JP2016024043A - Liquid passage type displacement meter - Google Patents

Liquid passage type displacement meter Download PDF

Info

Publication number
JP2016024043A
JP2016024043A JP2014148254A JP2014148254A JP2016024043A JP 2016024043 A JP2016024043 A JP 2016024043A JP 2014148254 A JP2014148254 A JP 2014148254A JP 2014148254 A JP2014148254 A JP 2014148254A JP 2016024043 A JP2016024043 A JP 2016024043A
Authority
JP
Japan
Prior art keywords
displacement meter
liquid
water
type displacement
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014148254A
Other languages
Japanese (ja)
Other versions
JP6427349B2 (en
Inventor
山本 忠久
Tadahisa Yamamoto
忠久 山本
飯田 秀夫
Hideo Iida
秀夫 飯田
福田 智之
Tomoyuki Fukuda
智之 福田
蜂須賀 義文
Yoshibumi Hachisuga
義文 蜂須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOGO KEISOKU KK
Obayashi Corp
Original Assignee
SOGO KEISOKU KK
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOGO KEISOKU KK, Obayashi Corp filed Critical SOGO KEISOKU KK
Priority to JP2014148254A priority Critical patent/JP6427349B2/en
Publication of JP2016024043A publication Critical patent/JP2016024043A/en
Application granted granted Critical
Publication of JP6427349B2 publication Critical patent/JP6427349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Level Indicators Using A Float (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid passage type displacement meter capable of accurately measuring vertical displacement in a short time, in an open channel type displacement meter as a device for measuring vertical displacement in a structure.SOLUTION: In a liquid passage type displacement meter in which plural liquid tanks 11 are connected to each other with a liquid passage 20, in at least one of the liquid tank 11 and the liquid passage 20, provided is an oscillation suppression material 30 suppressing oscillation of a liquid surface. The oscillation suppression material 30 can employ a member, such as nylon nonwoven fabric, in which linear materials such as nylon fiber are combined to form a predetermined thickness.SELECTED DRAWING: Figure 3

Description

本発明は、液路式変位計に関するものであり、具体的には、短時間での正確な鉛直変位計測を可能とする液路式変位計の技術に関する。   The present invention relates to a liquid path type displacement meter, and specifically relates to a technique of a liquid path type displacement meter that enables accurate vertical displacement measurement in a short time.

構造物における鉛直方向の変位を計測する装置として、開水路式変位計が存在する。開水路式変位計は、水面が大気に開放された状態のいわゆる開水路によって基本構造をなし、この開水路に沿って所定間隔で設けた一連の測点で変位計測を行うものである。また、各測点には、浮子を浮かべた水槽と、浮子の鉛直方向移動量を検知する渦電流センサとが設置されている。水槽は構造物と連結しており、構造物の沈下や隆起に伴って同様に沈下、隆起の動きを示す。例えば、構造物沈下に伴って、或る測点の水槽が沈下した場合、水槽沈下に関わらず水位一定である水面上の浮子天端と、水槽と共に沈下する渦電流センサとの間の鉛直距離が、沈下前の状態から変化する。この変化量から当該測点の変位量と測点間の相対変位量を検出することが出来る。   There is an open channel displacement meter as a device for measuring a vertical displacement in a structure. The open channel type displacement meter has a basic structure with a so-called open channel with the water surface opened to the atmosphere, and performs displacement measurement at a series of measurement points provided at predetermined intervals along the open channel. Each measurement point is provided with a water tank with a floating float and an eddy current sensor for detecting the amount of vertical movement of the float. The aquarium is connected to the structure and shows the movement of the subsidence and uplift as the structure subsidence and uplift. For example, when a tank of a certain point sinks due to the subsidence of a structure, the vertical distance between the floating top of the surface where the water level is constant regardless of the tank subsidence and the eddy current sensor that sinks with the tank However, it changes from the state before subsidence. From this change amount, it is possible to detect the displacement amount of the measurement point and the relative displacement amount between the measurement points.

このような開水路式変位計は、温度、湿度等の環境変化に対して安定した計測結果が得られる特性を有しており、長期にわたる安定的な変位計測が必要な状況に、よく適用されてきた。開水路式変位計の従来技術としては、例えば、不動点間に設置され貯留液体の上部に空間を有する液路と、液路の中間に可撓部を介して複数構成された変位計測部と、液路に沿って設けられ貯留液体に浮遊し各変位計測部内を通るフロート体と、フロート体の両端部を浮動自在に支持する第1および第2の支持部と、各変位計測部内に設けられフロート体の対向位置に対応して水平離間距離を計測する非接触変位センサとからなる開水路型水平変位計(特許文献1参照)などが提案されている。   Such an open-channel displacement meter has characteristics that provide stable measurement results against environmental changes such as temperature and humidity, and is often applied to situations where long-term stable displacement measurement is required. I came. As a conventional technique of an open channel type displacement meter, for example, a liquid path that is installed between fixed points and has a space above the stored liquid, and a plurality of displacement measuring units that are configured through a flexible part in the middle of the liquid path, A float body that is provided along the liquid path and floats in the stored liquid and passes through each displacement measurement section; first and second support sections that support both ends of the float body in a freely floating manner; and each displacement measurement section includes An open channel type horizontal displacement meter (refer to Patent Document 1) including a non-contact displacement sensor that measures a horizontal separation distance corresponding to the opposed position of the float body has been proposed.

特開2013−181973号公報JP 2013-181973 A

しかしながら、従来の開水路式変位計は、構造物の挙動に応じた水槽内水面の揺動が収束するまで、正確な計測が困難であるため、アンダーピニング工法適用時で荷重移行作業中などの構造物の変位計測など、短時間で計測結果を得る必要がある状況には不向きであった。一方、そうした短時間での計測を行うべく、ダイヤルゲージ変位計等の計測機器を設置する場合、既存の開水路式変位計とは別の計測機構を付加することになり、導入・運用のコストや手間の増加につながっていた。   However, since the conventional open channel displacement meter is difficult to measure accurately until the fluctuation of the water surface in the aquarium according to the behavior of the structure converges, it is difficult to carry out load transfer work when applying the underpinning method. This method is not suitable for situations where it is necessary to obtain measurement results in a short time, such as displacement measurement of structures. On the other hand, when measuring equipment such as a dial gauge displacement meter is installed in order to perform such measurement in a short time, a measurement mechanism different from the existing open channel displacement meter is added. And led to an increase in labor.

そこで本発明は、短時間での正確な鉛直変位計測を可能とする液路式変位計の技術の提供を目的とする。   Therefore, an object of the present invention is to provide a technique of a liquid path type displacement meter that enables accurate vertical displacement measurement in a short time.

上記課題を解決する本発明の液路式変位計は、複数の液槽を液路にて連結し構成した液路式変位計であって、前記液槽または前記液路の少なくともいずれかの箇所に、液面の揺動を抑制する揺動抑制材を設けたことを特徴とする。   The liquid path type displacement meter of the present invention that solves the above problems is a liquid path type displacement meter configured by connecting a plurality of liquid tanks with liquid paths, and is at least one location of the liquid tank or the liquid path In addition, a rocking suppression material that suppresses rocking of the liquid surface is provided.

これによれば、例えば測定対象の構造物に鉛直変位が生じた場合、この鉛直変位に伴って、液路式変位計の該当箇所の液槽で水面揺動が生じるが、その水面揺動を適宜通過させる揺動抑制材においてエネルギーの吸収がなされるため、揺動抑制材が設置されていない場合と比較して迅速に水面揺動を収束させることが出来る。   According to this, for example, when a vertical displacement occurs in the structure to be measured, a water surface fluctuation occurs in the liquid tank at the corresponding location of the liquid path type displacement meter along with the vertical displacement. Since the energy is absorbed in the rocking suppression material that is appropriately passed, the water surface rocking can be converged more quickly than in the case where the rocking suppression material is not installed.

つまり本発明によれば、構造物で生じた鉛直変位に伴う液路式変位計での水面揺動を迅速に収束させ、落ち着いた水面において、液路式変位計における短時間での正確な鉛直変位計測が可能となる。従って、長期計測時および短期計測時のいずれの状況にも本発明の液路式変位計を適用可能となり、従来のような、計測時間の長短による変位計測システム切り替えや、そうした変位計測システム間での計測値の整合作業や誤差調整などの煩雑な作業が不要となる。また、変位計測システムの一本化、および変位計測に伴う各種作業の低減が図れることで、変位計測システムの導入及び運用にかかるコストも抑制出来る。   In other words, according to the present invention, the water surface fluctuation in the liquid path type displacement meter due to the vertical displacement generated in the structure is quickly converged, and the accurate vertical movement in the liquid path type displacement meter can be performed in a short time on the calm water surface. Displacement measurement is possible. Therefore, the liquid path type displacement meter of the present invention can be applied to both long-term and short-term measurement situations, and switching between displacement measurement systems depending on the length of measurement time, and between such displacement measurement systems as in the past. This eliminates the need for complicated operations such as matching the measured values and adjusting errors. In addition, the cost for introducing and operating the displacement measurement system can be suppressed by unifying the displacement measurement system and reducing various operations associated with the displacement measurement.

なお、上述の液路式変位計において、前記揺動抑制材は、複数の線状材を絡み合わせて構成したものであるとしてもよい。   In the above-described liquid path type displacement meter, the rocking suppression material may be configured by intertwining a plurality of linear materials.

これによれば、揺動抑制材において、上述の水面揺動に伴う液体移動を面ではなく線、すなわち各線状材で受け止めて水面揺動のエネルギーを適宜吸収しつつ、線状材の径と比べて十分大きな線状材間の開口を介し、上述の液体を効率良く受け入れて通過させることが可能となる。従って、水面揺動を短時間で落ち着かせつつ、構造物等での変位に対応した水位変化を液路中で精度良く伝播させることが可能となり、液路式変位計における短時間での正確な鉛直変位計測が可能となる。   According to this, in the rocking suppression material, the liquid movement accompanying the above-described rocking of the water surface is received not by the surface but by the line, that is, each linear material, and appropriately absorbs the energy of the water surface rocking, Compared to the sufficiently large opening between the linear members, the above-mentioned liquid can be efficiently received and passed. Therefore, it is possible to accurately propagate the water level change corresponding to the displacement in the structure or the like in the liquid passage while allowing the water surface fluctuation to settle down in a short time. Vertical displacement measurement is possible.

また、上述の液路式変位計において、前記揺動抑制材は、ナイロン不織布であるとしてもよい。   Further, in the above-described liquid path type displacement meter, the swing suppressing material may be a nylon nonwoven fabric.

これによれば、上述の揺動抑制材を、入手容易で低コストなナイロン不織布で構成することが可能であり、短時間での正確な鉛直変位計測を可能とする液路式変位計を、低コストかつ簡便に導入可能となる。   According to this, the above-mentioned rocking | fluctuation suppression material can be comprised with a nylon nonwoven fabric with easy acquisition and low cost, and the liquid path type displacement meter which enables the accurate vertical displacement measurement in a short time, It can be introduced at low cost and easily.

また、上述の液路式変位計において、前記揺動抑制材を、液路の端部に更に設けるとしてもよい。   Further, in the above-described liquid path type displacement meter, the rocking suppression material may be further provided at the end of the liquid path.

これによれば、液路中で伝播する水面揺動が液路端部に達した際、これを揺動抑制材が適宜受け止めてエネルギーを吸収して、他方の液路端部に向けた水面揺動の反射を抑制し、液路式変位計における短時間での鉛直変位計測を更に精度の良いものと出来る。   According to this, when the fluctuation of the water surface propagating in the liquid passage reaches the end of the liquid passage, the fluctuation restraining material appropriately receives this to absorb the energy, and the water surface toward the other liquid passage end. By suppressing the reflection of oscillation, vertical displacement measurement in a short time in a liquid path type displacement meter can be made more accurate.

本発明によれば、液路式変位計における短時間での正確な鉛直変位計測が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the accurate vertical displacement measurement in a short time in a liquid path type displacement meter is attained.

本実施形態における液路式変位計の全体構造例1を示す平面図である。It is a top view which shows the whole structural example 1 of the liquid path type displacement meter in this embodiment. 本実施形態における液路式変位計の全体構造例1を示す側断面図である。It is a sectional side view which shows the whole structural example 1 of the liquid-path type displacement meter in this embodiment. 本実施形態の液路式変位計の水槽における揺動抑制材の設置構造例を示す平面図である。It is a top view which shows the example of installation structure of the rocking | fluctuation suppression material in the water tank of the liquid path type displacement meter of this embodiment. 本実施形態の液路式変位計の水槽における揺動抑制材の設置構造例1を示す断面図である。It is sectional drawing which shows the installation structural example 1 of the rocking | fluctuation suppression material in the water tank of the liquid path type displacement meter of this embodiment. 本実施形態の液路式変位計の水槽における揺動抑制材の設置構造例2を示す断面図である。It is sectional drawing which shows the installation structural example 2 of the rocking | fluctuation suppression material in the water tank of the liquid path type displacement meter of this embodiment. 本実施形態の液路式変位計における揺動抑制材の構造例を示す図である。It is a figure which shows the structural example of the rocking | fluctuation suppression material in the liquid-path type displacement meter of this embodiment. 本実施形態の液路式変位計の水槽における揺動抑制材の他の設置構造例を示す平面図である。It is a top view which shows the other example of installation structure of the rocking | fluctuation suppression material in the water tank of the liquid path type displacement meter of this embodiment. 本実施形態の液路式変位計に関する水面揺動の時間推移シミュレーション結果の例1を示す図である。It is a figure which shows Example 1 of the time transition simulation result of the water surface fluctuation | variation regarding the liquid-path type displacement meter of this embodiment. 本実施形態の液路式変位計に関する水面揺動の時間推移シミュレーション結果の例2を示す図である。It is a figure which shows Example 2 of the time transition simulation result of the water surface fluctuation | variation regarding the liquid path type displacement meter of this embodiment. 本実施形態における液路式変位計の全体構造例2を示す平面図である。It is a top view which shows the whole structural example 2 of the liquid path type displacement meter in this embodiment. 本実施形態における液路式変位計の全体構造例2を示す側断面図である。It is a sectional side view which shows the whole structural example 2 of the liquid-path type displacement meter in this embodiment.

以下に本発明の実施形態について図面を用いて詳細に説明する。図1は、本実施形態における液路式変位計たる開水路式変位計100(以下同様)の全体構造例1を示す平面図であり、図2は本実施形態における開水路式変位計100の全体構造例1を示す断面図である。なお、説明のため、図1、2における水槽11については、その内部に備わる揺動抑制材30とセンサ収納部19を透過的に示している。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a plan view showing an overall structure example 1 of an open channel displacement meter 100 (hereinafter the same) as a liquid channel displacement meter in the present embodiment, and FIG. 2 shows an open channel displacement meter 100 in the present embodiment. It is sectional drawing which shows the whole structure example 1. FIG. For the sake of explanation, the water tank 11 in FIGS. 1 and 2 transparently shows the rocking suppression material 30 and the sensor storage portion 19 provided therein.

本実施形態における開水路式変位計100は、長期にわたる安定的な変位計測を従来通りに実行可能であると共に、短時間での正確な鉛直変位計測をも可能とする変位計である。こうした開水路式変位計100は、所定間隔で設けた複数の測点10に配置した液槽たる水槽11を液路たる水路20にて連結し構成した開水路25から構成されている。また複数の測点10のうち、いずれか1つの測点の水槽11は鉛直変位が生じない堅固な基礎2等に固定され、測点間の相対変位量の算定時における基準点10Bとなっている。また、水槽11は変位計測対象である構造物1と一体に連結しており、この構造物1の沈下や隆起といった鉛直変位に伴って同様に沈下、隆起の動きを示す。   The open channel type displacement meter 100 according to the present embodiment is a displacement meter that can perform stable displacement measurement over a long period of time as usual and can also perform accurate vertical displacement measurement in a short time. Such an open channel type displacement meter 100 is configured by an open channel 25 formed by connecting a water tank 11 as a liquid tank disposed at a plurality of measuring points 10 provided at predetermined intervals by a water channel 20 as a liquid channel. Moreover, the water tank 11 of any one of the plurality of measurement points 10 is fixed to a solid foundation 2 or the like that does not cause vertical displacement, and becomes a reference point 10B when calculating the relative displacement amount between the measurement points. Yes. Further, the water tank 11 is integrally connected to the structure 1 that is the object of displacement measurement, and similarly shows the movement of the subsidence and the uplift along with the vertical displacement such as the subsidence and the uplift of the structure 1.

ここで、各測点10の水槽11にはセンサ収納部19が設置され、更に、測点10の水槽11または水路20の少なくともいずれかの箇所には揺動抑制材30が設置されている。図1、2の例では、各水槽11に揺動抑制材30が設置された構成となっている。この揺動抑制材30の設置がなされた開水路式変位計100の構造例を図3にて示す。図3は、本実施形態の開水路式変位計100の水槽11における揺動抑制材30の設置構造例を示す平面図、図4は本実施形態の開水路式変位計100の水槽11における揺動抑制材30の設置構造例を示す断面図である。ここでは、揺動抑制材30が水槽11内に設置された構造について示す。また図4の断面図は、図3に示す開水路25をA−A方向から見た場合の断面図である。   Here, a sensor storage unit 19 is installed in the water tank 11 of each measurement point 10, and a swing suppression member 30 is installed in at least one of the water tank 11 or the water channel 20 of the measurement point 10. In the example of FIGS. 1 and 2, each water tank 11 is provided with a rocking suppression material 30. FIG. 3 shows an example of the structure of the open channel type displacement meter 100 in which the rocking suppression member 30 is installed. FIG. 3 is a plan view showing an example of the installation structure of the rocking suppression material 30 in the water tank 11 of the open channel displacement meter 100 of the present embodiment, and FIG. 4 shows the rocking motion in the water tank 11 of the open channel displacement meter 100 of the present embodiment. FIG. 6 is a cross-sectional view showing an example of the installation structure of the movement suppressing member 30. Here, a structure in which the rocking suppression member 30 is installed in the water tank 11 is shown. Moreover, sectional drawing of FIG. 4 is sectional drawing at the time of seeing the open water channel 25 shown in FIG. 3 from the AA direction.

図3、4にて示すように、上述の水槽11には水路20が連結されており、互いに連通する内空18、21において蓄えた水12の水面13を同じくしている。また、水槽11の内空18には、箱状のセンサ収納部19が設けられており、その天端15には渦電流センサ16が設置されている。渦電流センサ16は、センサ収納部19における水面13の浮子14と所定の離間距離をとって、浮子14の鉛直方向移動量を検知するセンサである。こうした渦電流センサ16における変位計測の一般的概念については既存技術と同様である。   As shown in FIGS. 3 and 4, a water channel 20 is connected to the water tank 11 described above, and the water surface 13 of the water 12 stored in the internal spaces 18 and 21 communicating with each other is the same. Further, a box-shaped sensor storage portion 19 is provided in the inner space 18 of the water tank 11, and an eddy current sensor 16 is installed at the top end 15 thereof. The eddy current sensor 16 is a sensor that detects a vertical movement amount of the float 14 by taking a predetermined separation distance from the float 14 of the water surface 13 in the sensor storage unit 19. The general concept of displacement measurement in the eddy current sensor 16 is the same as that of the existing technology.

なお、各水槽11に備わる上述のセンサ収納部19は、図4にて示すように、水槽11に連結した水路20の開口22Aのうち水12の占める領域21Aの所定部分23Aを覆って、水路20と水槽11との間の水12の伝播経路を所定割合(例:15%)だけ阻害している。或いは、図5にて示すように、水槽11に連結した水路20の開口22Aに所定面積の板材23を当接させて、水路20の開口22Aのうち水12の占める領域21Aの所定割合(例:50%)を覆い、水路20と水槽11との間の水12の伝播経路を一部阻害することも想定出来る。なお、図4、5にて例示した上述の構成については、後述の水面揺動の時間推移に関するシミュレーションにおける条件として採用する。   In addition, the above-mentioned sensor accommodating part 19 with which each water tank 11 is provided covers the predetermined part 23A of the area | region 21A which the water 12 occupies among the opening 22A of the water path 20 connected with the water tank 11, as shown in FIG. The propagation path of the water 12 between 20 and the water tank 11 is obstructed by a predetermined ratio (for example, 15%). Alternatively, as shown in FIG. 5, a plate material 23 having a predetermined area is brought into contact with the opening 22A of the water channel 20 connected to the water tank 11, and a predetermined ratio of the region 21A occupied by the water 12 in the opening 22A of the water channel 20 (example) : 50%) and part of the propagation path of the water 12 between the water channel 20 and the water tank 11 can be assumed. In addition, about the above-mentioned structure illustrated in FIG. 4, 5, it employ | adopts as conditions in the simulation regarding the time transition of the water surface fluctuation mentioned later.

また本実施形態における上述の水槽11の内空18のうち、センサ収納部19以外の領域18Aには、水槽底部18Bから少なくとも水面13上の所定高さまで、領域18Aの断面を塞ぐ揺動抑制材30が設置されている。この揺動抑制材30は、図6にて例示するように、ナイロン繊維などの線状材31が組み合わされて所定厚みを成した部材であり、例えばナイロン不織布を採用出来る。ナイロン不織布は入手容易で低コストであり、また所望の形状及びサイズへの切り取りなど取り扱いが容易な素材であり、揺動抑制材30を低コストかつ簡便に構成できることとなる。   Further, in the inner space 18 of the above-described water tank 11 in the present embodiment, the region 18A other than the sensor housing portion 19 has a rocking suppression material that blocks the cross section of the area 18A from the water tank bottom 18B to at least a predetermined height on the water surface 13. 30 is installed. As illustrated in FIG. 6, the swing suppressing member 30 is a member having a predetermined thickness formed by combining linear members 31 such as nylon fibers. For example, a nylon nonwoven fabric can be used. Nylon nonwoven fabric is readily available and low cost, and is a material that is easy to handle such as cutting into a desired shape and size, so that the swing suppression material 30 can be configured at low cost and simply.

上述した揺動抑制材30においては、ナイロン繊維等の線状材31の径と比較して、線状材31の間に存在する開口32の開口幅と高さは十分大きく、開口32に対する線状材31は面ではなく線とみなせるものである。従って、水面揺動に伴って、水路20の開口22Aから水槽11内に伝播移動してきた水12は、水槽内空18における揺動抑制材30に衝突する際、面として受け止められることがない。そのため、水面揺動がその伝播元に向けて反射される割合が小さく、水12が開口32に流入して揺動抑制材30内を円滑に透過することになる。   In the above-described rocking suppression material 30, the opening width and height of the openings 32 existing between the linear materials 31 are sufficiently larger than the diameter of the linear material 31 such as nylon fiber, and the line with respect to the opening 32 is The material 31 can be regarded as a line, not a surface. Therefore, the water 12 propagated and moved into the water tank 11 from the opening 22 </ b> A of the water channel 20 along with the water surface swing is not received as a surface when colliding with the rocking suppression member 30 in the water tank inner space 18. Therefore, the rate at which the water surface fluctuation is reflected toward the propagation source is small, and the water 12 flows into the opening 32 and smoothly passes through the fluctuation suppressing member 30.

例えば、構造物1での変位に伴って水槽11等で生じた水面揺動により伝播移動する水12は、上述の水槽11と隣接する他水槽の内空18の揺動抑制材30に到達し、この揺動抑制材30における線状材31、すなわち面ではなく線で適宜受け止められつつ、(線状材31の径と比べて十分大きな)開口32に流入する。開口32を介して揺動抑制材30内に流入した水12は、揺動抑制材30内で絡み合っている線状材31に更に衝突してエネルギーを減じつつも、上述の開口32同様の径を備えた内部経路33を辿り、円滑に揺動抑制材30を通過する。   For example, the water 12 propagating and moving due to the water surface fluctuation generated in the water tank 11 or the like due to the displacement in the structure 1 reaches the rocking suppression member 30 in the inner space 18 of another water tank adjacent to the water tank 11 described above. Then, the linear member 31 in the swing suppressing member 30, that is, the wire 32 instead of the surface, is appropriately received and flows into the opening 32 (which is sufficiently larger than the diameter of the linear member 31). The water 12 that has flowed into the swing suppression member 30 through the opening 32 further collides with the linear material 31 entangled in the swing suppression member 30 to reduce energy, but the diameter is the same as that of the opening 32 described above. It follows the internal path 33 provided with and smoothly passes through the rocking suppression member 30.

こうして揺動抑制材30は、開水路25を伝播移動する水12に関し、そのエネルギーを適宜吸収して水面揺動を落ち着かせると共に、水槽内空18における当該揺動抑制材30前後で生じる伝播タイムラグを最小限に留めて円滑に通過させることが可能である。このように、少ないタイムラグで水12の伝播がなされることは、構造物1の変位に伴う水位変化を開水路25中で素早く伝播させることにつながる。以上のように、水面揺動の短時間での沈静化と、開水路25での迅速かつ精度良好な水位変化の伝播とが合わせて確立されることで、本実施形態の開水路式変位計100において短時間での正確な鉛直変位計測が可能となる。この効果は、特にアンダーピニング工法適用時で荷重移行作業中などの構造物1の変位計測時など、急な鉛直変位に伴う大きな水面揺動が生じやすい状況において顕著なものとなる。   In this way, the rocking suppression member 30 absorbs the energy of the water 12 propagating and moving through the open channel 25 to calm the water surface rocking, and the propagation time lag generated before and after the rocking suppression material 30 in the aquarium space 18. Can be made to pass smoothly with a minimum of. Thus, the propagation of the water 12 with a small time lag leads to the quick propagation of the water level change accompanying the displacement of the structure 1 in the open channel 25. As described above, since the calming of the water surface in a short time and the rapid and accurate propagation of the water level change in the open channel 25 are established together, the open channel displacement meter of the present embodiment is established. 100 enables accurate vertical displacement measurement in a short time. This effect is particularly noticeable in situations where large water surface fluctuations are likely to occur due to sudden vertical displacement, such as when measuring displacement of the structure 1 such as during load transfer work when applying the underpinning method.

なお、上述のように揺動抑制材30を水槽11に設置する場合のみならず、水路20に設置するとしてもよい。また揺動抑制材30を、開水路25における水槽11や水路20に加えて、該当開水路25の端部26、27に更に設けるとしてもよい(図7参照)。この場合、開水路25中で伝播する水面揺動が一方の開水路端部26に達した際、これを開水路端部26の揺動抑制材30が適宜受け止めてエネルギーを吸収し、他方の開水路端部27に向けた水面揺動の反射を抑制することが出来る。これによれば、開水路25における水面揺動が端部26、27を起点に繰り返し反射されて長時間沈静化せず、過大な計測時間と精度不良の計測結果が生じるといった事態を回避し、開水路式変位計100における短時間での鉛直変位計測を更に精度の良いものと出来る。   In addition, you may install not only the case where the rocking | swiveling suppression material 30 is installed in the water tank 11 as mentioned above but in the water channel 20. In addition to the water tank 11 and the water channel 20 in the open channel 25, the swing suppression member 30 may be further provided at the end portions 26 and 27 of the corresponding open channel 25 (see FIG. 7). In this case, when the fluctuation of the water surface propagating in the open channel 25 reaches one of the open channel ends 26, the oscillation suppression member 30 of the open channel end 26 appropriately receives this to absorb energy, Reflection of water surface swing toward the open channel end 27 can be suppressed. According to this, the water surface swing in the open channel 25 is repeatedly reflected starting from the end portions 26 and 27 and does not calm down for a long time, avoiding a situation in which an excessive measurement time and a measurement result of inaccuracy occur. The vertical displacement measurement in the open channel displacement meter 100 in a short time can be made more accurate.

ここで、揺動抑制材30を備えない従来型の開水路式変位計と、揺動抑制材30を備える本実施形態の開水路式変位計100とに関し、それぞれ水面揺動の時間推移をシミュレーションした例を示す。まず、比較するケースとしては以下の5ケースを採用した。   Here, with respect to the conventional open channel displacement meter without the swing suppression member 30 and the open channel displacement meter 100 according to the present embodiment with the swing suppression member 30, the time transition of the water surface swing is simulated. An example is shown. First, the following five cases were adopted as cases for comparison.

・ケース1(従来型):各測点10の水槽11内には揺動抑制材30は備わっていない構成。なお、水槽11に連結した水路20の開口22Aのうち、水12の占める領域21Aの15%がセンサ収納部19によって阻害されている。 Case 1 (conventional type): A configuration in which the rocking suppression material 30 is not provided in the water tank 11 of each measurement point 10. In addition, 15% of the area 21 </ b> A occupied by the water 12 in the opening 22 </ b> A of the water channel 20 connected to the water tank 11 is obstructed by the sensor storage unit 19.

・ケース2(従来型):各測点10の水槽11内には揺動抑制材30は備わっていない構成。なお、水槽11に連結した水路20の開口22Aのうち、水12の占める領域21Aの50%が所定の板材等によって覆われ阻害されている。 Case 2 (conventional type): A configuration in which the rocking suppression material 30 is not provided in the water tank 11 of each measuring point 10. Of the opening 22A of the water channel 20 connected to the water tank 11, 50% of the region 21A occupied by the water 12 is covered and obstructed by a predetermined plate material or the like.

・ケース3(本実施形態):各測点10の水槽11内に揺動抑制材30を設けている。なお、水槽11に連結した水路20の開口22Aのうち、水12の占める領域21Aの15%がセンサ収納部19によって阻害されている。 Case 3 (this embodiment): A rocking suppression material 30 is provided in the water tank 11 of each measuring point 10. In addition, 15% of the area 21 </ b> A occupied by the water 12 in the opening 22 </ b> A of the water channel 20 connected to the water tank 11 is obstructed by the sensor storage unit 19.

・ケース4(本実施形態):各測点10の水槽11内と、開水路端部26、27のそれぞれとに揺動抑制材30を設けている。なお、水槽11に連結した水路20の開口22Aのうち、水12の占める領域21Aの15%がセンサ収納部19によって阻害されている。 Case 4 (this embodiment): The rocking | fluctuation suppression material 30 is provided in the water tank 11 of each measuring point 10, and each of the open channel end parts 26 and 27. In addition, 15% of the area 21 </ b> A occupied by the water 12 in the opening 22 </ b> A of the water channel 20 connected to the water tank 11 is obstructed by the sensor storage unit 19.

・ケース5(本実施形態):各測点10の水槽11内に揺動抑制材30を設けている。なお、水槽11に連結した水路20の開口22Aのうち、水12の占める領域21Aの50%が所定の板材等によって阻害されている。 Case 5 (this embodiment): A rocking suppression material 30 is provided in the water tank 11 of each measuring point 10. Of the opening 22A of the water channel 20 connected to the water tank 11, 50% of the region 21A occupied by the water 12 is obstructed by a predetermined plate material or the like.

また、想定した鉛直変位の条件は、開水路端部26に最寄りの測点10が10秒かけて3mm隆起することとした。他方、その他の測点10や水路20らは変位しないものとした。こうした条件の鉛直変位を想定した場合、測点10の隆起に伴って隆起した水槽11内の水12の水面揺動が、水路20及び揺動抑制材30を介して他の測点10に伝播し、時間経過と共に水面13は平坦化されると考える。   In addition, the assumed vertical displacement condition is that the nearest station 10 is raised 3 mm over 10 seconds at the open channel end 26. On the other hand, the other measuring points 10 and the water channel 20 are not displaced. Assuming a vertical displacement under such conditions, the water surface fluctuation of the water 12 in the water tank 11 that has risen with the rising of the measurement point 10 is propagated to the other measurement points 10 via the water channel 20 and the fluctuation suppression material 30. However, it is considered that the water surface 13 is flattened over time.

以上の条件を上述のケース1〜5のそれぞれに適用した場合の結果を図8に示す。図8の例の場合、上述のような隆起が生じはじめた時刻t=0から約10秒後の時点で、各ケースにて変位は3mmに達し、その後、ケース1、2の従来型の開水路式変位計に関しては、おおよそt=30秒、1分10秒、1分40秒、2分10秒、2分40秒、3分10秒、3分40秒、4分10秒、の各時点で変位量が大きく変動する結果となり、最終的に、例えば変位量の振幅が0.1mm程度まで沈静化するのに6分ほど要している。   The result at the time of applying the above conditions to each of the above cases 1 to 5 is shown in FIG. In the case of the example in FIG. 8, the displacement reaches 3 mm in each case at about 10 seconds after the time t = 0 when the above-described bulging started to occur. For a water channel displacement meter, each of t = 30 seconds, 1 minute 10 seconds, 1 minute 40 seconds, 2 minutes 10 seconds, 2 minutes 40 seconds, 3 minutes 10 seconds, 3 minutes 40 seconds, 4 minutes 10 seconds As a result, the displacement greatly fluctuates at the time, and finally it takes about 6 minutes for the amplitude of the displacement to settle down to about 0.1 mm, for example.

一方、ケース3〜5の本実施形態の開水路式変位計100に関しては、おおよそt=30秒、1分10秒の各時点で変位量が変動するものの、約2分以内で変位量の振幅が0.1mm程度まで沈静化している。つまり、揺動抑制材30を備えた本実施形態の開水路式変位計100であれば、従来型の開水路式変位計と比較して数分の1の時間で水面揺動が沈静化出来ることとなる。   On the other hand, regarding the open channel displacement meter 100 of this embodiment of cases 3 to 5, the displacement amount fluctuates at each time point of approximately t = 30 seconds and 1 minute and 10 seconds, but the amplitude of the displacement amount within about 2 minutes. Has settled down to about 0.1 mm. That is, with the open channel displacement meter 100 of the present embodiment provided with the swing suppression member 30, the water surface swing can be calmed down in a fraction of the time compared to the conventional open channel displacement meter. It will be.

なお、上述した鉛直変位の条件を、開水路端部26に最寄りの測点10が1分かけて約1mm隆起する条件に変更し、上述のケース1およびケース4に適用した場合の結果を図9に示す。図9の例の場合、隆起が生じはじめた時刻t=0から約1分後の時点で、各ケースにて変位は0.9mmに達し、その後、ケース1の従来型の開水路式変位計に関しては、おおよそt=1分20秒、1分40秒、2分10秒、2分40秒、の各時点で変位量が変動する結果となり、最終的に変位量の振幅が0.1mm程度まで沈静化するのに3分ほど要している。一方、ケース4の本実施形態の開水路式変位計100に関しては、おおよそt=1分10秒の時点で変位量が変動するものの、約1分30秒以内で変位量の振幅が0.1mm程度まで沈静化している。つまり、穏やかな変位に関しても、揺動抑制材30を備えた本実施形態の開水路式変位計100の方が、従来型の開水路式変位計と比較して約半分程度で水面揺動が沈静化出来ることとなる。   The above-mentioned vertical displacement condition is changed to a condition in which the nearest station 10 is raised by about 1 mm over one minute at the open channel end portion 26, and the results when applied to the above-described case 1 and case 4 are shown in FIG. 9 shows. In the case of the example in FIG. 9, the displacement reaches 0.9 mm in each case at about 1 minute after the time t = 0 when the bulging started to occur, and then the conventional open channel displacement meter of case 1 As a result, the displacement amount fluctuates at each time point of about t = 1 minute 20 seconds, 1 minute 40 seconds, 2 minutes 10 seconds, 2 minutes 40 seconds, and finally the amplitude of the displacement amount is about 0.1 mm. It takes about 3 minutes to calm down. On the other hand, with respect to the open channel displacement meter 100 of the present embodiment of the case 4, the displacement amount fluctuates at about t = 1 minute 10 seconds, but within about 1 minute 30 seconds, the amplitude of the displacement amount is 0.1 mm. It has calmed to the extent. In other words, even with respect to a gentle displacement, the open channel displacement meter 100 of the present embodiment provided with the swing suppression member 30 can swing the water surface in about half as compared with the conventional open channel displacement meter. It will be able to calm down.

また本実施形態では、液槽たる水槽に連結した液路すなわち水路の開口が板材23によって15%、あるいは50%阻害されているものを使用したが、全く阻害されていないものにおいても揺動抑制材が効果を現すことは言うまでも無い。   In the present embodiment, the liquid channel connected to the water tank as the liquid tank, that is, the opening of the water channel is blocked by 15% or 50% by the plate material 23, but the oscillation is suppressed even if it is not blocked at all. Needless to say, the material is effective.

また本実施形態における液路式変位計としては、図10、11にて例示するように、所定高さを備えた縦型の液槽11の各間を、揺動抑制材30の備わる液路20で連結し構成した液路式変位計100を想定することも出来る。こうした構成において、ある液槽11にて生じた液面揺動に伴う液12の圧力変動は、液路20を介して隣の液槽11に伝播しようとするが、液路20中の揺動抑制材30によってエネルギーの吸収がなされるため、揺動抑制材が設置されていない場合と比較して迅速に水面揺動を収束させることが出来る。   Further, as a liquid path type displacement meter in the present embodiment, as illustrated in FIGS. 10 and 11, a liquid path provided with a rocking suppression material 30 between each of the vertical liquid tanks 11 having a predetermined height. It is also possible to assume a liquid path type displacement meter 100 connected and configured at 20. In such a configuration, the pressure fluctuation of the liquid 12 caused by the liquid level fluctuation generated in a certain liquid tank 11 tries to propagate to the adjacent liquid tank 11 via the liquid path 20. Since energy is absorbed by the suppression member 30, the water surface swing can be converged more quickly than in the case where the swing suppression member is not installed.

以上、本実施形態によれば、構造物で生じた鉛直変位に伴う開水路式変位計での水面揺動を迅速に収束させ、落ち着いた水面において、開水路式変位計における短時間での正確な鉛直変位計測が可能となる。   As described above, according to the present embodiment, the water surface fluctuation in the open channel displacement meter due to the vertical displacement generated in the structure is quickly converged, and the settled water surface can be accurately obtained in a short time in the open channel displacement meter. Vertical displacement measurement is possible.

本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   Although the embodiment of the present invention has been specifically described based on the embodiment, the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention.

1 構造物
2 基礎
10 測点
10B 基準点
11 水槽(液槽)
12 水(液)
13 水面(液面)
14 浮子
15 水槽内天端
16 渦電流センサ
17 ベース部
18 水槽内空
18A 水槽内空のうちセンサ収納部以外の領域
18B 水槽底部
19 センサ収納部
20 水路(液路)
21 水路内空
21A 水路開口のうち水の占める領域
22A 水路開口
25 開水路
26、27 開水路端部
30 揺動抑制材
31 線状材
32 開口
33 内部経路
100 開水路式変位計(液路式変位計)
1 structure 2 foundation 10 measuring point 10B reference point 11 water tank (liquid tank)
12 Water (Liquid)
13 Water surface (liquid surface)
14 Float 15 Water tank top 16 Eddy current sensor 17 Base 18 Water tank inner space 18A Water tank inner space 18B Other than sensor housing section Water tank bottom 19 Sensor housing section 20 Water channel (liquid channel)
21 A in the water channel 21 A Water area 22 A of the water channel opening 22 A water channel opening 25 Open channel 26, 27 Open channel end 30 Swing suppression material 31 Linear material 32 Opening 33 Internal channel 100 Open channel displacement meter (liquid channel type) Displacement meter)

Claims (4)

複数の液槽を液路にて連結し構成した液路式変位計であって、前記液槽または前記液路の少なくともいずれかの箇所に、液面の揺動を抑制する揺動抑制材を設けたことを特徴とする液路式変位計。   A liquid path type displacement meter configured by connecting a plurality of liquid tanks with liquid paths, wherein a rocking suppression material that suppresses rocking of the liquid surface is provided in at least one of the liquid tank or the liquid path. A liquid path type displacement meter provided. 前記揺動抑制材は、複数の線状材を絡み合わせて構成したものであることを特徴とする請求項1に記載の液路式変位計。   The liquid path type displacement meter according to claim 1, wherein the rocking suppression material is configured by entwining a plurality of linear materials. 前記揺動抑制材は、ナイロン不織布であることを特徴とする請求項1または2に記載の液路式変位計。   The liquid path type displacement meter according to claim 1, wherein the swing suppressing material is a nylon nonwoven fabric. 前記揺動抑制材を、液路の端部に更に設けたことを特徴とする請求項1〜3のいずれかに記載の液路式変位計。   The liquid path type displacement meter according to any one of claims 1 to 3, wherein the rocking suppression material is further provided at an end of the liquid path.
JP2014148254A 2014-07-18 2014-07-18 Flow path displacement meter Active JP6427349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014148254A JP6427349B2 (en) 2014-07-18 2014-07-18 Flow path displacement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148254A JP6427349B2 (en) 2014-07-18 2014-07-18 Flow path displacement meter

Publications (2)

Publication Number Publication Date
JP2016024043A true JP2016024043A (en) 2016-02-08
JP6427349B2 JP6427349B2 (en) 2018-11-21

Family

ID=55270913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148254A Active JP6427349B2 (en) 2014-07-18 2014-07-18 Flow path displacement meter

Country Status (1)

Country Link
JP (1) JP6427349B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317757A (en) * 1976-08-02 1978-02-18 Kawasaki Heavy Ind Ltd Method of measuring lateral inclination of hull
JPS58138030U (en) * 1982-03-15 1983-09-17 三菱自動車工業株式会社 Liquid level detection device
JPS60170737U (en) * 1984-04-21 1985-11-12 田村 久雄 water meter cover
JPS61129127U (en) * 1985-01-31 1986-08-13
JPH03262913A (en) * 1990-03-14 1991-11-22 Kayaba Ind Co Ltd Level measuring instrument
JPH0850019A (en) * 1994-08-09 1996-02-20 West Japan Railway Co Method and apparatus for measuring sinkage of structure
JP2004108993A (en) * 2002-09-19 2004-04-08 Chuo Fukken Consultants Co Ltd Subsidence measuring method, subsidence measuring system, subsidence measuring device, and wave damping block for subsidence measuring device
JP2014178122A (en) * 2013-03-13 2014-09-25 Ohbayashi Corp Open channel type displacement gauge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317757A (en) * 1976-08-02 1978-02-18 Kawasaki Heavy Ind Ltd Method of measuring lateral inclination of hull
JPS58138030U (en) * 1982-03-15 1983-09-17 三菱自動車工業株式会社 Liquid level detection device
JPS60170737U (en) * 1984-04-21 1985-11-12 田村 久雄 water meter cover
JPS61129127U (en) * 1985-01-31 1986-08-13
JPH03262913A (en) * 1990-03-14 1991-11-22 Kayaba Ind Co Ltd Level measuring instrument
JPH0850019A (en) * 1994-08-09 1996-02-20 West Japan Railway Co Method and apparatus for measuring sinkage of structure
JP2004108993A (en) * 2002-09-19 2004-04-08 Chuo Fukken Consultants Co Ltd Subsidence measuring method, subsidence measuring system, subsidence measuring device, and wave damping block for subsidence measuring device
JP2014178122A (en) * 2013-03-13 2014-09-25 Ohbayashi Corp Open channel type displacement gauge

Also Published As

Publication number Publication date
JP6427349B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
US9372105B2 (en) Ultrasonic flow rate measurement device
KR20080090539A (en) Liquid level and density measurement device
JP2016024043A (en) Liquid passage type displacement meter
KR101013586B1 (en) Device for detecting water level
CN103245401A (en) Device for measuring liquid level of liquid and oil lubricated engine
JP4922146B2 (en) Spent fuel pool water monitoring device
JP5173012B2 (en) Spent fuel pool water monitoring device
JP6088861B2 (en) Open channel displacement meter
KR102237445B1 (en) Measurement System of Pressure Difference in Tank
CN205098778U (en) Liquid level switch and level control apparatus
JP6088862B2 (en) Open channel displacement meter
CN104121968A (en) Material level measuring device and measuring method based on magnetoelectric effect
US11092474B2 (en) Liquid level sensor
CN106989721B (en) River bed washout observation device
KR102379429B1 (en) Measurement apparatus for determining cell size of nuclear fuel assembly spacer grid and Method thereof
JP2016147635A (en) Rolling reduction device and floating body with the same
RU2603948C1 (en) Device and method for determining liquid density
CN215448113U (en) Laser water level measuring device
JP7135072B2 (en) Water level detectors, devices with water level detectors, and floats
KR102124214B1 (en) Structure
CN216524642U (en) Flow sensor with good anti-seismic performance
KR20160009316A (en) Floating structure
CN208872384U (en) A kind of novel anti-sticking liquidometer
CN109407181B (en) Rainfall detection device
JP2013029339A (en) Liquid level detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R150 Certificate of patent or registration of utility model

Ref document number: 6427349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250