JPH0850019A - Method and apparatus for measuring sinkage of structure - Google Patents

Method and apparatus for measuring sinkage of structure

Info

Publication number
JPH0850019A
JPH0850019A JP18747094A JP18747094A JPH0850019A JP H0850019 A JPH0850019 A JP H0850019A JP 18747094 A JP18747094 A JP 18747094A JP 18747094 A JP18747094 A JP 18747094A JP H0850019 A JPH0850019 A JP H0850019A
Authority
JP
Japan
Prior art keywords
water
subsidence
container
level
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18747094A
Other languages
Japanese (ja)
Other versions
JP2681339B2 (en
Inventor
Hidenao Ueki
秀直 植木
Yoshiyuki Kono
義之 河野
Mitsuo Mori
満夫 森
Toshio Kishimoto
俊夫 岸本
Yutaka Emi
江見  裕
Hiroyuki Otsubo
宏至 大坪
Isohiro Tanaka
五十大 田中
Atsunori Katou
淳徳 河東
Satoru Ichiba
悟 市場
Mitsugi Murakami
貢 村上
Itsuo Ikeda
逸男 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEWTEC KK
Takenaka Doboku Co Ltd
West Japan Railway Co
Daitetsu Kogyo Co Ltd
Original Assignee
NEWTEC KK
Takenaka Doboku Co Ltd
West Japan Railway Co
Daitetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEWTEC KK, Takenaka Doboku Co Ltd, West Japan Railway Co, Daitetsu Kogyo Co Ltd filed Critical NEWTEC KK
Priority to JP6187470A priority Critical patent/JP2681339B2/en
Publication of JPH0850019A publication Critical patent/JPH0850019A/en
Application granted granted Critical
Publication of JP2681339B2 publication Critical patent/JP2681339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Level Indicators Using A Float (AREA)

Abstract

PURPOSE:To provide a method and an apparatus for measuring a rise or sinkage of a structure, etc., in real time. CONSTITUTION:A sinkage-sensing part 1 consisting of a transmission container 2 holding a constant water level is set at a required measuring point of a structure, etc. A sinkage-detecting part 4 consisting of a receiver container 3 connected to the transmission container 2 of the sinkage-sensing part 1 is set approximately at the same level as the sinkage-sensing part 1 at an immobile point sufficiently far from the measuring point and not influenced by a sinkage of the structure, etc. A necessary amount of water is filled in a system. The presence/absence of a sinkage and an amount of the sinkage are detected by measuring the water level in the receiver container 3 of the sinkage-detecting part 4. The sinkage-sensing part 1 can be buried in the ground easily, not obstructing a train or a vehicle in running. The measurement can be carried out directly at a measuring position. Since the sinkage-detecting part, 4 equipped with a sensor, etc., is set outside influences of the sinkage, a maintenance work for the apparatus can be conducted without entering a road or a track.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄道路床や道路床の
ような構造物の隆起や沈下、あるいは構造物ではない自
然地盤の隆起や沈下(鉛直方向の変位、以下、沈下と総
称する。)をリアルタイムで計測する沈下計測方法及び
沈下計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally refers to ups and downs of structures such as iron road floors and road floors, or ups and downs of natural ground that is not a structure (vertical displacement, hereinafter referred to as "sink"). ) In real time, and a subsidence measuring device.

【0002】[0002]

【従来の技術】従来、現に供用されている鉄道路床や道
路床の下に地下道掘削工事などを行なう場合は、供用の
安全性を確認するため、沈下計測が不可欠とされてい
る。軌道盛土の鉛直変位の計測は、光学測量では一様に
見通すことが難しいし、列車振動等のため測定精度を得
る事が難しい。また、一般に仮想不動点と考えられる地
点を設定することが困難で沈下の測定に著しい不便を感
ずることが多い。条件の良い場所でも、沈下又は隆起の
変状を判定する程度の効果しかないとさえ云われる。特
に鉄道関係の営業路線に対する安全管理は非常に重要で
あるにもかかわらず決定的な計測方法が確立されていな
いのが現状である。
2. Description of the Related Art Conventionally, when conducting underground road excavation work under an iron road floor or a road floor currently in use, sinking measurement is indispensable in order to confirm the safety of service. It is difficult to see the vertical displacement of the track embankment uniformly by optical survey, and it is difficult to obtain the measurement accuracy due to train vibration. In addition, it is generally difficult to set a point that is considered to be a virtual fixed point, and it is often inconvenient to measure subsidence. It is said that even in well-conditioned areas, it is only effective in determining the deformation of subsidence or upheaval. In particular, safety management for railway-related business routes is very important, but the definitive measurement method is not established yet.

【0003】軌道の鉛直変位を計測する方法として、光
学的方法の他に、後に詳述する水盛り式の計測方法が行
なわれているが、実際上は取付け状況及び保守点検に様
々な困難があって必ずしも目的を達していない。従来一
般的に使用されている、水管式相対沈下計の原理図を図
8に示した。基準タンクaと沈下筒b及び両者を結ぶ連
通管cで構成されている。基準タンクaが沈下筒bと相
対する位置にあり、沈下筒bの基準タンクaに対する鉛
直方向の変位は、沈下筒bと浮子(フロート)の相対変
位に等しい。従って、沈下筒bと浮子の相対変位を後述
のように電気的に変換することによって遠隔計測が行な
われる。機械的な接触が無い差動トランスを組み込み、
浮子の静止エネルギー(位置のエネルギー)を吸収しな
いで電気的な出力を発生する。
As a method for measuring the vertical displacement of the track, a water-filling type measuring method, which will be described in detail later, is used in addition to the optical method. However, in practice, there are various difficulties in mounting conditions and maintenance and inspection. There is not always the purpose. FIG. 8 shows a principle diagram of a water tube type relative subsidence meter which is generally used conventionally. It is composed of a reference tank a, a sinking cylinder b, and a communication pipe c connecting them. The reference tank a is at a position facing the sinking cylinder b, and the vertical displacement of the sinking cylinder b with respect to the reference tank a is equal to the relative displacement of the sinking cylinder b and the float. Therefore, telemetry is performed by electrically converting the relative displacement between the sinking cylinder b and the float as described later. Built-in differential transformer without mechanical contact,
An electric output is generated without absorbing the rest energy (positional energy) of the float.

【0004】基準タンクaの構造詳細を図9に示し、沈
下筒bの構造詳細を図10に示した。基準タンクaを不
動点に設置すると沈下筒bの絶対変位を検出できるが、
必ずしも不動点でなくてもよく、一般には相対変位の基
点(仮想不動点)に設置される。基準タンクaは常に一
定の液面を維持しなければならず、単に貯水しておくだ
けでは蒸発によって自然に液面が低下するので、点滴
(ドロップフィード)の技法で一定の時間間隔で補助タ
ンクdから水滴を落下させる。従って、基準タンクaか
らは常時微量のオーバーフローを生じている。このオー
バーフローは回収槽eに集められ、一定の水量に達する
とポンプPによって補助タンクdに送水される。蒸発に
よる減少は定期的に回収槽eに注水して補充する。かく
して基準タンクaの水面は一定に保たれる。
FIG. 9 shows the detailed structure of the reference tank a, and FIG. 10 shows the detailed structure of the sinking cylinder b. If the reference tank a is installed at a fixed point, the absolute displacement of the sinking cylinder b can be detected.
The fixed point does not necessarily have to be fixed, but is generally set at the base point of relative displacement (virtual fixed point). The reference tank a must always maintain a constant liquid level, and if the water is simply stored, the liquid level will naturally drop due to evaporation. Therefore, the auxiliary tank is dipped (drop feed) at regular time intervals. Drop a water drop from d. Therefore, a small amount of overflow always occurs from the reference tank a. This overflow is collected in the recovery tank e, and when it reaches a certain amount of water, it is sent to the auxiliary tank d by the pump P. The decrease due to evaporation is periodically replenished by pouring water into the recovery tank e. Thus, the water surface of the reference tank a is kept constant.

【0005】沈下筒bは計測必要箇所に設置され、沈下
又は隆起に反応する。沈下筒bが上下に移動すると、内
部の水面は基準タンクaとの連通効果で一定の高さを維
持するので、沈下筒bから見た見掛けの水柱の高さが変
化する。この微小な位置のエネルギーの変化を図10に
示した例ではフォトトランジスタfの光電効果を利用し
て上下の遮光範囲をサーボモータmによるサーボ機構で
自動的に追跡する。この追跡機構が移動した量を電気量
に変換して取出す。追跡機構はサーボモータmで駆動さ
れるから、その回転角を回転型のポテンショメータに連
動させることもあるが、図10の例では追跡機構の上下
動を差動トランスgで検出する構成とされている。高感
度の水圧計によって水柱の高さを圧力変換して検出する
こともある。光学式は可動摩擦部を持たない特色を有す
るが、機械的インピーダンス(抵抗力)の低いベローズ
を受感部とするため温度変化によって特性が劣る。ま
た、水柱の変化は数パーセントに縮小されてベローズの
伸縮になるため、縮小機構にとって避けられないS/N
比の低下をともなう。このような欠点を改善する目的
で、変換器として微圧の変化に鋭敏な差圧計を用いるこ
ともある。沈下筒bを設置する計測必要箇所は温度変化
の影響を受け易い部位であるから、少なくとも直射日光
を受けないように断熱防護ケースで覆う必要がある。
The subsidence cylinder b is installed at a measurement required location and reacts to subsidence or bulging. When the sinking cylinder b moves up and down, the internal water surface maintains a constant height due to the effect of communication with the reference tank a, so that the apparent height of the water column seen from the sinking cylinder b changes. In the example shown in FIG. 10, the change in energy at this minute position is automatically tracked by the servo mechanism by the servo motor m using the photoelectric effect of the phototransistor f to detect the upper and lower light-shielding ranges. The amount moved by this tracking mechanism is converted into an electric amount and taken out. Since the tracking mechanism is driven by the servomotor m, its rotation angle may be linked with a rotary potentiometer, but in the example of FIG. 10, the vertical movement of the tracking mechanism is detected by the differential transformer g. There is. The height of the water column may be pressure-converted and detected by a highly sensitive water pressure gauge. The optical type has a feature that it does not have a movable friction part, but the bellows with low mechanical impedance (resistive force) is used as the sensitive part, so the characteristics are inferior due to temperature changes. In addition, the change in the water column is reduced to a few percent and the bellows expands and contracts.
With a decrease in ratio. For the purpose of remedying such a defect, a differential pressure gauge sensitive to changes in slight pressure may be used as a transducer. Since the measurement-required place where the sinking cylinder b is installed is a region that is easily affected by temperature changes, it is necessary to cover it with a heat insulation protection case so as not to receive direct sunlight at least.

【0006】その他、軌道用の沈下計としては、図11
に概念を示した計測装置も知られている。密度が水の1
3倍強に達する水銀を媒体として沈下筒内に背圧を作用
させ、マノメータの水柱を常に一定に保つような平衡圧
を検出して鉛直変位を求める構成である。マノメータの
指示が等しくなる水銀面の高さは触針式の電導回路で検
知するが、日本では全く使用実績がない。
[0006] In addition, FIG. 11 shows a squat gauge for orbit.
A measuring device whose concept is shown in is also known. Density is 1 of water
The vertical displacement is calculated by applying a back pressure in the sinking cylinder using mercury that reaches a little more than three times as a medium, and detecting the equilibrium pressure that always keeps the water column of the manometer constant. The height of the mercury surface where the manometer's indication is the same is detected by a stylus-type conductive circuit, but it has not been used in Japan at all.

【0007】[0007]

【本発明が解決しようとする課題】図8に示した水管式
相対沈下計の場合、計測必要箇所に設置される沈下筒b
は図10に示したように高度な精密機械として構成され
ているため、これを夏期には炎熱に焼かれ、冬期には凍
結するほどの酷寒状態となる鉄道路床や道路床などの地
下に埋設して使用することには甚だ適さない。例えば差
動トランスgの適用温度範囲は0℃〜40℃位とされる
から、1年を通じての計測精度を期待できないし、耐用
寿命も早々に尽きてしまう。また、沈下筒bの微小な水
位変化をフォトトランジスタfの光電効果を利用して、
更に遮光範囲をサーボ機構で自動追跡する構成である
が、鉄道路床や道路床は列車や自動車が通る度に激しく
振動するので、こうした場所ではせっかくの精密機器も
あまり役に立たないばかりでなく、機械的な故障が発生
し易い。そして、供用状態にある鉄道路床や道路床など
に埋設した沈下筒bに故障の修理や点検の必要が生じて
もままならないという問題点もある。更に、計測必要箇
所に埋設した沈下筒bから電源及び信号ケーブルを引き
出して監視場所の機器まで配設し接続するので、軌道の
修正作業時に信号ケーブルが損傷を受ける可能性が大き
いし、近隣の高圧線等から電気的誘導電圧を拾いノイズ
を発生する可能性も多分にある。
In the case of the water pipe type relative subsidence meter shown in FIG. 8, the subsidence tube b installed at a required measurement location.
Since it is configured as an advanced precision machine as shown in Fig. 10, it is buried in the underground such as iron road floors and road floors where it is burned by flame heat in summer and freezes in winter. It is not suitable for use. For example, since the applicable temperature range of the differential transformer g is about 0 ° C. to 40 ° C., it is impossible to expect the measurement accuracy throughout the year, and the useful life will be exhausted soon. In addition, by using the photoelectric effect of the phototransistor f, a slight change in water level in the sinking cylinder b
Furthermore, it is a configuration that automatically tracks the shaded area with a servo mechanism, but since iron road floors and road floors vibrate violently every time a train or an automobile passes, not only precision equipments such as these are not very useful in such places, but also mechanical ones. Trouble is likely to occur. There is also a problem that the iron road floor in service and the sinking cylinder b buried in the road floor do not remain even if the need for repair or inspection for a failure arises. Further, since the power supply and the signal cable are pulled out from the sinking cylinder b buried in the measurement-required place and the equipment at the monitoring place is arranged and connected, there is a high possibility that the signal cable will be damaged during the work for correcting the track, and the vicinity There is a high possibility that noise will be generated by picking up an electrically induced voltage from a high voltage line or the like.

【0008】そこで従来、列車軌道の挙動を検出する場
合、沈下筒bは列車建築限界外にはね出した形に設置し
て使用する場合が多いが、この方式だとはね出し腕によ
って振動が一層増幅され、沈下筒bに内蔵されているフ
ォトトランジスタfや差動トランスgなどのセンサーが
列車振動あるいは電気的誘導により故障や損失が起きや
すい。とは云え、計器交換やメンテナンスが大変困難な
ため、沈下筒bを軌道内に設置しない場合が一般的であ
った。その結果、列車軌道の挙動(沈下及び隆起)を検
出しようにも、軌道直下に検出器を設置しない為、計算
式を用いて算定する手法で行っており、その算定値も間
接的であり、正確な鉛直変位を把握、確認できないのが
実情であった。
Therefore, conventionally, when detecting the behavior of the train track, the sinking cylinder b is often installed and used outside the train construction limit. With this method, the sinking arm vibrates due to the protruding arm. Is further amplified, and the sensors such as the phototransistor f and the differential transformer g incorporated in the sinking cylinder b are likely to be damaged or lost due to train vibration or electric induction. However, since instrument replacement and maintenance are very difficult, it is common to not set the sinking cylinder b in the track. As a result, even if the behavior of the train track (subsidence and uplift) is detected, the detector is not installed directly below the track, so the calculation method is used, and the calculated value is indirect. The reality is that the exact vertical displacement cannot be grasped and confirmed.

【0009】一方の基準タンクaにしても、図9に示し
た構成の点滴技法により一定の時間間隔で補助タンクd
から水滴を落下させ一定の水位を保つ構成なので、かな
り複雑な構造になっている。とりわけ、水滴の落下に伴
なう水面の波動(振動)状態が沈静化するまでの間は計
測しても誤差が大きく、計測に値しないという問題点も
重大である。
Even in the case of one of the reference tanks a, the auxiliary tank d is formed at regular time intervals by the drip technique having the configuration shown in FIG.
It has a fairly complicated structure because it keeps a constant water level by dropping water droplets from it. In particular, there is a serious problem that the measurement is not worthwhile until the wave (vibration) state of the water surface accompanying the drop of the water drop is calmed down and the measurement is not worth it.

【0010】従って、本発明の目的は、上述した水管式
相対沈下計とは発想を正に逆転させて、構造物等の計測
必要箇所には一定レベルの水位を保持する単なる水容器
(発信容器)から成る沈下受感部を設置し、前記計測必
要箇所(列車軌道の建築限界)の外方に十分離れた沈下
影響外の不動点(仮想不動点)に、前記沈下受感部の発
信容器と連通された受信容器及び該受信容器の水位計測
手段から成る沈下受信部を設置して受信容器の水位を計
測する構成とした沈下計測方法及び装置を提供すること
である。
Therefore, an object of the present invention is to reverse the concept of the above-mentioned water pipe type relative subsidence meter to a positive one, and to simply measure a water level (a transmission container) that holds a certain level of water level at a measurement required portion such as a structure. ) Is installed, and at the fixed point outside the settlement effect (virtual fixed point) sufficiently far outside the measurement-required point (building limit of the train track), the transmitting container of the settlement sensitive section (EN) A subsidence measuring method and apparatus configured to measure a water level of a receiving container by installing a subsidence receiving unit including a receiving container and a water level measuring means of the receiving container in communication with the receiving container.

【0011】本発明の究極の目的は、単なる水容器に等
しい構成の沈下受感部は、気象条件や振動条件などが厳
しい鉄道路床や道路床の土中に埋設することに適し、一
方、前記沈下受感部の鉛直変位を計測する沈下受信部は
沈下影響外の不動点に設置することにより、精密機器で
ある水位計測手段が振動や気象条件の悪影響を一切受け
ず、従って、機械的な故障のおそれが少なく、保守管理
を容易に行なえ、軌道補修作業などによるケーブル配線
の切断事故の心配もなく、測定範囲をスケールオーバー
した場合の盛り替えを安全な場所で簡単に行なえるこ
と、及び沈下計測をリアルタイムに正確に行なえる構成
の沈下計測方法及び装置を提供することにある。
The ultimate object of the present invention is that the subsidence-sensing portion having a structure equivalent to that of a simple water container is suitable for being buried in an iron road floor or soil of a road floor under severe weather and vibration conditions. The subsidence receiving unit that measures the vertical displacement of the subsidence sensing unit is installed at a fixed point outside the influence of subsidence, so that the water level measuring means, which is a precision instrument, is not affected by vibration or weather conditions at all, and therefore the mechanical There is little risk of failure, maintenance can be done easily, there is no concern about disconnection of cable wiring due to track repair work, etc., and when the measurement range is scaled over, it is possible to easily re-seat in a safe place. An object of the present invention is to provide a subsidence measuring method and device having a configuration capable of accurately performing subsidence measurement in real time.

【0012】[0012]

【課題を解決するための手段】上記従来の課題を解決す
るための手段として、請求項1に記載した構造物等の沈
下計測方法は、一定レベルの水位を保持する発信容器2
から成る沈下受感部1を構造物等の計測必要箇所に設置
し、前記計測必要箇所から十分に遠く離れた沈下影響外
の不動点に前記沈下受感部の発信容器2と連通された受
信容器3から成る沈下受信部4を沈下受感部1とほぼ同
レベルに設置し、系内に必要量の水を満たし、沈下受信
部の受信容器内の水位を計測することにより計測必要箇
所の沈下の有無及び沈下量を計測することを特徴とす
る。
[Means for Solving the Problems] As a means for solving the above-mentioned conventional problems, the sinking measuring method for a structure or the like described in claim 1 has a transmitting container 2 for holding a water level at a constant level.
The subsidence-sensing part 1 consisting of is installed in a measurement-requiring place such as a structure, and the reception is communicated with the transmitting container 2 of the subsidence-sensing part at a fixed point outside the subsidence influence sufficiently far from the measurement-requiring place. The subsidence receiving part 4 consisting of the container 3 is installed at almost the same level as the subsidence sensing part 1, the system is filled with a required amount of water, and the water level in the receiving container of the subsidence receiving part is measured to measure It is characterized by measuring the presence or absence of subsidence and the amount of subsidence.

【0013】上記の沈下計測方法は、沈下受感部1の発
信容器2に対して遺漏水量を少し上回る量の水を常時供
給すること、及び発信容器2内の水位は所定高さのオー
バーフロー部7により一定レベルに保つことを特徴とす
る。上記沈下受信部4の受信容器3内の水位は、フロー
ト5を利用した差動トランス6により常時リアルタイム
に計測することも特徴とする。
In the above settlement measurement method, the sending container 2 of the settlement sensing unit 1 is always supplied with an amount of water slightly larger than the amount of leaked water, and the water level in the sending container 2 is an overflow portion having a predetermined height. It is characterized by maintaining a constant level by 7. The water level in the receiving container 3 of the sinking receiving unit 4 is also characterized in that it is constantly measured in real time by a differential transformer 6 using a float 5.

【0014】次に、請求項4に記載した構造物等の沈下
計測装置は、構造物等の計測必要箇所に設置される沈下
受感部1と、前記計測必要箇所から十分に遠く離れた沈
下影響外の不動点に設置される沈下受信部4とから成
り、前記沈下受感部1は、ほぼ密閉された構造の発信容
器2が主体をなし、該発信容器2は一定の水位を保つオ
ーバーフロー部7を有し、底部に連通管8が接続されて
いること、前記沈下受信部4は、前記発信容器2とほぼ
同レベルに設置された受信容器3が主体をなし、該受信
容器4の底部に前記発信容器2から配管された連通管8
が接続されており、当該受信容器3内の水位を計測する
手段を備えていること、発信容器2及び受信容器3内に
は、発信容器2のオーバーフロー部7の高さとして規定
される水位まで水が満たされていること、をそれぞれ特
徴とする。
Next, the subsidence measuring apparatus for a structure or the like according to claim 4 is a subsidence sensing unit 1 installed at a measurement required portion of a structure or the like, and a subsidence sufficiently distant from the measurement required portion. The subsidence receiving section 4 is installed at a fixed point outside the influence, and the subsidence sensing section 1 is mainly composed of a transmission container 2 having a substantially sealed structure, and the transmission container 2 is an overflow that maintains a constant water level. The bottom of the receiving container 4 has a portion 7 and a communication pipe 8 is connected to the bottom. The sinking receiving part 4 is mainly composed of a receiving container 3 installed at substantially the same level as the transmitting container 2. Communication pipe 8 that is piped from the transmission container 2 at the bottom
Is connected to the receiving container 3, and means for measuring the water level in the receiving container 3 is provided. In the transmitting container 2 and the receiving container 3, up to the water level defined as the height of the overflow portion 7 of the transmitting container 2. Each is characterized by being filled with water.

【0015】上記した沈下計測装置の沈下受感部1の発
信容器2には、通水性の多孔板9で仕切られた受水部1
0が付設され、二次水槽11の水をくみ上げる給水用ポ
ンプ12の給水管13が前記受水部10まで配管され、
連続運転される給水用ポンプ12により遺漏水量を少し
上回る量の水が前記受水部10へ常時供給されることを
特徴とする。
In the transmitting container 2 of the subsidence sensing unit 1 of the subsidence measuring device described above, the water receiving unit 1 is partitioned by a water-permeable porous plate 9.
0 is attached, and the water supply pipe 13 of the water supply pump 12 for pumping up the water in the secondary water tank 11 is piped to the water receiving section 10.
A feature is that the water supply pump 12 that is continuously operated constantly supplies the water receiving unit 10 with an amount of water that slightly exceeds the amount of leaked water.

【0016】前記沈下受信部4の受信容器3内には、水
位計測の手段として、水面に浮かべたフロート5の垂直
軸5aが、同水面の上方に垂直に固定された差動トラン
ス6の可動軸6aと接続されており、受信容器3内の水
位の変化は差動トランス6により電気量として常時計測
され、演算、表示装置に入力されることを特徴とする。
In the receiving container 3 of the sinking receiving section 4, as a means for measuring the water level, a vertical shaft 5a of a float 5 floated on the water surface is fixed vertically above the water surface and a differential transformer 6 is movable. It is characterized in that it is connected to the shaft 6a, and a change in the water level in the receiving container 3 is constantly measured as an electric quantity by the differential transformer 6 and is input to a calculation and display device.

【0017】前記二次水槽11には、同水槽内の水位を
自動検出するレベルセンサー14が設置され、前記レベ
ルセンサーの検出値にしたがって自動運転される補給用
ポンプ15が一次水槽16の水をくみ上げ、前記補給用
ポンプから延びる補給水管17が前記二次水槽11まで
配管されており、逆に二次水槽11内の水をくみ上げる
リターンポンプ18から延びたリターン水管19が前記
一次水槽16まで配管されていることを特徴とする。
A level sensor 14 for automatically detecting the water level in the secondary water tank 11 is installed in the secondary water tank 11, and a replenishment pump 15 that is automatically operated according to the detection value of the level sensor removes the water in the primary water tank 16. A makeup water pipe 17 extending from the pump for pumping up and replenishing is piped to the secondary water tank 11, and conversely, a return water pipe 19 extending from a return pump 18 for pumping the water in the secondary water tank 11 is piped to the primary water tank 16. It is characterized by being.

【0018】前記連通管8の低部に開閉弁20が設置さ
れ、一次又は二次水槽の水をくみ上げる換水用ポンプ2
1から延びた換水管22が連通管8と接続されているこ
とも特徴とする。
An opening / closing valve 20 is installed at a lower portion of the communication pipe 8 to pump water for pumping water in a primary or secondary water tank.
It is also characterized in that the water exchange pipe 22 extending from 1 is connected to the communication pipe 8.

【0019】[0019]

【作用】請求項1又は4の発明において、相互に連通さ
れた発信容器2と受信容器3の水位は同一に保たれる。
構造物等の計測必要箇所に設置した沈下受感部1(発信
容器2)に鉛直方向の隆起又は沈下(鉛直変位)が発生
すると、発信容器2内の絶対水位が上昇又は下降し、こ
の水位変化は直ちに受信容器3内の水位の上昇又は下降
として現れる。従って、不動点又は仮想不動点に設置し
た受信容器3内の水位を計測することにより、沈下受感
部1を設置した構造物等の鉛直変位(沈下又は隆起の有
無又は沈下量の大きさ)、要するに鉄道路床等の変状を
計測できる。
In the invention of claim 1 or 4, the water level of the transmitting container 2 and the receiving container 3 which are communicated with each other is kept the same.
When vertical subsidence or subsidence (vertical displacement) occurs in the subsidence sensing unit 1 (transmission container 2) installed in a measurement-required location such as a structure, the absolute water level in the transmission container 2 rises or falls, and this water level The change immediately manifests itself as a rise or fall in the water level in the receiving container 3. Therefore, by measuring the water level in the receiving container 3 installed at the fixed point or the virtual fixed point, the vertical displacement of the structure or the like in which the subsidence sensing unit 1 is installed (presence or absence of subsidence or bump or the size of subsidence) In short, it is possible to measure the deformation of railway road floors.

【0020】計測必要箇所には一定レベルの水を収容し
た発信容器2を設置するにすぎず、水の蒸発や計測必要
箇所に発生する振動、鉛直変位などに起因する水の遺漏
量を少し上回る量の水を給水用ポンプ12で常時供給
し、余分な水はオーバーフロー部7から放流して発信容
器2内の水位を常時一定レベル(つまり、オーバーフロ
ー部7の高さ)に保つので、常に精度、信頼度の高い計
測が行なえる。とりわけ発信容器2及び受信容器3は十
分に広い液面開口(容量)を有し、また、発信容器2へ
の水の供給は通水性の多孔板9で仕切られた受水部10
を媒介してゆっくりと静かに発信容器2の水面にあまり
波動を立てないように行なうので、沈下計測を常時リア
ルタイムに精度よく行なえる。
Only the transmitting container 2 containing a certain level of water is installed at the measurement-required point, and the leakage amount of water caused by evaporation of water, vibration generated at the measurement-required point, vertical displacement, etc. is slightly exceeded. A large amount of water is constantly supplied by the water supply pump 12, excess water is discharged from the overflow section 7, and the water level in the transmission container 2 is constantly maintained at a constant level (that is, the height of the overflow section 7). , Highly reliable measurement can be performed. Particularly, the transmission container 2 and the reception container 3 have sufficiently wide liquid surface openings (capacity), and the water supply to the transmission container 2 is divided by the water-permeable porous plate 9 into the water receiving portion 10.
The subsidence measurement can be performed accurately in real time at all times because it is performed slowly and quietly so as not to make too much vibration on the water surface of the transmission container 2.

【0021】差動トランス6で計測した電気信号(計測
信号)を、パーソナルコンピュータ等の演算表示装置へ
入力することにより、構造物等の変状の計測管理(目
視、記録)を容易に行なえる。計測必要箇所に設置した
沈下受感部1から電気コード等を引き回す必要がなく、
一方、沈下影響外の沈下受信部4その他の機器は十分な
保護処理と保守点検を行なえる。
By inputting an electric signal (measurement signal) measured by the differential transformer 6 to a calculation display device such as a personal computer, it is possible to easily carry out measurement management (visual observation, recording) of a deformation of a structure or the like. . There is no need to run electric cords etc. from the subsidence sensing unit 1 installed at the required measurement points,
On the other hand, the subsidence receiver 4 and other devices outside the subsidence influence can be sufficiently protected and maintained.

【0022】一次水槽16と二次水槽11との間の水の
補給は補給用ポンプ15によって自動的に行なわれる。
かなり長い期間使用して汚れ気泡が多くなった水はリタ
ーンポンプ18の働きによって取り替えを行なえる。ま
た、連通管8及び発信容器2、受信容器3内の水も古く
なると開閉弁20を開いて放流され、換水用ポンプ21
の働きによって新たな水を供給し直接的な交換が行なえ
る。
Replenishment of water between the primary water tank 16 and the secondary water tank 11 is automatically performed by the replenishing pump 15.
Water that has been used for a considerably long time and has a large amount of dirt bubbles can be replaced by the function of the return pump 18. Further, when the water in the communication pipe 8, the transmitting container 2 and the receiving container 3 becomes old, the on-off valve 20 is opened and the water is discharged.
By the action of, new water can be supplied and direct exchange can be performed.

【0023】[0023]

【実施例】次に図示した本発明の実施例を説明する。図
1は、本発明に係る構造物等の沈下計測装置全体の概念
図を示し、図2及び図3は鉄道軌道内の路床を計測必要
箇所として前記沈下計測装置を設置した場合の一般的な
配置図を示している。沈下受感部1は、列車建築限界内
の軌道直下の各測点位置に直接、土中一定の深さ位置に
図3のようにコンクリートベース30を構築してその上
に水平状態に埋設される。図2の場合、二次水槽11は
軌道路床の外に適当な場所を選んで設置し、各沈下受感
部1とは連通管その他の配管を内蔵した保護管31で接
続されている。沈下受信部4は、前記二次水槽11を経
由して、前記計測必要箇所から十分に遠く離れた沈下影
響外(工事影響範囲外)の不動点(又は仮想不動点)
に、図1に示したように発信容器2と受信容器3とをほ
ぼ同レベルに設置し、両者は連通管8で接続されてい
る。但し、計測必要箇所には各測点毎に複数の沈下受感
部1…が設置されるので、これと同数だけ沈下受信部4
が設置され、対応する発信容器2と受信容器3とが個別
の連通管8で連通される。
EXAMPLE An example of the present invention shown in the drawings will be described below. FIG. 1 is a conceptual diagram of the entire subsidence measuring apparatus for structures and the like according to the present invention, and FIGS. 2 and 3 show a general case where the subsidence measuring apparatus is installed with a roadbed in a railroad track as a measurement-required point. A schematic layout is shown. The subsidence sensing unit 1 is directly embedded in the horizontal position on the concrete base 30 constructed at a certain depth position in the soil directly below each track within the train construction limit and at a certain depth in the soil. It In the case of FIG. 2, the secondary water tank 11 is installed at an appropriate place outside the track bed, and is connected to each subsidence sensing unit 1 by a protective pipe 31 including a communication pipe and other pipes. The subsidence receiving unit 4 is a fixed point (or a virtual fixed point) outside the subsidence influence (outside the construction influence range), which is sufficiently far away from the measurement-needed portion, via the secondary water tank 11.
Further, as shown in FIG. 1, the transmitter container 2 and the receiver container 3 are installed at substantially the same level, and both are connected by a communication pipe 8. However, since a plurality of subsidence sensing units 1 ... Are installed for each measurement point at the measurement-required points, the same number of subsidence receiving units 4 are installed.
Is installed, and the corresponding transmitting container 2 and receiving container 3 are communicated with each other by a communication pipe 8.

【0024】沈下受感部の詳細を図4〜図6に示した。
これはたて×よこ×高さが一例として350×125×
240mm位の大きさの直方体形状をなす密閉構造の箱型
容器である。箱の略下半分は前記保護管31と連通する
空洞部23に形成され、上半分の一端側に配管用空所2
5を残して水容器が形成され、蓋24で覆われている。
水容器は中央部寄りに位置する垂直な2枚(但し、1枚
でも良いし、又は2枚以上でも可。)の通水性の多孔板
9,9で三つの室に仕切られている。図5における左端
の室が発信容器2に形成され、同右端の室が受水部10
とされ、この受水部10の上部に給水管13の放流開口
が接続されている。給水管13を通じて受水部10へ供
給された水は、2枚の多孔板9,9の通水孔を通ること
によって十分な絞り作用を受けつつ一種のもぐり堰と同
様な効果でゆっくりと静粛な状態のまま発信容器2の方
へ流れて供給されるから、発信容器2内の水面はさした
る波動を立てない。発信容器2内には、その容器底から
口径が45mm、高さ68mm位のオーバーフロー筒7が垂
直に立上がる形に設置され、このオーバーフロー筒7の
高さを超えて溢れた水は速やかに空洞部23内へ落水し
てゆき、オーバーフロー筒7の有効高さの水位がきっち
り保持される。発信容器2内の水面開口のたて×よこが
120×97mmと大きいことも、波動を立てないことに
役立っている。オーバーフロー筒7の溢流水は、空洞部
23から保護管31を通って既述した二次水槽11へ戻
る。従って、二次水槽11はリターン水槽とも別称され
る。前記発信容器2の底面に形成された開口8aへは連
通管8が接続されている。この連通管8は、図5のよう
に空洞部23から保護管31を通って沈下受信部4まで
配管される。また、給水管13も、空洞部23から保護
管31を通って二次水槽11まで配管される。
The details of the subsidence sensing portion are shown in FIGS.
This is vertical x horizontal x height is 350 x 125 x as an example
It is a box-shaped container having a closed structure having a rectangular parallelepiped shape with a size of about 240 mm. The lower half of the box is formed in the cavity portion 23 communicating with the protection pipe 31, and the pipe space 2 is provided at one end of the upper half.
A water container is formed leaving 5 and is covered with a lid 24.
The water container is divided into three chambers by two vertically permeable water-permeable perforated plates 9 and 9 located near the central part (however, it may be one or two or more). The chamber at the left end in FIG. 5 is formed in the transmitting container 2, and the chamber at the right end is the water receiving portion 10.
The discharge opening of the water supply pipe 13 is connected to the upper part of the water receiving portion 10. The water supplied to the water receiving section 10 through the water supply pipe 13 passes through the water passage holes of the two perforated plates 9 and 9 and is sufficiently squeezed while slowly and quietly having the same effect as that of a kind of gouge dam. Since the water is supplied to the transmitting container 2 in such a state as it is, the water surface in the transmitting container 2 does not generate a wavy vibration. In the transmitting container 2, an overflow cylinder 7 having a diameter of 45 mm and a height of 68 mm is vertically installed from the bottom of the container so as to rise vertically. The water falls into the portion 23, and the water level at the effective height of the overflow cylinder 7 is exactly maintained. The fact that the vertical × horizontal dimension of the water surface opening in the transmitting container 2 is as large as 120 × 97 mm also helps to prevent vibration. The overflow water of the overflow cylinder 7 returns from the cavity 23 through the protection pipe 31 to the secondary water tank 11 described above. Therefore, the secondary water tank 11 is also referred to as a return water tank. A communication pipe 8 is connected to an opening 8a formed on the bottom surface of the transmission container 2. The communication pipe 8 is piped from the hollow portion 23 through the protection pipe 31 to the sinking receiving portion 4 as shown in FIG. Further, the water supply pipe 13 is also piped from the hollow portion 23 to the secondary water tank 11 through the protection pipe 31.

【0025】図1に示したとおり、二次水槽11は主た
る一次水槽16と並列に設けられている。二次水槽11
内に設置した給水用ポンプ12に前述の給水管13が接
続され、常時は連続運転される給水用ポンプ12によっ
て二次水槽11内の水がくみ上げられ、前記発信容器2
の受水部10へ蒸発、あるいは沈下受感部1の鉛直変位
や振動等に起因して逸失する遺漏水量を少し上回る量
(通常毎分当り600cc位)の水を常時供給する。かく
して二次水槽11内の水は、沈下受感部1との間で循環
される。時間の経過と共に漸次減少する二次水槽11内
の水位は同水槽に設置した電極式のレベルセンサー14
によって常時監視される。前記レベルセンサー14の検
出信号に基いて自動制御される補給用ポンプ15が前記
一次水槽16内に設置され、この補給用ポンプ15から
延びる補給水管17が前記二次水槽11まで配管されて
いる。つまり、二次水槽11内の水量が不足限界点まで
低下したことをレベルセンサー14が検出すると、自動
的に補給用ポンプ15が運転され、一次水槽16内の水
を二次水槽11へ所定の水位まで補給して給水用ポンプ
12による水の循環に支障なきよう自己保持される。逆
に、二次水槽11内にリターンポンプ18が設置され、
同リターンポンプ18から延びるリターン水管19が一
次水槽16まで配管されている。二次水槽11内の水が
長期間の使用によって汚れ、又は腐敗して水中に含まれ
る気泡が多く(又は大きく)なると、連通する2点間の
液面平衡に対する応答性が著しく低下したり、水柱の高
さが異なることさえあって、計測の精度,信頼性が低下
する。このような事態に対処するため、数ヶ月ぐらいの
間隔でリターンポンプ18を駆動して二次水槽11内の
水をかえ出し、新規な水と入れ替える。このリターンポ
ンプ18はまた、二次水槽11内の水位が上昇限度以上
になった場合に、メインの一次水槽16へ返水するため
にも使用される。
As shown in FIG. 1, the secondary water tank 11 is provided in parallel with the main primary water tank 16. Secondary water tank 11
The above-mentioned water supply pipe 13 is connected to the water supply pump 12 installed therein, and the water in the secondary water tank 11 is pumped up by the water supply pump 12 which is continuously operated at all times.
A constant amount of water (usually about 600 cc per minute) slightly exceeding the amount of leaked water that is lost due to vertical displacement or vibration of the subsidence sensing unit 1 is constantly supplied to the water receiving unit 10. Thus, the water in the secondary water tank 11 is circulated between the subsidence sensing unit 1. The water level in the secondary water tank 11 that gradually decreases with the passage of time is the electrode type level sensor 14 installed in the same water tank.
Is constantly monitored by. A replenishment pump 15 that is automatically controlled based on the detection signal of the level sensor 14 is installed in the primary water tank 16, and a makeup water pipe 17 extending from the replenishment pump 15 is piped to the secondary water tank 11. That is, when the level sensor 14 detects that the amount of water in the secondary water tank 11 has dropped to the shortage limit point, the replenishment pump 15 is automatically operated and the water in the primary water tank 16 is supplied to the secondary water tank 11 in a predetermined manner. The water is supplied to the water level and self-held so as not to hinder the circulation of water by the water supply pump 12. Conversely, the return pump 18 is installed in the secondary water tank 11,
A return water pipe 19 extending from the return pump 18 is piped to the primary water tank 16. When the water in the secondary water tank 11 becomes dirty or decomposes due to long-term use and the number of bubbles contained in the water increases (or increases), the responsiveness to the liquid level equilibrium between two communicating points decreases significantly, Even if the height of the water column is different, the accuracy and reliability of measurement are reduced. In order to deal with such a situation, the return pump 18 is driven at intervals of about several months to return the water in the secondary water tank 11 and replace it with new water. This return pump 18 is also used to return water to the main primary water tank 16 when the water level in the secondary water tank 11 exceeds the rising limit.

【0026】次に、沈下影響外の不動点に設置される沈
下受信部4の詳細を図7に示した。これは不動点の支持
体32に上下のブラケット33,33を介して垂直な姿
勢に固定し支持されたケーシング34が主体をなす。ケ
ーシングの略下半分が口径にして76mm、高さ190mm
位の受信容器3として構成され、その下底部に、上述し
た発信容器2から配管されてきた連通管8が接続されて
いる。従って、受信容器3内には、絶対水位が発信容器
2内の水位と同一レベルまで水が収容されている。受信
容器3内には、基準水位を零点としてその上下方向に±
15〜25mm位を測定範囲とし得る深さの水が収容さ
れ、その水面に水位計測用のフロート5が浮かべられて
いる。前記フロート5の垂直軸5aは、水面のずっと上
方であるケーシングの上半分の部位にクランプ35で垂
直な向きに固定し支持された差動トランス6の可動軸6
aと一連に接続し、受信容器3内の水位の微少な変化も
差動トランス6により電気量として常時計測する構成と
されている。この差動トランス6の計測値は、図示を省
略した周知の演算表示装置(例えば、パーソナルコンピ
ュータなど)に入力して、計測値は目視可能に表示し又
は記録される。
Next, FIG. 7 shows the details of the squat receiving unit 4 installed at a fixed point outside the influence of the squat. This is mainly composed of a casing 34 which is fixed and supported on a fixed point support body 32 in a vertical posture via upper and lower brackets 33, 33. The bottom half of the casing has a diameter of 76 mm and a height of 190 mm
And the communication pipe 8 that has been piped from the above-described transmission container 2 is connected to the lower bottom portion thereof. Therefore, the receiving container 3 contains water to an absolute water level equal to the water level in the transmitting container 2. Within the receiving container 3, the reference water level is set as the zero point and ±
Water having a depth that can measure the range of 15 to 25 mm is stored, and the float 5 for measuring the water level is floated on the water surface. The vertical shaft 5a of the float 5 is a movable shaft 6 of a differential transformer 6 which is fixed and supported in a vertical direction by a clamp 35 at an upper half portion of the casing which is located above the water surface.
It is configured to be connected in series with “a” so that even a slight change in the water level in the receiving container 3 is constantly measured as an amount of electricity by the differential transformer 6. The measured value of the differential transformer 6 is input to a well-known calculation display device (not shown) (for example, a personal computer), and the measured value is visually displayed or recorded.

【0027】なお、発信容器2、受信容器3及び連通管
8内の水が長期の使用で汚れ又は腐敗して不都合になる
場合を考慮して、図1に示したとおり、連通管8の低部
に三方開閉弁20を設け、一次水槽16内に設置した換
水用ポンプ21から延びる換水管22が前記三方開閉弁
20の一つのポートに接続されている。他の一つのポー
トにエア抜きタンク36が接続されている。つまり、連
通管8等の水を入れ替える必要が生じたときは、まず開
閉弁20を開いて古い水をエア抜きタンク36を通じて
放流する。しかる後に、開閉弁20を切換えて換水用ポ
ンプ21を運転し、新しい水を直接連通管8の系内に充
満させるのである。
In consideration of the case where the water in the transmitting container 2, the receiving container 3 and the communicating pipe 8 becomes dirty or rots due to long-term use and becomes inconvenient, as shown in FIG. A three-way on-off valve 20 is provided in the section, and a water exchange pipe 22 extending from a water exchange pump 21 installed in the primary water tank 16 is connected to one port of the three-way on-off valve 20. An air bleeding tank 36 is connected to the other one port. That is, when it is necessary to replace the water in the communication pipe 8 or the like, the opening / closing valve 20 is first opened to discharge the old water through the air bleeding tank 36. After that, the on-off valve 20 is switched and the water exchange pump 21 is operated to directly fill the system of the communication pipe 8 with new water.

【0028】[0028]

【本発明が奏する効果】本発明に係る構造物等の沈下計
測方法及び装置は、下記の効果を奏する。 (1) 沈下受感部の地下埋設が容易に出来る為、鉄道路
床や道路床のような構造物の沈下計測を行なう場合に適
し、列車の運行や車の走行の邪魔にならない。 (2) 沈下受感部は、構造物の計測必要箇所である道路
や軌道内盛土地盤の土中に直接埋設することに適した構
成なので、必要とされる測定位置の直接計測が出来る。 (3) 計測必要箇所が車の通行量や列車運行の激しい軌
道であっても、沈下受感部はメンテナンスフリーの構成
であり、一方、センサー等を備えた沈下受信部は沈下影
響外に設置するので、道路や軌道内に入構しないで保守
管理ができる。 (4) 測定範囲をスケールオーバーした場合の盛り替え
を簡単に沈下影響外(軌道外)で出来る。 (5) 計測必要箇所が、軌道補正などの人為的行為を受
けても計器のケーブル配線が切断される事故の心配が全
く無い。 (6) 計測必要箇所が鉄道路床や道路床のように高温・
低温と温度変化の激しい場所(環境)であっても、四季
を通じて測定を正確に行なえる。 (7) 計測必要箇所が列車軌道の直下であっても振動に
よる悪影響をほとんど受けない計測を行なえる。 (8) 沈下受感部の自由度、すなわち構造物の鉛直変位
の受感方向が明確で、設置作業が容易であり、計測精度
を得やすい。 (9) 沈下計測を常時リアルタイムにできる。 (10) 給水ポンプによる発信容器への給水を常時行なう
ため、常に発信容器内の基準水面を合理的に確実に一定
に保つことが出来、計測精度を長期間保持できる。
EFFECTS OF THE INVENTION The method and apparatus for measuring subsidence of structures according to the present invention have the following effects. (1) Since the subsidence of the subsidence sensitive area can be easily performed underground, it is suitable for measuring subsidence of structures such as railway road floors and road floors, and does not disturb the operation of trains or running of cars. (2) The subsidence sensing unit is suitable for being directly buried in the soil of the road or track where the structure needs to be measured, so the required measurement position can be directly measured. (3) Even if the measurement-required location is a track with heavy traffic or train operation, the subsidence sensing section is maintenance-free, while the subsidence receiving section equipped with sensors is installed outside the subsidence impact. Therefore, maintenance can be done without entering the road or track. (4) When the measurement range is scaled over, the refilling can be easily done outside the settlement effect (outside the orbit). (5) There is no concern about accidents where the cable wiring of the instrument is cut even if the measurement-required points are subjected to human activities such as trajectory correction. (6) The measurement required point is high
Even in places (environments) where the temperature is low and the temperature changes drastically, accurate measurements can be made throughout the four seasons. (7) Even if the required measurement point is directly under the train track, the measurement can be performed with almost no adverse effects due to vibration. (8) The degree of freedom of the subsidence sensing part, that is, the direction of the vertical displacement of the structure, is clear, installation work is easy, and measurement accuracy is easy to obtain. (9) Settling measurement can be performed in real time at all times. (10) Since the water is constantly supplied to the transmitting container by the water supply pump, the reference water surface in the transmitting container can always be kept reasonably and reliably, and the measurement accuracy can be maintained for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による沈下計測装置全体の概念図であ
る。
FIG. 1 is a conceptual diagram of an entire squat measurement device according to the present invention.

【図2】鉄道軌道内へ設置した場合の配置図である。FIG. 2 is a layout drawing when installed in a railway track.

【図3】鉄道軌道内へ設置した場合の配置図である。FIG. 3 is a layout drawing when installed in a railway track.

【図4】沈下受感部の蓋を取り外した平面図である。FIG. 4 is a plan view with the lid of the sinking sensing unit removed.

【図5】沈下受感部の垂直な断面図である。FIG. 5 is a vertical sectional view of a subsidence sensing unit.

【図6】図4の6−6線矢視断面図である。6 is a sectional view taken along line 6-6 of FIG.

【図7】沈下受信部の断面図である。FIG. 7 is a cross-sectional view of a squat receiving unit.

【図8】従来の水管式相対沈下計の原理図である。FIG. 8 is a principle diagram of a conventional water tube type relative subsidence meter.

【図9】基準タンクの構成図である。FIG. 9 is a configuration diagram of a reference tank.

【図10】沈下筒の詳細図である。FIG. 10 is a detailed view of the sinking cylinder.

【図11】軌道用沈下計の概念図である。FIG. 11 is a conceptual diagram of an orbital squat gauge.

【符号の説明】[Explanation of symbols]

2 発信容器 1 沈下受感部 3 受信容器 4 沈下受感部 7 オーバーフロー部 5 フロート 6 差動トランス 8 連通管 9 多孔板 10 受水部 11 二次水槽 12 給水用ポンプ 13 給水管 5a 垂直軸 6a 可動軸 14 レベルセンサー 15 補強用ポンプ 16 一次水槽 17 補給水管 18 リターンポンプ 19 リターン水管 20 開閉弁 21 換水用ポンプ 22 換水管 2 Sending container 1 Subsidence sensing part 3 Receiving container 4 Subsidence sensing part 7 Overflow part 5 Float 6 Differential transformer 8 Communication pipe 9 Perforated plate 10 Water receiving part 11 Secondary water tank 12 Water supply pump 13 Water supply pipe 5a Vertical axis 6a Movable shaft 14 Level sensor 15 Reinforcement pump 16 Primary water tank 17 Make-up water pipe 18 Return pump 19 Return water pipe 20 Open / close valve 21 Water exchange pump 22 Water exchange pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植木 秀直 兵庫県神戸市垂水区西脇1−5−1−401 (72)発明者 河野 義之 兵庫県竜野市竜野町日飼137−22 (72)発明者 森 満夫 兵庫県西宮市松山町2−8−206 (72)発明者 岸本 俊夫 京都市山科区竹鼻四丁野町35 C−108 (72)発明者 江見 裕 大阪市中央区本町4丁目1番13号 株式会 社竹中土木内 (72)発明者 大坪 宏至 大阪市中央区本町4丁目1番13号 株式会 社竹中土木内 (72)発明者 田中 五十大 兵庫県西宮市東山台2−14−216−102 (72)発明者 河東 淳徳 大阪府八尾市八尾木1−38 (72)発明者 市場 悟 兵庫県加古川市野口町水足94番地の38 (72)発明者 村上 貢 茨城県東茨城郡桂村字赤沢1138番地 (72)発明者 池田 逸男 大阪府富田林市藤沢台2丁目2番239号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hidenao Ueki 1-5-1-401 Nishiwaki, Tarumi-ku, Kobe-shi, Hyogo Prefecture (72) Inventor Yoshiyuki Kono 137-22 Nikka, Tatsuno-cho, Tatsuno-shi, Hyogo (72) Invention Mitsuo Mori 2-8-206 Matsuyama-cho, Nishinomiya-shi, Hyogo Prefecture (72) Inventor Toshio Kishimoto 35 Takenohana 4-chome-cho Yamanashi-ku, Kyoto C-108 (72) Yutaka Emi 4-1-1 Honmachi, Chuo-ku, Osaka No. Stock company Takenaka Civil Engineering (72) Inventor Hiroshi Otsubo 4-1-1 Honmachi, Chuo-ku, Osaka City Stock company Takenaka Civil Engineering (72) Inventor Tanaka Idai 50-2 Higashiyamadai, Nishinomiya-shi, Hyogo −216−102 (72) Inventor Atsunori Kato 1-38 Yaogi, Yao City, Osaka Prefecture (72) Inventor Market Satoru 38, 72, 94, Mizusashi, Noguchi Town, Kakogawa City, Hyogo Prefecture Mitsugu Murakami East, Ibaraki Prefecture 1138 Akazawa, Katsura-mura, Ibaraki-gun (72) Inventor Pond Itsuo Osaka Prefecture Tondabayashi Fujisawadai 2-chome No. 2 239 No.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一定レベルの水位を保持する発信容器か
ら成る沈下受感部を構造物等の計測必要箇所に設置し、
前記計測必要箇所から十分に遠く離れた沈下影響外の不
動点に前記沈下受感部の発信容器と連通された受信容器
から成る沈下受信部を沈下受感部とほぼ同レベルに設置
し、系内に必要量の水を満たし、沈下受信部の受信容器
内の水位を計測することにより計測必要箇所の沈下の有
無及び沈下量を計測することを特徴とする、構造物等の
沈下計測方法。
1. A subsidence-sensing part, which is a transmission container that holds a certain level of water level, is installed at a measurement-required location such as a structure.
A subsidence receiving unit consisting of a receiving container in communication with the transmitting container of the subsidence sensing unit is installed at a fixed point outside the subsidence influence that is sufficiently far from the measurement-requiring point, at approximately the same level as the subsidence sensing unit. A subsidence measuring method for a structure or the like, characterized in that the presence or absence of subsidence and a subsidence amount at a measurement required location are measured by filling a required amount of water in the interior and measuring a water level in a receiving container of the subsidence receiving unit.
【請求項2】 請求項1に記載した沈下受感部の発信容
器に対して遺漏量を少し上回る量の水を常時供給するこ
と、及び発信容器内の水位は所定高さのオーバーフロー
部により一定レベルに保つことをそれぞれ特徴とする、
構造物等の沈下計測方法。
2. A constant amount of water slightly exceeding the leaked amount is constantly supplied to the transmitting container of the subsidence-sensing part according to claim 1, and the water level in the transmitting container is constant by an overflow part of a predetermined height. Each is characterized by maintaining a level,
Measuring method for settlement of structures.
【請求項3】 請求項1に記載した沈下受信部の受信容
器内の水位は、フロートを利用した差動トランスにより
常時リアルタイムに計測することを特徴とする、構造物
等の沈下計測方法。
3. A settlement measurement method for a structure or the like, characterized in that the water level in the receiving container of the settlement receiver according to claim 1 is constantly measured in real time by a differential transformer using a float.
【請求項4】 構造物等の計測必要箇所に設置される沈
下受感部と、前記計測必要箇所から十分に遠く離れた沈
下影響外の不動点に設置される沈下受信部とから成り、 前記沈下受感部は、ほぼ密閉された発信容器が主体をな
し、該発信容器は一定の水位を保つオーバーフロー部を
有し、底部に連通管が接続されていること、 前記沈下受信部は、前記発信容器とほぼ同レベルに設置
された受信容器が主体をなし、該受信容器の底部に前記
発信容器から配管された連通管が接続されており、当該
受信容器内の水位を計測する手段を備えていること、 発信容器及び受信容器内には、発信容器のオーバーフロ
ー部の高さとして規定される水位まで水が満たされてい
ること、をそれぞれ特徴とする、構造物等の沈下計測装
置。
4. A subsidence sensing unit installed at a measurement required location of a structure or the like, and a subsidence receiving unit provided at a fixed point outside the subsidence influence sufficiently distant from the measurement required location, The subsidence sensing unit is mainly composed of a substantially sealed transmission container, the transmission container has an overflow portion for maintaining a constant water level, and a communication pipe is connected to the bottom, the subsidence receiving unit is the A receiving container installed at almost the same level as the transmitting container is the main body, a communication pipe connected from the transmitting container is connected to the bottom of the receiving container, and means for measuring the water level in the receiving container is provided. The submersion measuring device for a structure or the like is characterized in that the transmitting container and the receiving container are filled with water up to the water level defined as the height of the overflow portion of the transmitting container.
【請求項5】 請求項4に記載した沈下受感部の発信容
器には、通水性の多孔板で仕切られた受水部が付設さ
れ、二次水槽の水をくみ上げる給水用ポンプの給水管が
前記受水部まで配管され、連続運転される給水用ポンプ
により遺漏量を少し上回る量の水が前記受水部へ常時供
給されることを特徴とする、構造物等の沈下計測装置。
5. A water supply pipe of a water supply pump for pumping water from a secondary water tank, wherein the transmitting container of the subsidence sensing unit according to claim 4 is provided with a water receiving unit partitioned by a water-permeable porous plate. Is piped to the water receiving portion, and a continuous supply water pump constantly supplies an amount of water slightly exceeding the leakage amount to the water receiving portion.
【請求項6】 請求項4に記載した沈下受信部の受信容
器内には、水位計測の手段として、水面に浮かべたフロ
ートの垂直軸が、同水面の上方に垂直に固定された差動
トランスの可動軸と接続されており、受信容器内の水位
の変化は差動トランスにより電気量として常時計測さ
れ、演算、表示装置に入力されることを特徴とする、構
造物等の沈下計測装置。
6. A differential transformer in which a vertical axis of a float floated on the water surface is vertically fixed above the water surface in the receiving container of the subsidence receiving unit according to claim 4, as means for measuring the water level. A sinking measuring device for a structure or the like, which is connected to the movable shaft of, and in which a change in water level in the receiving container is constantly measured as an electric quantity by a differential transformer and is input to a calculation and display device.
【請求項7】 請求項5に記載した二次水槽には、同水
槽内の水位を自動検出するレベルセンサーが設置され、
前記レベルセンサーの検出値にしたがって自動運転され
る補給用ポンプが一次水槽の水をくみ上げ、同補給用ポ
ンプから延びる補給水管が前記二次水槽まで配管されて
いること、逆に二次水槽内の水をくみ上げるリターンポ
ンプから延びたリターン水管が前記一次水槽まで配管さ
れていることを特徴とする、構造物等の沈下計測装置。
7. The secondary water tank according to claim 5 is provided with a level sensor for automatically detecting the water level in the water tank,
A replenishment pump that is automatically operated according to the detection value of the level sensor pumps up water from the primary water tank, and a replenishment water pipe extending from the replenishment pump is piped to the secondary water tank, and conversely in the secondary water tank. A subsidence measuring device for a structure or the like, characterized in that a return water pipe extending from a return pump for pumping water is piped to the primary water tank.
【請求項8】 請求項4に記載した連通管の低部に開閉
弁が設置され、一次又は二次水槽の水をくみ上げる換水
用ポンプから延びた換水管が連通管と接続されているこ
とを特徴とする、構造物等の沈下計測装置。
8. An opening / closing valve is installed at a lower portion of the communication pipe according to claim 4, and a water exchange pipe extending from a water exchange pump for pumping up water in the primary or secondary water tank is connected to the communication pipe. A subsidence measuring device featuring structures.
JP6187470A 1994-08-09 1994-08-09 Subsidence measuring device for structures Expired - Lifetime JP2681339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6187470A JP2681339B2 (en) 1994-08-09 1994-08-09 Subsidence measuring device for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6187470A JP2681339B2 (en) 1994-08-09 1994-08-09 Subsidence measuring device for structures

Publications (2)

Publication Number Publication Date
JPH0850019A true JPH0850019A (en) 1996-02-20
JP2681339B2 JP2681339B2 (en) 1997-11-26

Family

ID=16206651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6187470A Expired - Lifetime JP2681339B2 (en) 1994-08-09 1994-08-09 Subsidence measuring device for structures

Country Status (1)

Country Link
JP (1) JP2681339B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024043A (en) * 2014-07-18 2016-02-08 株式会社大林組 Liquid passage type displacement meter
CN113091696A (en) * 2021-03-18 2021-07-09 中交四航局第五工程有限公司 System and method for removing accumulated gas in liquid measurement pipeline

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268442A (en) * 1975-12-04 1977-06-07 Iwatsu Electric Co Ltd Displacement detector
JPS62299717A (en) * 1986-06-20 1987-12-26 Touyoko Erumesu:Kk Settlement meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268442A (en) * 1975-12-04 1977-06-07 Iwatsu Electric Co Ltd Displacement detector
JPS62299717A (en) * 1986-06-20 1987-12-26 Touyoko Erumesu:Kk Settlement meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016024043A (en) * 2014-07-18 2016-02-08 株式会社大林組 Liquid passage type displacement meter
CN113091696A (en) * 2021-03-18 2021-07-09 中交四航局第五工程有限公司 System and method for removing accumulated gas in liquid measurement pipeline

Also Published As

Publication number Publication date
JP2681339B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
Sauer et al. Stage measurement at gaging stations
JP2002286512A (en) Measuring instrument for sensing settlement into ground
Aw Low cost monitoring system to diagnose problematic rail bed: case study of mud pumping site
Meier et al. Hydrostatic levelling systems: Measuring at the system limits
CN102269578A (en) Device for measuring vertical deformation of spatial structure
CN108773598B (en) Online monitoring device and method for leakage of buried oil tank
WO2015147686A1 (en) Method for monitoring the position of above-ground pipelines in permafrost conditions
US4751467A (en) System for determining liquid flow rate through leaks in impermeable membrane liners
US4003263A (en) Tube profile gage
KR100931061B1 (en) Soft ground settlement measuring device and settlement method according to it
CN108731635A (en) A kind of dam profundal zone large deformation settlement observer and method
CN113776498A (en) River bed sedimentation static force leveling system and method for river-crossing tunnel construction
CN102563359B (en) Method and system for automatically monitoring vertical displacement of oil and gas pipeline in frozen soil region
JP2681339B2 (en) Subsidence measuring device for structures
CN203642910U (en) Dual-pore water pressure gauge-based settlement measurement device and system
CN115014297B (en) Pressure type water level elevation auxiliary observation device and use method
CN109282790B (en) Parallel deep multi-point static leveling system and method for pile foundation
Kallstenius et al. Pore water pressure measurement in field investigations
RU2693744C1 (en) Method of sea level measurement and device for its implementation
KR100767795B1 (en) Measure appartus with gps for taking measurements of survey the foundation
CN203798414U (en) Bubble-type pressure water level meter with hydrostatic device
CN216012207U (en) River bed sedimentation static force leveling system for river-crossing tunnel construction
CN220490177U (en) Hydrologic station water level alarm system
JP6923032B2 (en) Inundation monitoring system
CN206418807U (en) A kind of double-deck cellar type strong motion observation room