JPS62299717A - Settlement meter - Google Patents

Settlement meter

Info

Publication number
JPS62299717A
JPS62299717A JP14439886A JP14439886A JPS62299717A JP S62299717 A JPS62299717 A JP S62299717A JP 14439886 A JP14439886 A JP 14439886A JP 14439886 A JP14439886 A JP 14439886A JP S62299717 A JPS62299717 A JP S62299717A
Authority
JP
Japan
Prior art keywords
water
tank
water level
gate
settlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14439886A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamaguchi
哲夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUYOKO ERUMESU KK
Original Assignee
TOUYOKO ERUMESU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUYOKO ERUMESU KK filed Critical TOUYOKO ERUMESU KK
Priority to JP14439886A priority Critical patent/JPS62299717A/en
Publication of JPS62299717A publication Critical patent/JPS62299717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the influence of the long-time irradiation of the direct sunshine and to take an accurate measurement by linking plural tanks by water channels and moving water, and positioning a load cell from which a weight is suspended in each tank. CONSTITUTION:When settlement is measured, a gate 34 is opened and then the water level in a water level adjusting tank 3 drops, so that the water level in each tank 1 also drops to the height of the gate 34 of the water level adjusting tank 3. Then, weights 14 appears over the water surfaces, and when a structure sinks irregularly, the exposure states of the weights are different from the states when a reference value is measured, so values applied to the load cells 13 are different. This load is converted into settlement to know settlement from when the reference value is measured. Further, the gate 34 of the water level adjusting tank 3 is closed to supply water into the respective tanks 1 by a pump P and then the water in the water channels move at any time; and the water temperature in only one tank 1 never rises, and consequently the temperature difference of the load cells 13 has no error, so that an accurate measurement is taken.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明は複数の箇所の沈下量を測定する沈下計に関する
ものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a subsidence meter that measures the amount of subsidence at a plurality of locations.

〈従来の技術〉 地上で構築したコンクリート構造物を、掘削を行いなが
ら徐々に地中に沈下させてゆく工法が存在し、たとえば
石油備蓄用の地下タンクなどの施工に利用されている。
<Conventional technology> There is a construction method in which a concrete structure built above ground is gradually sunk into the ground while excavating, and is used, for example, in the construction of underground tanks for oil storage.

このときに大切なことは、構造物が全体に均一に沈下を
してゆ(ことであり、沈下量が部分的に相違すると構造
物にねじれが発生して破損してしまう。
What is important at this time is that the structure settles uniformly throughout; if the amount of settlement differs locally, the structure will become twisted and damaged.

そのために従来水の連通管とフロートを使用した沈下計
が開発されているが次のような、問題点を有する。
For this purpose, a conventional sinkage meter using a water communication pipe and a float has been developed, but it has the following problems.

〈従来の技術の問題点〉 トンネルのような温度の変化が少ない場所での測定には
問題が少ないが、外部の直射日光を受ける場所での測定
では日光の当たる位置に設置した計器と、当たらない場
所の計器では、水の温度上昇による影響が大きく到底正
確な比較や測定が行えないのが現状である。
<Problems with conventional technology> There are few problems when measuring in places where the temperature changes little, such as tunnels, but when measuring outside in places exposed to direct sunlight, there is a difference between the instrument installed in a position exposed to sunlight and the Currently, instruments located in locations where water is not available are not able to perform accurate comparisons or measurements due to the large effect of water temperature rise.

また同じ計器であっても午前と午後では日射の関係で測
定値に差が出てしまい、あたかも急激な沈下が発生した
ような結果が出るといった問題が発生している。
Furthermore, even with the same instrument, there are differences in the measured values in the morning and afternoon due to solar radiation, causing problems such as results that appear as if rapid subsidence has occurred.

〈本発明の目的〉 本発明はこのような点についてなされたもので、直射日
光が長時間当たってもその影響がなく、正確な測定をお
こなうことのできる沈下計を提供することを目的とする
<Object of the present invention> The present invention has been made in view of the above points, and an object of the present invention is to provide a subsidence meter that can perform accurate measurements without being affected by direct sunlight for a long time. .

く本発明の構成〉 本発明の装置は複数のタンク1と、そのタンク間を連通
#する水路2、および水位調節WI3より構成する。
Structure of the Present Invention> The device of the present invention is composed of a plurality of tanks 1, a water channel 2 communicating between the tanks, and a water level adjustment WI3.

くイ〉タンク タンク1は中空の容器であり、その側面の上部には注水
口11を、その底面には排水口12を開口する。
Tank The tank 1 is a hollow container, and has a water inlet 11 at the top of its side surface and a drain port 12 at its bottom.

このタンク1の内部には、はぼ水平の片持梁の状態でロ
ードセル13を固定する。
A load cell 13 is fixed inside the tank 1 in a substantially horizontal cantilevered state.

そしてこの片持梁状のロードセル13の自由端(こは重
り14を、たわみ1生の大きいピアノ線などの懸垂索1
5を介して懸垂状態で取り付ける。
The free end of this cantilever-shaped load cell 13 (the weight 14 is
Attach in a suspended state via 5.

〈口〉水路 前記の複数のタンク1間を水路2によって連結する。<mouth> waterway The plurality of tanks 1 described above are connected by water channels 2.

すなわち、タンク1の注水口11と水路2との間を注水
路21で、またタンク1の排水口12と水路2との間を
排水路22によって各々連結する。
That is, the water inlet 11 of the tank 1 and the water channel 2 are connected by the water inlet 21, and the drain port 12 of the tank 1 and the water channel 2 are connected by the drain channel 22.

この水路2の一端は水位調節pJ3に連結し、複数のタ
ンク1を連結した後、再び水位調wT漕3に戻るように
接続する。
One end of this water channel 2 is connected to the water level adjustment pJ3, and after connecting the plurality of tanks 1, it is connected again to the water level adjustment wT tank 3.

なお水路2においては、注水路21と、排水路22との
間の一部を小断面部23として構成することによって、
水路2内の水がタンク1の側へ循環するように構成する
In addition, in the water channel 2, by configuring a part between the injection channel 21 and the drainage channel 22 as a small cross-section section 23,
The structure is such that the water in the water channel 2 is circulated to the tank 1 side.

くハ〉水位調節槽 水位調節槽3はふたつの上面開放の水槽、すなわち高水
槽31と低水槽32と、両水槽間に設けた排水溝33と
より構成する。
(c) Water Level Adjustment Tank The water level adjustment tank 3 is composed of two open top water tanks, namely a high water tank 31 and a low water tank 32, and a drain groove 33 provided between the two water tanks.

この高水WIiには側部にゲート34を設け、このゲー
ト34を開放することによって高水槽守内の水を排水溝
33に排水する。
A gate 34 is provided on the side of the high water WIi, and by opening the gate 34, water in the high water tank guard is drained into the drainage ditch 33.

ハ この高水槽書の上縁の水位Aは、低水槽32の上縁の水
位Bよりも高(、低水槽32の水位Bはゲート34の下
縁の水位Cよりも高い、といった相互の関係に、各水位
を設定する。
The water level A at the upper edge of this high tank book is higher than the water level B at the upper edge of the low tank 32 (the water level B in the low tank 32 is higher than the water level C at the lower edge of the gate 34, etc.). Set each water level to .

そのために低水槽32の上縁からオーバーフローする水
は排水溝33内に流下する。
Therefore, water overflowing from the upper edge of the low water tank 32 flows down into the drainage groove 33.

そして高水槽31と排水溝33との間にはポンプPを設
け、このポンプPによって排水溝33の水を高水槽3に
汲み上げて供給できるように構成する。
A pump P is provided between the high water tank 31 and the drain groove 33, and the water in the drain groove 33 is pumped up and supplied to the high water tank 3 by the pump P.

く作動〉 つぎに本発明の装置の作動について説明する。〉 Next, the operation of the apparatus of the present invention will be explained.

くイ〉タンク1の取り付け(第2図) たとえば地下備蓄用のコンクリート構造物の内部に本発
明の沈下計のタンク1群を複数個取り付ける。
Attachment of tanks 1 (Fig. 2) For example, a plurality of tanks 1 of the sinkage meter of the present invention are installed inside a concrete structure for underground stockpiling.

そして1個の水位調節槽3と多数のタンク1群との間を
水路2によって連結する。
One water level adjustment tank 3 and a group of multiple tanks are connected by a water channel 2.

く口〉基準状態の測定 ゲート34を開扉することによって水位調節槽3の高水
槽3の水位が低下する。
Exit> By opening the measurement gate 34 in the reference state, the water level in the high water tank 3 of the water level adjustment tank 3 is lowered.

すると各タンク1群の水位も順に低下し、水位調節槽3
のゲート34の下縁の位置と同位置に一致する。
Then, the water level in each tank group 1 also decreases in order, and the water level adjustment tank 3
This corresponds to the same position as the lower edge of the gate 34.

そうすると、各タンク1において重り14の一部が空中
に露出する。
Then, a part of the weight 14 in each tank 1 is exposed in the air.

そのために重り14の重量がロードセル13に加わる。Therefore, the weight of the weight 14 is added to the load cell 13.

タンク1を構造物に取り付たけ時のレベルの設定によっ
て、重り14の水面からの露出状態は相違するが、その
状態の時のロードセル13の読みを基準として、その後
の沈下量を測定すればよい。
The exposure state of the weight 14 from the water surface differs depending on the level setting when the tank 1 is attached to the structure, but if the subsequent sinking amount is measured based on the reading of the load cell 13 in that state, good.

くハ〉沈下量の測定 沈下量を測定するまでは、ゲート34を閉じた状態で水
を循環させてお(。
Measuring the amount of subsidence Until the amount of subsidence is measured, water is circulated with the gate 34 closed (.

そして沈下量を測定する場合にはゲート34を開扉する
When measuring the amount of subsidence, the gate 34 is opened.

そうすると水位調節槽3の水位が低下し、各タンク1の
水位も水位調節槽3のゲート34の高さまで低下する。
Then, the water level of the water level adjustment tank 3 is lowered, and the water level of each tank 1 is also lowered to the height of the gate 34 of the water level adjustment tank 3.

すると重り14が水面から露出するが、ひとつのタンク
1の取り付は位置が池のタンク1よりも沈下していれば
(すなわち構造物の沈下が不均一であれば)重り14の
露出状態が基準値を測定したときの状態とは相違するの
で、ロードセル13に加わる値も相違してくる。
Then, the weight 14 is exposed from the water surface, but when installing one tank 1, if the position is lower than the pond tank 1 (that is, if the structure sinks unevenly), the exposed state of the weight 14 will be Since the state is different from the state when the reference value was measured, the value applied to the load cell 13 is also different.

この荷重を沈下量に換算することによって、基準値を測
定したときからの沈下量を知ることができる。
By converting this load into the amount of subsidence, it is possible to know the amount of subsidence from when the reference value was measured.

〈二〉ロードセルのクリープの回避 以上の操作で測定を完了するわけであるが、ロードセル
13は長時間負荷を懸けてお(とクリープが生じて測定
値に誤差が生じるという問題がある。
<2> Avoiding creep of the load cell Although the measurement is completed by the above operations, there is a problem that if the load cell 13 is subjected to a load for a long time (creep occurs and an error occurs in the measured value).

そのために水位調節槽3のゲート34を閉じてポンプP
の運転を継続することによって各タンク1内に水を供給
する。
For this purpose, the gate 34 of the water level adjustment tank 3 is closed and the pump P
Water is supplied into each tank 1 by continuing the operation of the tank 1.

この状態では重り14には浮力が作用するようにタンク
1の取り付は位置を設定しておけば、懸垂索15には荷
重が作用せず、したがってロードセル13の負荷はゼロ
となる。
In this state, if the mounting position of the tank 1 is set so that buoyancy acts on the weight 14, no load acts on the suspension rope 15, and therefore the load on the load cell 13 becomes zero.

このように重り14を水没することによってロードセル
13を休ませることができ、ロードセル13のクリープ
による誤差の発生を避けることができる。
By submerging the weight 14 in water in this manner, the load cell 13 can be rested, and errors caused by creep of the load cell 13 can be avoided.

くホ〉温度誤差の修正 水位調節槽3のゲート34を閉じてポンプPの運転を継
続することによって各タンク1内に水をA−Bだけの差
が存在するから、水路2を循環する水の水位はタンク1
の順番に低下してゆき、その結果つねに水路2内の水は
移動していることになる。
Kuho〉 Correction of temperature error By closing the gate 34 of the water level adjustment tank 3 and continuing the operation of the pump P, the water circulating in the water channel 2 will be adjusted because there is a difference of A-B in each tank 1. The water level is tank 1
As a result, the water in the water channel 2 is constantly moving.

そのためにひとつのタンク1の水の温度だけが上昇する
ことはなく、つねに同一の条件の水をタンク1内に収容
していることになり、その結果ロードセル13に温度差
による誤差の影響が作用することがない。
Therefore, the temperature of water in one tank 1 does not rise, but water under the same conditions is always stored in tank 1, and as a result, the load cell 13 is affected by errors due to temperature differences. There's nothing to do.

く本発明の効果〉 本発明は上記したようになるから次のような効果を期待
することができる。
Effects of the Present Invention> Since the present invention is as described above, the following effects can be expected.

くイ〉ロードセルの発生信号を集計することによって直
ちに(R遺物全体の沈下状態の把握、および構造物の不
等沈下の状態を検知することができる。
By compiling the signals generated by the load cells, it is possible to immediately grasp the state of settlement of the entire relic (R) and detect the state of uneven settlement of the structure.

〈口〉特に屋外での測定において、太陽光線の当たる位
置に置いたタンクでの沈下量の値と、当たらない位置で
の値とが大きく相違して信頼性に乏しいものであった。
<Exposure> Particularly in outdoor measurements, the value of the amount of subsidence in the tank placed in a position exposed to sunlight and the value in a position not exposed to sunlight were significantly different, resulting in poor reliability.

本発明の装置は、上記したように測定媒体である水が常
に循環しているから一部の計器のみ温度が上昇するとい
った誤差を発生することがな(、常に精度の高い沈下量
を測定することができる。
As mentioned above, the device of the present invention constantly circulates the water that is the measurement medium, so it does not cause errors such as the temperature of only some instruments increasing (and can always measure the amount of subsidence with high accuracy). be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 複数のタンクを水路で連通し、水路内の水を移動させ、
各タンク内にはロードセルを位置させ、ロードセルには
重りを懸垂し、タンク内の水位を低下させることによっ
て、重りに作用する浮力の相違からタンクの位置の昇降
を検知するように構成した、沈下計
Connect multiple tanks with waterways to move water within the waterways,
A load cell is located in each tank, and a weight is suspended from the load cell. By lowering the water level in the tank, the rise and fall of the tank position is detected from the difference in buoyancy acting on the weight. total
JP14439886A 1986-06-20 1986-06-20 Settlement meter Pending JPS62299717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14439886A JPS62299717A (en) 1986-06-20 1986-06-20 Settlement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14439886A JPS62299717A (en) 1986-06-20 1986-06-20 Settlement meter

Publications (1)

Publication Number Publication Date
JPS62299717A true JPS62299717A (en) 1987-12-26

Family

ID=15361233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14439886A Pending JPS62299717A (en) 1986-06-20 1986-06-20 Settlement meter

Country Status (1)

Country Link
JP (1) JPS62299717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850019A (en) * 1994-08-09 1996-02-20 West Japan Railway Co Method and apparatus for measuring sinkage of structure
WO2010053392A1 (en) * 2008-11-05 2010-05-14 Universidade Do Porto Transducer for measuring vertical displacements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928461B1 (en) * 1968-01-02 1974-07-26
JPS5197012A (en) * 1975-02-24 1976-08-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928461B1 (en) * 1968-01-02 1974-07-26
JPS5197012A (en) * 1975-02-24 1976-08-26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850019A (en) * 1994-08-09 1996-02-20 West Japan Railway Co Method and apparatus for measuring sinkage of structure
WO2010053392A1 (en) * 2008-11-05 2010-05-14 Universidade Do Porto Transducer for measuring vertical displacements

Similar Documents

Publication Publication Date Title
CN104831762A (en) Dynamic monitoring system and monitoring method of deep foundation pit confined water drawdown
CN111337650B (en) Multifunctional test device for researching seepage damage mechanism of underground engineering soil body
CN102338631A (en) Static leveling device and system
Millham et al. Freshwater flow into a coastal embayment: Groundwater and surface water inputs
WO2021212951A1 (en) Geological radar-based riverbed sediment distribution detection device, system and method
JPS62299717A (en) Settlement meter
CN206177422U (en) Novel degree of accuracy of groundwater pressure type water level gauge detects device
CN116380373A (en) Resistivity value energy line estimation method for leakage channel position of reservoir dam
CN217006892U (en) Reading device for acquiring height of penetration test water head by utilizing laser
US5156489A (en) Adjustable flume
CN211927629U (en) Experimental device for survey soil-water-gas interface water flux
CN209727720U (en) Soil permeability coefficient detection device
CN212082773U (en) Soil body disintegration test equipment under simulated dynamic water condition
CN212158584U (en) Detection device and system for river bed sediment distribution based on geological radar
CN208818303U (en) Level measurement device
CN210036900U (en) Automatic water level gauge suitable for side slope of arbitrary river channel
DOWNING JR FIELD STUDIES OF SUSPENDED SAND TRANSPORT, TWIN HARBORS BEACH, WASHINGTON (WAVES, NEARSHORE CURRENTS)
CN220568233U (en) Adjustable water level measuring device
CN109405898A (en) A kind of buried pressure water-level gauge of the bitubular
CN217953412U (en) Distributed optical fiber online measuring device for silt deposition rate of irrigation channel
CN112880582B (en) A monitoring devices that is used for intertidal zone tidal flat bed local erosion and deposition to warp
CN216954733U (en) Water level monitoring device for hydraulic engineering
CN217211041U (en) Water level automatic detection mechanism for concrete reservoir full water test
Horn et al. Measurement of high-frequency bed level changes in the swash zone using Photo-Electronic Erosion Pins (PEEPs)
CN218382237U (en) Novel TPE density detection device