなう径方向の高速流が頻繁に発生するため、可動部503の表面形状が不連続に変化していると、渦が発生して流れが乱れる可能性がある。この結果、可動部503に不要な外力が作用して動作が不安定になるだけでなく、局所的に低圧領域が生じることでキャビテーションが発生し、可動部503および固定磁気コア505の表面で崩壊することで過大な応力が作用してしまう可能性がある。ここで、接続部510および接続部511の曲率半径が径方向に連続的に変化する形状とすれば、先に述べた流れの乱れを防止することができる。
以上をまとめると、本実施例により、磁気吸引面積を減らすことなく、可動部503が傾いて固定磁気コア505に衝突した際にも、衝突部に過大な応力が発生することを防止することができるだけでなく、衝突時の不要な応力集中を緩和し、さらには動作により発生する周囲の燃料流れを整流して、キャビテーション崩壊により部材表面に過大な応力が発生することも防止することができる。 FIG. 4 is a cross-sectional view around the collision portion of the
In the present embodiment, the radius of curvature of the connecting
By adopting such a shape, it is possible to avoid the occurrence of unnecessary stress concentration at a portion where the radius of curvature changes discontinuously when a load is applied to the collision portion. Moreover, since the periphery of the
In summary, according to the present embodiment, it is possible to prevent an excessive stress from being generated in the collision portion even when the
図5は、本発明の実施例3に係る電磁弁5の衝突部周りの断面図を示す。図5において、503は可動部、505は固定磁気コア、506は固定磁気コア側端面、507は凸部、508は最外周部、509は角R部を、それぞれ表している。
本実施例は、凸部507がコア側端面506の全域に渡って形成される場合に関する。この場合にも、実施例1と同様に、凸部507の曲率半径R2が、角R部509の曲率半径R1よりも大きい。さらに、実施例1と同様の理由で、曲率半径R2はR70mm以上が好ましい。また、次に述べる実施例4に示すように、表面処理で凸部507の形状を形成し、それを量産する場合、その形状を安定させることが難しいため、寸法検査による選別が現実的な方法となる。この場合、生産した個々の部品に関して、逐一、曲率を計測することは、生産効率の低下につながり好ましくない。一方で、角R部509と凸部507の高さの差ΔHを計測することは、比較的容易である。ここで、可動部503の幅をXとした際、ΔH≦70-{70^2-(X/2)^2}^0.5とすれば、凸部507の曲率半径R2がR70mm以上となり、実施例1と同様の理由で好ましい。また、コア側端面506に平坦部が存在する場合、平坦部から凸部507の高さの差をΔHとすれば、同様の効果が得られる。この場合、Xは可動部503の幅から平坦部を除いた幅と定義する。以上のような構成とすることで、凸部507の曲率半径R2の代わりに、凸部507の高さにより形状を定義し、実施例1と同等の過大応力防止効果を維持できる。また、付随的な効果として、量産時の寸法検査による選別効率を向上させることができる。 FIG. 5 shows a cross-sectional view around the collision portion of theelectromagnetic valve 5 according to the third embodiment of the present invention. In FIG. 5, reference numeral 503 denotes a movable portion, 505 denotes a fixed magnetic core, 506 denotes a fixed magnetic core side end surface, 507 denotes a convex portion, 508 denotes an outermost peripheral portion, and 509 denotes a corner R portion.
The present embodiment relates to a case where theconvex portion 507 is formed over the entire area of the core side end surface 506. Also in this case, similarly to the first embodiment, the curvature radius R2 of the convex portion 507 is larger than the curvature radius R1 of the corner R portion 509. Furthermore, for the same reason as in Example 1, the radius of curvature R2 is preferably R70 mm or more. In addition, as shown in Example 4 described below, when the shape of the convex portion 507 is formed by surface treatment and mass-produced, it is difficult to stabilize the shape. It becomes. In this case, it is not preferable to measure the curvature of each produced part one by one because it leads to a decrease in production efficiency. On the other hand, it is relatively easy to measure the height difference ΔH between the corner R portion 509 and the convex portion 507. Here, when the width of the movable portion 503 is X, if ΔH ≦ 70− {70 ^ 2− (X / 2) ^ 2} ^ 0.5, the curvature radius R2 of the convex portion 507 becomes R70 mm or more. This is preferable for the same reason as in Example 1. Further, when a flat portion exists on the core-side end surface 506, the same effect can be obtained if the difference in height from the flat portion to the convex portion 507 is ΔH. In this case, X is defined as the width obtained by removing the flat portion from the width of the movable portion 503. By adopting the configuration as described above, the shape is defined by the height of the convex portion 507 instead of the curvature radius R2 of the convex portion 507, and an overstress prevention effect equivalent to that of the first embodiment can be maintained. Further, as an incidental effect, it is possible to improve sorting efficiency by dimensional inspection during mass production.
本実施例は、凸部507がコア側端面506の全域に渡って形成される場合に関する。この場合にも、実施例1と同様に、凸部507の曲率半径R2が、角R部509の曲率半径R1よりも大きい。さらに、実施例1と同様の理由で、曲率半径R2はR70mm以上が好ましい。また、次に述べる実施例4に示すように、表面処理で凸部507の形状を形成し、それを量産する場合、その形状を安定させることが難しいため、寸法検査による選別が現実的な方法となる。この場合、生産した個々の部品に関して、逐一、曲率を計測することは、生産効率の低下につながり好ましくない。一方で、角R部509と凸部507の高さの差ΔHを計測することは、比較的容易である。ここで、可動部503の幅をXとした際、ΔH≦70-{70^2-(X/2)^2}^0.5とすれば、凸部507の曲率半径R2がR70mm以上となり、実施例1と同様の理由で好ましい。また、コア側端面506に平坦部が存在する場合、平坦部から凸部507の高さの差をΔHとすれば、同様の効果が得られる。この場合、Xは可動部503の幅から平坦部を除いた幅と定義する。以上のような構成とすることで、凸部507の曲率半径R2の代わりに、凸部507の高さにより形状を定義し、実施例1と同等の過大応力防止効果を維持できる。また、付随的な効果として、量産時の寸法検査による選別効率を向上させることができる。 FIG. 5 shows a cross-sectional view around the collision portion of the
The present embodiment relates to a case where the
図6は、本発明の実施例4に係る電磁弁5の衝突部周りの断面図を示す。図6において、503は可動部、505は固定磁気コア、506は固定磁気コア側端面、507は凸部、508は最外周部、509は角R部、512は表面処理の結果形成される表面処理層を、それぞれ表している。
本実施例は、可動部503のコア側端面506に表面処理を実施した場合に関する。表面処理の結果、コア側端面506の表面に一定の厚さを持った表面処理層512が形成される。表面処理の種類には、めっき処理や窒化処理などが挙げられ、従来の場合、摩耗防止が主な目的である。この際、コア側端面506を実施例1から実施例3のような形状として凸部507を形成した上で、均一厚さの表面処理を施してもよいが、コア側端面506を安易な加工で形成可能な平坦形状としておき、表面処理層512の形状を変化させることで、凸部507を形成してもよい。この場合にも、実施例1と同様に、凸部507の曲率半径R2が、可動部503の、最外周部508と端面部506をつなぐ角R部509の曲率半径R1よりも大きい。さらに、実施例1と同様の理由で、曲率半径R2はR70mm以上が好ましい。
磁気吸引力特性を向上させるため、可動部507には磁性材が使われることが多い。磁性材は一般的な構造用鋼に対して、表面硬度が比較的低く、先にも述べたように、摩耗防止の観点から、衝突部の表面処理を前提として設計される場合が多い。このため、表面処理層512の形状を変化させることで、凸部507を形成させることができれば、新たな加工工程を増やすことなく、過大応力の発生を防止することができる。さらに、コア側端面506の内径側における表面処理層512の厚さt1に対し、外径側の凸部507における表面処理層512の厚さt2の方が厚くなるように処理を実施すれば、本来の表面処理の目的である耐摩耗の観点からも好ましい。
以上は実施例2の形状に関し代表として説明したが、実施例1や実施例3の形状に関して本実施例を適用しても、同様の効果を得ることが可能である。
また、他の実施例としては凸部を固定磁気コア側に持たせる構成としても良く、この場合固定磁気コア自身に凸部を設けても良いが、凸部のみ別部品とし固定コア側あるいは可動子側に配置する構成とすることもできる。 FIG. 6 is a cross-sectional view around the collision portion of thesolenoid valve 5 according to the fourth embodiment of the present invention. In FIG. 6, 503 is a movable part, 505 is a fixed magnetic core, 506 is a fixed magnetic core side end surface, 507 is a convex part, 508 is an outermost peripheral part, 509 is a corner R part, and 512 is a surface formed as a result of surface treatment. Each processing layer is shown.
The present embodiment relates to a case where the surface treatment is performed on the coreside end surface 506 of the movable portion 503. As a result of the surface treatment, a surface treatment layer 512 having a certain thickness is formed on the surface of the core side end surface 506. Examples of the surface treatment include plating treatment and nitriding treatment, and in the conventional case, the main purpose is wear prevention. At this time, the core-side end surface 506 may be subjected to surface treatment with a uniform thickness after forming the convex portion 507 with the shape as in the first to third embodiments, but the core-side end surface 506 is easily processed. The convex portion 507 may be formed by changing the shape of the surface treatment layer 512 to a flat shape that can be formed by the above method. Also in this case, similarly to the first embodiment, the curvature radius R2 of the convex portion 507 is larger than the curvature radius R1 of the corner R portion 509 connecting the outermost peripheral portion 508 and the end surface portion 506 of the movable portion 503. Furthermore, for the same reason as in Example 1, the radius of curvature R2 is preferably R70 mm or more.
In order to improve the magnetic attractive force characteristic, a magnetic material is often used for themovable portion 507. The magnetic material has a relatively low surface hardness compared to general structural steel, and as described above, it is often designed on the premise of the surface treatment of the collision portion from the viewpoint of preventing wear. For this reason, if the convex part 507 can be formed by changing the shape of the surface treatment layer 512, generation | occurrence | production of an excessive stress can be prevented, without increasing a new process process. Furthermore, if the processing is performed such that the thickness t2 of the surface treatment layer 512 in the outer diameter side convex portion 507 is thicker than the thickness t1 of the surface treatment layer 512 on the inner diameter side of the core side end surface 506, It is also preferable from the viewpoint of wear resistance, which is the purpose of the original surface treatment.
Although the above has been described as a representative regarding the shape of the second embodiment, the same effect can be obtained even if the present embodiment is applied to the shapes of the first and third embodiments.
In another embodiment, the convex portion may be provided on the fixed magnetic core side. In this case, the fixed magnetic core itself may be provided with a convex portion, but only the convex portion is provided as a separate part, and the fixed core side or the movable portion is movable. It can also be configured to be arranged on the child side.
本実施例は、可動部503のコア側端面506に表面処理を実施した場合に関する。表面処理の結果、コア側端面506の表面に一定の厚さを持った表面処理層512が形成される。表面処理の種類には、めっき処理や窒化処理などが挙げられ、従来の場合、摩耗防止が主な目的である。この際、コア側端面506を実施例1から実施例3のような形状として凸部507を形成した上で、均一厚さの表面処理を施してもよいが、コア側端面506を安易な加工で形成可能な平坦形状としておき、表面処理層512の形状を変化させることで、凸部507を形成してもよい。この場合にも、実施例1と同様に、凸部507の曲率半径R2が、可動部503の、最外周部508と端面部506をつなぐ角R部509の曲率半径R1よりも大きい。さらに、実施例1と同様の理由で、曲率半径R2はR70mm以上が好ましい。
磁気吸引力特性を向上させるため、可動部507には磁性材が使われることが多い。磁性材は一般的な構造用鋼に対して、表面硬度が比較的低く、先にも述べたように、摩耗防止の観点から、衝突部の表面処理を前提として設計される場合が多い。このため、表面処理層512の形状を変化させることで、凸部507を形成させることができれば、新たな加工工程を増やすことなく、過大応力の発生を防止することができる。さらに、コア側端面506の内径側における表面処理層512の厚さt1に対し、外径側の凸部507における表面処理層512の厚さt2の方が厚くなるように処理を実施すれば、本来の表面処理の目的である耐摩耗の観点からも好ましい。
以上は実施例2の形状に関し代表として説明したが、実施例1や実施例3の形状に関して本実施例を適用しても、同様の効果を得ることが可能である。
また、他の実施例としては凸部を固定磁気コア側に持たせる構成としても良く、この場合固定磁気コア自身に凸部を設けても良いが、凸部のみ別部品とし固定コア側あるいは可動子側に配置する構成とすることもできる。 FIG. 6 is a cross-sectional view around the collision portion of the
The present embodiment relates to a case where the surface treatment is performed on the core
In order to improve the magnetic attractive force characteristic, a magnetic material is often used for the
Although the above has been described as a representative regarding the shape of the second embodiment, the same effect can be obtained even if the present embodiment is applied to the shapes of the first and third embodiments.
In another embodiment, the convex portion may be provided on the fixed magnetic core side. In this case, the fixed magnetic core itself may be provided with a convex portion, but only the convex portion is provided as a separate part, and the fixed core side or the movable portion is movable. It can also be configured to be arranged on the child side.
1…ボディ、2…プランジャ、3…リテーナ、4…戻しばね、5…電磁弁、6…タペット、7…カム、8…吐出弁、9…吸入通路、11…加圧室、12…吐出通路、503…可動部、505…固定磁気コア、507…凸部、508…最外周部、509…角R部、510および511…接続部、50…燃料タンク、53…コモンレール、54…インジェクタ、56…圧力センサ
DESCRIPTION OF SYMBOLS 1 ... Body, 2 ... Plunger, 3 ... Retainer, 4 ... Return spring, 5 ... Solenoid valve, 6 ... Tappet, 7 ... Cam, 8 ... Discharge valve, 9 ... Suction passage, 11 ... Pressurization chamber, 12 ... Discharge passage , 503 ... movable part, 505 ... fixed magnetic core, 507 ... convex part, 508 ... outermost peripheral part, 509 ... corner R part, 510 and 511 ... connection part, 50 ... fuel tank, 53 ... common rail, 54 ... injector, 56 ... Pressure sensor
Claims (11)
- 固定磁気コアと、前記固定磁気コアに吸引されて駆動される可動部とを備え、前記可動部の前記固定磁気コア側端面部に、凸方向の曲率半径を有する曲面で形成された凸部が、周方向全周に設けられ、前記可動部が傾斜して前記固定磁気コアに衝突した際、前記凸部が衝突部となる流体制御装置であって、
前記凸部の曲率半径が、前記可動部の、最外周部と前記端面部をつなぐ角R部の曲率半径よりも大きいことを特徴とする流体制御装置。 A fixed magnetic core; and a movable part that is attracted to and driven by the fixed magnetic core, and a convex part formed of a curved surface having a radius of curvature in a convex direction is provided on the fixed magnetic core side end surface part of the movable part. The fluid control device is provided on the entire circumference in the circumferential direction, and when the movable part is inclined and collides with the fixed magnetic core, the convex part becomes a collision part,
The fluid control device according to claim 1, wherein a curvature radius of the convex portion is larger than a curvature radius of an angle R portion connecting the outermost peripheral portion and the end surface portion of the movable portion. - 請求項1の流体制御装置において、前記凸部と内径側の平坦部、および前記凸部と外径側の角R部を接続する接続部の曲率半径が、径方向に連続的に変化することを特徴とする流体制御装置。 2. The fluid control device according to claim 1, wherein the curvature radius of the connecting portion connecting the convex portion and the flat portion on the inner diameter side, and the corner R portion on the outer diameter side continuously changes in the radial direction. A fluid control device.
- 請求項1ないし請求項2の流体制御装置において、前記凸部の曲率半径がR≧70mmとなることを特徴とする流体制御装置。 3. The fluid control device according to claim 1, wherein a radius of curvature of the convex portion is R ≧ 70 mm. 4.
- 請求項1ないし請求項2の流体制御装置において、前記衝突部の高さと前記平坦部または前記角R部の高さの差ΔHmmが、前記端面部の径方向幅Xmmに対し、ΔH≦70-{70^2-(X/2)^2}^0.5となることを特徴とする流体制御装置。 3. The fluid control device according to claim 1, wherein a difference ΔHmm between a height of the collision part and a height of the flat part or the corner R part is ΔH ≦ 70− with respect to a radial width Xmm of the end face part. {70 ^ 2- (X / 2) ^ 2} ^ 0.5
- 請求項1から請求項4の流体制御装置において、前記凸部が、前記端面部に施された表面処理の結果生成される、表面処理層によって形成されることを特徴とする流体制御装置。 5. The fluid control device according to claim 1, wherein the convex portion is formed by a surface treatment layer generated as a result of a surface treatment applied to the end surface portion.
- 請求項5の流体制御装置において、前記表面処理がめっき処理であることを特徴とする流体制御装置。 6. The fluid control apparatus according to claim 5, wherein the surface treatment is a plating process.
- 請求項5の流体制御装置において、前記表面処理が窒化処理であることを特徴とする流体制御装置。 6. The fluid control device according to claim 5, wherein the surface treatment is a nitriding treatment.
- 請求項5の流体制御装置において、前記衝突部における前記表面処理層の厚さが、前記平坦部における厚さよりも厚くなることを特徴とする流体制御装置。 The fluid control device according to claim 5, wherein the thickness of the surface treatment layer in the collision portion is larger than the thickness in the flat portion.
- 固定磁気コアと、前記固定磁気コアに吸引されて駆動される可動部とを備え、前記固定磁気コアの前記可動部側端面部に、凸方向の曲率半径を有する曲面で形成された凸部が、周方向全周に設けられ、前記可動部が傾斜して前記固定磁気コアに衝突した際、前記凸部が衝突部となる流体制御装置であって、
前記凸部の曲率半径が、前記固定磁気コアの、最外周部と前記端面部をつなぐ角R部の曲率半径よりも大きいことを特徴とする流体制御装置。 A fixed magnetic core, and a movable part that is attracted and driven by the fixed magnetic core, and a convex part formed of a curved surface having a radius of curvature in a convex direction is provided on the movable part side end surface part of the fixed magnetic core. The fluid control device is provided on the entire circumference in the circumferential direction, and when the movable part is inclined and collides with the fixed magnetic core, the convex part becomes a collision part,
The fluid control device according to claim 1, wherein a radius of curvature of the convex portion is larger than a radius of curvature of a corner R portion connecting the outermost peripheral portion and the end surface portion of the fixed magnetic core. - 請求項9記載の流体制御装置であって、
前記凸部は、前記固定磁気コアと同一部材により一体成型されていることを特徴とする流体制御装置。 The fluid control device according to claim 9,
The fluid control device according to claim 1, wherein the convex portion is integrally formed with the same member as the fixed magnetic core. - 請求項1から請求項10の流体制御装置を内蔵することを特徴とする高圧燃料供給ポンプ。 A high-pressure fuel supply pump comprising the fluid control device according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014082433A JP6381946B2 (en) | 2014-04-14 | 2014-04-14 | Fluid control solenoid |
JP2014-082433 | 2014-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015159622A1 true WO2015159622A1 (en) | 2015-10-22 |
Family
ID=54323837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/057613 WO2015159622A1 (en) | 2014-04-14 | 2015-03-16 | Fluid control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6381946B2 (en) |
WO (1) | WO2015159622A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6605371B2 (en) | 2016-03-14 | 2019-11-13 | 日立オートモティブシステムズ株式会社 | Electromagnetic solenoid and fuel injection valve |
WO2020066547A1 (en) * | 2018-09-26 | 2020-04-02 | 日立オートモティブシステムズ株式会社 | Electromagnetic valve and high-pressure fuel supply pump |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08506876A (en) * | 1993-12-09 | 1996-07-23 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Solenoid operated valve |
JPH11200980A (en) * | 1998-01-12 | 1999-07-27 | Aisan Ind Co Ltd | Fuel injection valve |
JP2006266231A (en) * | 2005-03-25 | 2006-10-05 | Aisan Ind Co Ltd | Fuel injection valve |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106103966B (en) * | 2014-03-14 | 2018-07-03 | 日立汽车系统株式会社 | Solenoid valve |
-
2014
- 2014-04-14 JP JP2014082433A patent/JP6381946B2/en active Active
-
2015
- 2015-03-16 WO PCT/JP2015/057613 patent/WO2015159622A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08506876A (en) * | 1993-12-09 | 1996-07-23 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Solenoid operated valve |
JPH11200980A (en) * | 1998-01-12 | 1999-07-27 | Aisan Ind Co Ltd | Fuel injection valve |
JP2006266231A (en) * | 2005-03-25 | 2006-10-05 | Aisan Ind Co Ltd | Fuel injection valve |
Also Published As
Publication number | Publication date |
---|---|
JP2015204345A (en) | 2015-11-16 |
JP6381946B2 (en) | 2018-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10711754B2 (en) | Valve assembly having electrical actuator with stepped armature | |
JP5136919B2 (en) | High pressure pump | |
JP6462873B2 (en) | Flow control valve and high-pressure fuel supply pump | |
JP5517068B2 (en) | High pressure pump | |
JP6308921B2 (en) | High pressure fuel supply pump | |
JP6381946B2 (en) | Fluid control solenoid | |
US7597305B2 (en) | Poppet valve device and electronic controlled fuel injection apparatus equipped with the device | |
JP2013517418A (en) | Injection device for fuel injection pump | |
CN105814351A (en) | Electromagnet of an electromagnetically actuated fluid valve | |
JP2005351203A (en) | Fuel injection valve | |
JP6838244B2 (en) | Solenoid valve and high pressure fuel supply pump | |
JP4958023B2 (en) | High pressure pump | |
JP2017014920A (en) | Solenoid valve and high pressure fuel supply pump | |
JP2006207486A (en) | High pressure fuel pump | |
JP6032312B2 (en) | High pressure pump | |
JP6855343B2 (en) | High pressure fuel pump | |
JP6310766B2 (en) | Discharge valve unit and high-pressure fuel pump | |
JP6311575B2 (en) | Fuel pump | |
JPWO2018221158A1 (en) | High pressure fuel supply pump | |
JP5929973B2 (en) | High pressure pump | |
JP6575439B2 (en) | Fuel pressure control device for internal combustion engine | |
JP2017180449A (en) | Oil tank piston of fuel injection pump | |
JP6689153B2 (en) | Fuel supply pump | |
JP6443412B2 (en) | High pressure pump | |
JP6337874B2 (en) | High pressure pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15780260 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15780260 Country of ref document: EP Kind code of ref document: A1 |